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Abstract

The lizards are evolutionarily the closest vertebrates to humans that demonstrate the ability to 

regenerate entire appendages containing cartilage, muscle, skin, and nervous tissue. We previously 

isolated PAX7-positive cells from muscle of the green anole lizard, Anolis carolinensis, that can 

differentiate into multinucleated myotubes and express the muscle structural protein, myosin 

heavy chain. Studying gene expression in these satellite/progenitor cell populations from A. 
carolinensis can provide insight into the mechanisms regulating tissue regeneration. We generated 

a transcriptome from proliferating lizard myoprogenitor cells and compared them to 

transcriptomes from the mouse and human tissues from the ENCODE project using XGSA, a 

statistical method for cross-species gene set analysis. These analyses determined that the lizard 

progenitor cell transcriptome was most similar to mammalian satellite cells. Further examination 

of specific GO categories of genes demonstrated that among genes with the highest level of 

expression in lizard satellite cells were an increased number of genetic regulators of 

chondrogenesis, as compared to mouse satellite cells. In micromass culture, lizard PAX7-positive 

cells formed Alcian blue and collagen 2a1 positive nodules, without the addition of exogenous 

morphogens, unlike their mouse counterparts. Subsequent quantitative RT-PCR confirmed up-

regulation of expression of chondrogenic regulatory genes in lizard cells, including bmp2, sox9, 
runx2, and cartilage specific structural genes, aggrecan and collagen 2a1. Taken together, these 
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data suggest that tail regeneration in lizards involves significant alterations in gene regulation with 

expanded musculoskeletal potency.

Introduction

Lizards are evolutionarily the closest vertebrate group to humans with the ability to 

regenerate a complex appendage i.e., an entire tail (Koshiba-Takeuchi et al., 2009; Eckalbar 

et al., 2012; Gilbert et al., 2013). The regenerated lizard tail is structurally complex with de 
novo generated musculoskeletal tissues such as, skeletal muscle groups, tendons, a hyaline 

cartilage endoskeleton, as well as vasculature, peripheral and sensory nerves, and skin 

(Fisher et al., 2012; Hutchins et al., 2014). Mammals have some regenerative capacity of 

appendages, limited to digit tip formation in neonatal mice and humans under age two (Yu et 

al., 2010). Neonatal mice can also regenerate limited damage to heart ventricular muscle 

during the first week of life (Porrello et al., 2011; Darehzereshki et al., 2015).

Tail regeneration in A. carolinensis likely occurs through a stem cell mediated process, 

rather than dedifferentiation, as occurs during epimorphic regeneration in salamanders 

(Fisher et al., 2012; Hutchins et al., 2014). After an initial phase of wound healing in the 

lizard tail, the appendage regrows with an unique architecture quite distinct from the original 

tail (Fisher et al., 2012; Ritzman et al., 2012). Key differences include; the development of a 

cartilage tube endoskeleton, instead of segmented vertebrae, and axial muscle groups that 

run the length of the tail instead of segmental vertebral muscles (Fisher et al., 2012; 

Hutchins et al., 2014). Regeneration of a multi-tissue structure such as the tail requires pools 

of proliferative stem cells capable of differentiating into different lineages. Regeneration 

capable species employ distinct strategies to generate these stem cell populations. In urodele 

amphibians, dedifferentiation of injured tissue results in proliferative, lineage restricted 

progenitors (Kragl et al., 2009). Another source is activation of resident tissue-specific stem 

cells that migrate to the site of injury. For example, in the axolotl limb, it has been shown 

that amputation activates PAX7 positive satellite cells from adjacent muscle (Sandoval-

Guzmán et al., 2014). Finally, dedifferentiated cells and stem cells can also transdifferentiate 

and change their fate to contribute to more than one tissue (Jopling et al., 2011).

Studies of skeletal muscle repair in response to injury in mammals have provided 

considerable insight into the signaling pathways associated with satellite cell activation, 

proliferation, and differentiation during repair. In response to acute damage, the myofibers 

are repaired by resident PAX7 positive satellite cells (Lepper et al., 2011; Sambasivan et al., 

2011). Mammalian satellite cells are limited in their function to the repair of existing 

myofibers (Chen and Goldhamer, 2003; Dhawan and Rando, 2005; Wang and Rudnicki, 

2011; Relaix and Zammit, 2012). There are cells present in a similar niche on the muscle 

fibers of anoles (Kahn and Simpson, 1974). In our previous study, we isolated these cells 

from the skeletal muscle of A. carolinensis lizards and demonstrated that they expressed 

pax7 and could be induced to fuse into multinucleated myosin heavy chain (MHC) positive 

myotubes (Hutchins et al., 2014).

Several previous studies have profiled the transcriptomes of satellite cells in mammalian 

species such as the mouse (Ryall et al., 2015), human (Charville et al., 2015), pig (Jeong et 
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al., 2013), and cow (Lee et al., 2014). However, comparison of gene expression across 

vertebrate species remains a bioinformatic challenge due to difficulties in identifying 

orthologous genes and differences in baseline gene expression. A useful framework for 

comparing transcriptome-wide expression profiles across species is based on testing whether 

a gene set that is specifically expressed in a species is shared with similar tissues or cell 

types in other species (Djordjevic et al., 2016).

Our earlier transcriptomic analysis of the regenerating A. carolinensis tail demonstrated that 

there were 326 differentially expressed genes along the proximal-distal axis, many of which 

are involved in the development of the skeletal system and muscle (Hutchins et al., 2014). In 

this study, we characterized the lizard muscle progenitor cells using XGSA cross species 

comparison of their transcriptome with that of mammalian cell types and tissues, including 

satellite cells (Djordjevic et al., 2016). Our data demonstrated that the transcriptomic profile 

of the A. carolinensis muscle progenitor cells was most similar to mammalian satellite cells. 

It is likely that changes in the regulation of gene expression underlies the ability to 

regenerate appendages, thus we also compared expression of musculoskeletal and 

TGFβ/BMP pathway genes between mouse and lizard satellite cells using this same 

bioinformatics approach. We found genes that regulate myogenesis and chondrogenesis 

showed highly ranked expression in lizard satellite cells. Further, we demonstrated that the 

lizard cells display greater phenotypic plasticity and formed Alcian blue positive, collagen 

2a1 expressing, chondrogenic nodules unlike mouse satellite cells.

Materials and Methods

Animals:

CD-1 mice (Mus musculus) were bred and housed in a vivarium at Arizona State University 

(ASU) on a 10 hr light:14 hr dark schedule with ad libitum access to food and water. Adult 

A. carolinensis lizards were purchased from Charles D. Sullivan, Inc. (Nashville, TN) or 

Marcus Cantos Reptiles (Fort Myers, FL) and housed as described previously (Fisher et al., 

2012). ASU is accredited by the Association for Assessment and Accreditation of 

Laboratory Animal Care (AALAC). All procedures were carried out in compliance with the 

ASU Institutional Animal Care and Use Committee and AALAC under approved research 

protocols.

Cell culture and Isolation

Muscle progenitor cells were isolated from 12 week old CD-1 mice and adult A. carolinensis 
lizards, as previously described (George et al., 2013); Hutchins et al., 2014). Briefly, hind 

limb quadriceps femoris muscles were excised, trimmed of fat and connective tissue, finely 

minced to a pulp. For lizard cells, skeletal muscle was stripped out of all limbs and proximal 

tail and trimmed of connective tissue and treated as above. The muscle tissue was digested 

with 1.25 mg of protease XIV (Sigma-Aldrich, St. Louis, MO) for one hour at 37°C, 

triturated to extract single cells and passed through a 100 μm nylon mesh. The cell 

suspension was spun down at 1500 g for 10 mins and preplated in DMEM (Corning, 

Corning NY), 2% HS (Atlanta Biologicals, Flowery Branch, GA) and 100 μg/ml Primocin 

(Invivogen, San Diego, CA) to remove fibroblasts and other debris for 2 hours. Satellite cells 
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were grown on Matrigel (BD Biosciences, Bedford, MA) in Hams F-10 (Corning, Corning, 

NY), 20% FBS (Atlanta Biologicals), 10 ng/ml bFGF (BD Biosciences) and 100 μg/ml 

Primocin (Invivogen). Cells were cultured at 37°C for mouse or 30°C for lizard muscle 

progenitor cells in 5% CO2 in a humidified chamber. Cells from each isolation were plated 

onto Matrigel coated coverslips and PAX7 expression was determined by 

immunofluorescence (IF). The average percentage of PAX7 positive cells isolated was 

98.8+/−1.2% for mouse and 98.6+/−2.2% s.d. for lizard cells, consistent with our previous 

data (George et al., 2013; Hutchins et al., 2014; data not shown).

Micromass culture

Satellite cells were seeded at 5×107 cells/mL in 20 μL medium (1×106 cells/micromass) in 

Matrigel coated 24 well plates. After a 1 hour incubation at 37°C for mouse or 30°C for 

lizard muscle progenitor cells, the wells were flooded with growth medium (Ham’s F-10 

supplemented with 20% FBS, 10 ng/ml bFGF and Primocin) or chondrogenic differentiation 

medium (Ham’s F-10 supplemented with 10% FBS, 1% ITS, 50 nM ascorbate-2-phosphate, 

1 nM TGFβ1 (Preprotech, Rocky Hill, NJ), and Primocin, for 7 days. Medium was changed 

every 3 days.

RNA Isolation and quantitative RT-PCR (QRT-PCR)

Cells were lysed in Trizol (Invitrogen, Carlsbad, CA) for RNA isolation, per the 

manufacturer’s protocols. For these studies, three biological replicate experiments were 

performed. RNA was treated with DNase I and quantified by Nanodrop prior to cDNA 

synthesis using SuperScriptIII reverse transcriptase (Invitrogen). For each sample, 2 μg of 

RNA were used for cDNA synthesis. The cDNA was quantified using transcript specific, 

intron spanning primers and real time PCR with Sybergreen (Eurogentec, Fremont, USA) on 

an ABI 7900 HT thermocycler using a 384 well format in 10μl reactions. Products from 

each primer set were sequenced and analyzed by BLAST (NCBI) to verify their identity. 

Primer efficiency was determined using a standard curve. For each transcript, three 

biological replicates were assayed in triplicate. All samples were normalized to the Gapdh 
transcript and relative gene expression was calculated using ΔΔCq analysis (Haimes and 

Kelley, 2010). Primer sequences for mouse and lizard genes are in Table S1.

RNA-Sequencing and Transcriptomic Analysis

RNA-Seq analysis of A. carolinensis satellite cells (3 biological replicates) has been 

described previously by our group (Hutchins et al., 2014) and the data are deposited in the 

NIH Sequence Read Archive (SRR1502189, SRR1502190, and SRR1502191; BioProject 

PRJNA253971). RNA-Seq data of mouse C57Bl/6J satellite cells (Ryall et al., 2015; SRA 

accessions SRR1726676, SRR1726677) were supplemented by our RNA-Seq analysis of 

mouse CD1 satellite cells isolated as described above, using protocols outlined in Hutchins 

et al., 2014. Transcript reads were mapped to A. carolinensis (AnoCar2.0) or mouse 

(GRCm38) Ensembl annotated genomes with HISAT2 v2.0.1 using default parameters (Kim 

et al., 2015). Gene level read counts were generated using HTSeq v0.6.0 in intersection-

nonempty mode (Anders et al., 2015). For lizard and mouse satellite cell transcriptomes, 

Reads Per Kilobase of transcript per Million mapped reads (RPKM) were generated using 

edgeR (Robinson et al., 2010). For human satellite cells, Fragments Per Kilobase of 
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transcript per Million mapped reads (FPKMs) were generated from two biological replicates 

analyzed by RNA-Seq (Charville et al., 2015) using TopHat and Cuffnorm (Trapnell et al., 

2009; 2010). For comparison with reported gene expression profiles for a library of different 

tissues, ENCODE transcriptome profiles summarized as FPKMs were obtained for human 

(hg19; 139 tissues) and mouse (mm9; 94 tissues) (ENCODE Project Consortium, 2012 doi: 

10.1038/nature11247; Mouse ENCODE Consortium et l., 2012 DOI: 10.1186/

gb-2012-13-8-418). Gene symbols follow the recommendations of the International 

Committee on Standardized Genetic Nomenclature for Mice and the Anolis Gene 

Nomenclature Committee. In instances where the homologous genes in both mouse and 

lizard species are being referenced, the mouse nomenclature was used.

Cross-species gene set analysis

For each RNA-Seq experiment containing RPKM or FPKM values, rank products were 

calculated for each gene using all available replicates (Breitling et al., 2004). We identified 

the 1,500 most highly expressed genes in each cell type or tissue type. We then remove 

genes that are deemed highly expressed in more than 10% of the cell types, as these genes 

are likely ubiquitously expressed genes. The remaining genes are considered specifically 

expressed in each cell type or tissue type. We call this collection of gene sets the cell-type 

specific gene sets. Using the human and mouse ENCODE data collections, we generated a 

compendium of cell-type specific gene sets in humans and mice. Using a similar procedure, 

we used our lizard RNA-Seq data to generate a highly expressed gene set. We compared the 

lizard gene set against the human and mouse cell-type compendia using XGSA. A p-value is 

generated to represent whether the lizard gene set has significant overlap with a mouse or 

human cell-type-specific gene set.

To confirm that our gene set analysis is robust against our choice of parameters, we repeated 

the same analysis with a range of parameters (number of top highly expressed genes: 500, 

1,000, 1,500, 2,000; % of cells containing marker gene: 1%, 2%, 3%, 5%, 10%, 15%, and 

20%).

Alcian Blue Staining

Micromasses were fixed with 0.1% glutaraldehyde after 7 days in culture, and stained with 

1% wt/vol Alcian Blue (VWR, Radnor, PA) in 0.1 M HCl overnight, at 4°C. Excess stain 

was washed off with 0.1 M HCl, followed by PBS.

Immunocytochemistry and Immunofluorescence

Monoclonal anti-Col2A1 antibody, II-II6B3 (RRID: AB_528165), which was deposited to 

the DHSB by T.F. Linsenmayer (DSHB, Iowa City, IA) and biotinylated goat anti-mouse 

IgG/anti-rabbit IgG (RRID: AB_2336187) (BA-1400, Vector Laboratories, Burlingame, CA) 

were used for immunocytochemistry (ICC). Micromasses were fixed in 4% formaldehyde 

and permeabilized with 0.5% Triton X-100 PBS solution. After blocking non-specific 

binding with 10% goat serum (Invitrogen), micromasses were incubated overnight at 4°C 

with primary antibody diluted in 1% serum, washed with PBS, and subsequently incubated 

for 1 hour at 37°C with secondary antibody in PBS + 1% serum. HRP-Streptavidin solution 
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was added for 30 minutes, followed by PBS washes and DAB substrate incubation (Broad 

Spectrum HRP Histostain, Invitrogen).

To visualize nuclei within myotubes, fixed micromasses were stained with DAPI (Biotium, 

Fremont, CA), per manufacturer’s instructions.

Transverse vibratome sections of 120 days post-autotomy (DPA) regenerated lizard tails 

were obtained and incubated with the anti-Col2A1 antibody. Briefly, sections were washed 

in 0.2% Triton X-100 PBS, blocked in 5% goat serum, and incubated overnight at 4°C with 

anti-Col2A1 antibody diluted in 5% serum. Following Triton-PBS washes, sections were 

incubated with FITC conjugated anti-mouse IgG secondary antibody (RRID: AB_259378) 

(F-0257, Sigma-Aldrich) diluted in 5% serum overnight at 4°C. Fluoro-Gel (Electron 

Microscopy Sciences, Hatfield, PA) was used to mount the sections. All images were 

obtained on a Nikon Eclipse TE2000-U microscope, using the 488 nm filter for 

immunofluorescence (IF). Images were adjusted for contrast and color balance. The surface 

area of nodules was quantified using the “freehand tool” and “set scale” features of ImageJ 

that allows a known length to be assigned a specific number of pixels.

Results

XGSA analysis of transcriptomes

Satellite cells were isolated from mouse and lizard limb skeletal muscle and RNA was 

isolated from PAX7 positive cells, an established marker of satellite cells in mammals 

(Zammit et al., 2006; Lepper et al., 2011; Sambasivan et al., 2011). Analysis of genes 

expressed in lizard satellite cells was carried out using RNA-Seq transcriptomic analysis 

(Hutchins et al., 2014). Based on our previous data, we wanted to determine the similarity of 

the lizard PAX7 positive cells to the satellite cell population in the mouse and human. We 

carried out this comparison using XGSA, a statistical method for cross-species gene set 

analysis (Djordjevic et al., 2016). We compared highly expressed genes in the lizard satellite 

cell transcriptome to a compendium of cell-type-specific gene sets including 94 tissues from 

the mouse ENCODE project (Yue et al., 2014). This comparison demonstrated that out of 

the tissues examined, the lizard PAX7 positive cell has a significant similarity with the 

mouse satellite cell based on expression of cell-type-specific marker genes (p-value < 1.9 × 

10–26). It has more overlap with mouse satellite cell markers than markers of any other 

mouse cell types studied here (Fig. 1A), and this result is robust against analysis parameters 

(Supplementary Fig.1A). Similarly, we compared lizard satellite cells with 139 tissues from 

the human ENCODE project and identified the greatest similarity with activated and 

quiescent human satellite cells (Fig. 1B; Supplementary Fig. 1B).

Gene rank comparison of mouse and lizard satellite cell transcriptomes.

Bone morphogenic protein (BMP) and transforming growth factor β (TGFβ) signaling 

pathways have important regulatory roles both in embryonic myogenesis and postnatal 

muscle regeneration (Wang et al., 2010; Ono et al., 2010; Lee et al., 2010; 2012; Friedrichs 

et al., 2011; McFarlane et al., 2011; Winbanks et al., 2013; Sartori et al., 2014; George et al., 

2015). We examined the differences in the expression of the TGFβ/BMP pathway genes by 
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comparing the relative rankings of 105 TGFβ/BMP pathway genes (KEGG category 

mmu04350 and GO term GO:0030509) from lizard and mouse satellite cells (Fig. 2A). 

Genes with high differential expression, higher rankings in lizard (closer to 1.0), as 

compared to a lower ranking in mouse (closer to 20,000), included Bmp2, Bmp5, Bmp7, 

Dcn, Fst, Id4, Inhba, Pitx2, Smad9, Tgif2, Zfyve16, Msx1, Msx2, Rnf165, Grem2, and 
Sostdc1. Follistatin (Fst) and Pitx2 induce proliferation of satellite cells in regenerating 

muscle (Amthor et al., 2004; L’honore et al., 2007; Gilson et al., 2009; Lozano-Velasco et 

al., 2011). Msx1 regulates the cellularization of myofibers, i.e., the conversion of 

multinucleated skeletal muscle fibers into mononuclear cells, during amphibian limb 

regeneration. Msx1 also regulates cell cycle re-entry of the resulting myoblasts. Ectopic 

expression of either Msx1 or Msx2 in mouse myofibers induced cellularization and inhibited 

myoblast differentiation (Odelberg et al., 2000; Echeverri and Tanaka, 2002; Kumar et al., 

2004; Yilmaz et al., 2015).

Our data demonstrated that the expression of Bmp2, Bmp5, and Bmp7, ranked considerably 

higher in satellite cells of the lizard as compared to mouse (Fig. 2A), and these factors are 

important regulators of chondrogenesis and osteogenesis (King et al., 1994; Tsuji et al., 

2006; Knippenberg et al., 2006; Snelling et al., 2010; Shen et al., 2010; Shu et al., 2011). 

While mouse and human satellite cells and myoblasts typically only differentiate into 

skeletal muscle, high levels of BMP ligands can induce these cells to undergo osteogenesis 

and chondrogenesis in vitro (Katagiri et al., 1994; Asakura et al., 2001; Wada et al., 2002; 

Shea et al., 2003). Other genes with lower expression levels in lizard satellite cells, as 

compared to mouse, included Bmp6, Bmpr1b, Bmper, Fzd1, Lef1, and Sox11. Bmpr1b, also 

known as Alk6, encodes a receptor specific for BMP7 and GDF5 (Yi et al., 2000; Zhao et 

al., 2002; Yoon et al., 2005). Sox11 is expressed in condensing chondrocytes embryonically 

in mice (Cameron et al., 2009). Bmper, BMP-binding endothelial regulator or 

crossveinless-2, can enhance or inhibit BMP signaling (Zhang et al., 2010). BMP6 regulates 

iron metabolism and is co-expressed in developing cartilage with BMP2 (Corradini et al., 

2011; Luo et al., 2016).

We observed that the transcriptomic profile of lizard satellite cells was marked by the co-

expression of genes involved in not only myogenesis, but also chondrogenesis and 

osteogenesis (Fig. 2A). Focusing on genes in the gene ontology (GO) terms ‘skeletal 

muscle’ and ‘cartilage development and differentiation’, we found that expression of key 

genes involved in satellite cell activation and proliferation, and muscle differentiation ranked 

higher in lizard as compared to mouse, including Mef2c, Pitx2, Srpk3, Hdac4, Axin2, Bcl9, 

Nr2f2, and Sulf1 (Fig. 2B; (Molkentin et al., 1995; Brack et al., 2008; 2009; Gill et al., 

2010; Raines et al., 2015). Nr2f2, an orphan nuclear receptor is up-regulated in activated 

satellite cells, and inhibits differentiation of stem cells, including those in the skeletal 

muscle, cartilage, and bone marrow lineages (Gao et al., 2016; Zhu et al., 2016). The 

myogenic regulatory factors Myod1, myogenin (Myog), Yap1, and Six4 were expressed at 

comparable levels in both species, but Myf5 was expressed at a much lower level in lizard 

cells (Fig. 2B). Other genes with known regulatory roles in muscle development and satellite 

cell function that demonstrated a lower level of expression in lizard satellite cells when 

compared to mouse included Dll1, Six1, Ankrd2, Cited2, Gpc1, Fzd1, Megf10, and Smo 
(Fig. 2B). Among these, Megf10, Ankrd2, Fzd1, and Smo induce differentiation of satellite 
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cells (Zhao and Hoffman, 2004; Holterman et al., 2007; Brack et al., 2008). Together these 

data suggest that these myoprogenitors express the myogenic transcriptional program but are 

not differentiating, consistent with their status as proliferating single cells.

This analysis demonstrated that many genes involved in chondrogenesis had high levels of 

expression in lizard, but not mouse, satellite cells including Chsy1, Axin2, Tgfbr2, 
Fam101a, Fgf18, Col5a1, and Msx2. Fgf18 and Chsy1 induce proliferation of early 

chondrocytes (Liu et al., 2007; Wilson et al., 2012). Msx2 is important for regeneration in 

amphibians and osteogenesis in mice. Consistently, Col27a1, Bmp4, and Bmpr1b which are 

involved in cartilage differentiation (Plumb et al., 2011; Shu et al., 2011; Lim et al., 2015), 

have lower expression levels in lizard, as compared to mouse, satellite cells (Fig. 2B). Based 

on the observed higher ranking of cartilage specific genes in the lizard transcriptome, we 

identified genes from the ranked lists (supplemental tables 2 and 3) whose expression level 

ranked between 1 and 5000 (highest levels of expression) with roles in muscle development, 

differentiation, and regeneration, cartilage development and differentiation or tendon 

development (Fig. 3). We found 61 lizard genes and 70 mouse genes ranked in the respective 

transcriptomes with these functions (Fig. 3). Of these genes, 49.2% had a role in muscle 

development, differentiation, and regeneration in lizard cells whereas in proliferating mouse 

satellite cells 65.6% of the genes fell into this category. Further, 30.5% of lizard genes and 

20.3% of mouse genes were involved in cartilage differentiation and development. Lastly, 

20.3% of lizard genes and 14.1% of mouse genes had roles in both processes (Fig. 3). Our 

XGSA analyses showed that these cells were most similar to mammalian satellite cells, but 

there are significant differences and taken together these data suggest that lizard satellite 

cells may have increased potential.

Analysis of chondrogenic potential by culture in micromass

One of the most striking observations from our analyses were the very high ranks of 

expression of bmp2, bmp5, and bmp7, along with many other cartilage-promoting genes in 

the lizard satellite cells (Figs. 2 and 3). These observations indicated that these cells might 

have expanded potential and could adopt the chondrogenic lineage. To examine this, lizard 

and mouse satellite cells were cultured at high density in micromasses in either growth 

medium (Ham’s F10, 10% FBS, 10 ng/mL bFGF) or chondrogenic differentiation medium 

(Ham’s F10, 1% FBS, 6.25 mg/mL insulin, 10 ng/mL TGFβ1, 50 nM ascorbate 2 

phosphate) without the addition of any morphogens, such as BMPs, and morphology was 

assessed at 7 days. Mouse satellite cells formed myotubes under either culture condition 

(Fig. 4A, D), although they were less extensive in chondrogenic differentiation medium with 

fewer nuclei per myotube (Fig. 4, compare B to E). Lizard satellite cells formed many large 

nodular structures comprised of small cells when cultured in chondrogenic medium (Fig. 4J, 

K) and many smaller nodules when cultured in growth medium (Fig. 4G, H). The lizard cells 

formed few small myotubes in both conditions, interestingly, they mostly remained as single 

cells (Fig. 4H, K). To demonstrate that the nodules were indeed chondrogenic, micromasses 

were stained with Alcian blue to detect cartilage specific glycosaminoglycans. Lizard 

satellite cells cultured in micromass formed Alcian blue positive nodules in both growth and 

chondrogenic media (Fig. 4I, L). In growth medium, the micromasses averaged 30.8 nodules 

(Table 1). In chondrogenic medium, there were fewer nodules, an average of 18 per 
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micromass, but the average surface area was twice that of nodules formed in growth 

conditions (Table 1). Mouse micromasses demonstrated no Alcian blue positive nodules in 

growth medium and we detected less than one nodule per micromass in chondrogenic 

medium (Fig. 4C, F; Table 1).

The expression of chondrogenic and myogenic marker genes in lizard and mouse satellite 

cells cultured in growth or chondrogenic medium was examined by qRT-PCR. CDNA was 

generated from total RNA isolated from high density micromass cultures after 7 days. As 

can be seen in Fig. 5, mouse cells significantly down-regulated Pax7 expression, consistent 

with myotube differentiation, while this gene was up-regulated in lizard satellite cells, 

significantly so in differentiation medium. This might reflect an increase in the number of 

satellite cells, as there were many single cells present at day 7 that did not participate in 

formation of myotubes or nodules (Fig. 4). Analysis of MyoD (Myod1), a myogenic basic 

helix-loop-helix transcription factor (bHLH), that is up-regulated in actively proliferating 

satellite cells and myoblasts (Yin et al., 2013), revealed a small but significant decrease in 

expression in mouse satellite cells in growth medium (Fig. 5). Conversely, Myod1 
expression demonstrated a small but significant down-regulation in lizard satellite cells 

cultured in chondrogenic medium, consistent with the onset of chondrogenesis. Additionally, 

we found that Runx2, a transcription factor important for proliferation and differentiation of 

chondrocytes and skeletal morphogenesis (Fujita et al., 2004; Takarada et al., 2013), was up-

regulated in cells from both species. This occurred in both growth and chondrogenic 

differentiation conditions, suggesting that high cell density may be sufficient to trigger its 

expression. Interestingly, Sox9, a transcription factor necessary for chondrogenesis (Wright 

et al., 1995; Akiyama et al., 2002; Asou et al., 2002; Leung et al., 2011) was only 

significantly up-regulated in lizard cells cultured in micromass, and its expression level 

increased under conditions that favored chondrogenesis (Fig. 5).

Given the differences in baseline expression of BMP pathway genes between lizard and 

mouse satellite cells, including elevated Bmp2 and decreased Bmp6, we investigated 

whether further differences arose during chondrogenic differentiation in micromass culture. 

For lizard satellite cells, bmp2 transcription was significantly up-regulated under growth 

conditions, and culture in chondrogenic differentiation medium further significantly 

increased the level of its expression (Fig. 5). Bmp6 is expressed in differentiating 

hypertrophic chondrocytes, but unlike Bmp2, it does not play a role in regulating 

chondrogenesis, it is involved in regulating iron metabolism (Camaschella, 2009). Bmp6 
expression was not up-regulated in lizard satellite cells in growth medium, but was increased 

in differentiation medium. Bmp6 was up-regulated in mouse satellite cells when cultured at 

high density and in chondrogenic medium (Fig. 5).

Compared to other tissues, cartilage is hypocellular with few nuclei relative to the extensive 

extracellular matrix. We further examined the expression of extracellular matrix proteins by 

satellite cells in micromass culture. Collagen I (Col1a1) is expressed in muscle, tendon, and 

bone (Reddi et al., 1977), whereas collagen 2A1 (Col2a1) is specific to cartilage. Both 

mouse and lizard cells significantly up-regulated Col1a1 in micromasses, but only the lizard 

cells expressed and significantly up-regulated cartilage specific Col2a1 (Fig. 6). Aggrecan 

(Acan) is a cartilage specific extracellular matrix protein that is expressed during 
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chondrogenic differentiation (Lauing et al., 2014), and expression of this gene was 

significantly up-regulated in the lizard micromasses. Acan was not detected in mouse 

micromasses (Fig. 6). Osteopontin, or secreted phosphoprotein 1 (Spp1), is expressed by a 

variety of cell types and has many roles, among which are muscle regeneration, 

inflammatory responses, and bone calcification (Pagel et al., 2013; Singh et al., 2014). 

Interestingly, while murine satellite cells up-regulated expression of this gene, the lizard 

satellite cells significantly down-regulated its expression in chondrogenic medium (Fig. 6). 

We examined collagen 2A1 expression using ICC in micromasses at day 7. Cells were fixed 

in 4% paraformaldehyde and an anti-collagen2a1 antibody and protein detected with 

biotinylated anti-mouse secondary antibody and HRP-streptavidin and the DAB substrate. 

Consistent with the qRT-PCR observations, mouse micromasses did not express collagen 

2A1 (Fig. 6, compare G to E, F), whereas lizard nodules demonstrated strong expression of 

this protein (Fig. 6H, I). Taken together our data demonstrates that the lizard cells express 

genes involved in chondrogenesis and can differentiate in culture by up-regulating the 

expression of BMP genes, cartilage specific transcription factors, and extracellular matrix 

genes.

Discussion

Transcriptomic and histological analyses of regeneration in the A. carolinensis tail point to a 

stem cell-mediated process (Fisher et al., 2012; Hutchins et al. 2014). Our previous work 

demonstrated that lizard skeletal muscle contains PAX7 positive progenitor cells and RNA-

Seq analysis showed that the regenerating tail expressed marker genes of activated satellite 

cells and myoblasts (Hutchins et al., 2014). Using the cross-species analytical tool, XGSA, 

we carried out comparative transcriptomic analysis of proliferating satellite cells from the 

lizard with mouse and human tissues from the ENCODE project. As might be expected, we 

found the closest match with satellite cells (Fig. 1). However, the expression level of genes 

associated with chondrogenesis and osteogenesis were higher in lizard satellite cells 

compared with their mouse counterparts (Figs. 2, 3).

BMP signaling induces different responses depending on ligand concentrations and exposure 

times. BMPs and their inhibitors define where and when muscle formation occurs ( Re’em-

Kalma et al., 1995; Hirsinger et al., 1997; Reshef et al., 1998). During skeletal muscle 

regeneration, low concentrations of BMP2, 4, and 7 maintain proliferation of satellite cells 

and myoblasts (Amthor et al., 1998; Ozeki et al., 2007; Ono et al., 2010; Wang et al., 2010; 

Friedrichs et al., 2011; Sartori et al., 2013;), whereas, high levels of BMP2, 4, 5, or 7 inhibit 

myogenesis, induce chondrogenesis, and ultimately, osteogenesis of satellite cells, C2C12 

myoblasts, C3H10T1/2 MSCs, and other MSCs, with continued exposure in culture 

(Katagiri et al., 1994; Schmitt et al., 2003; Shea et al., 2003; Bandyopadhyay et al., 2006; 

Knippenberg et al., 2006; Ozeki et al., 2007; Friedrichs et al., 2011; Takács et al., 2013; Liao 

et al., 2014; Zhou et al., 2016). Proliferating lizard satellite cells expressed bmp2, 5, and 7 at 

high levels, unlike their murine counterparts (Fig. 2). A significant observation was the 

endogenous up-regulation of bmp2 by these cells in micromass culture and a further increase 

in its expression under conditions that favored cartilage differentiation, indicating the lizard 

satellite cells can adopt the chondrogenic fate.
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In mammals, BMP2 induces the expression of the transcriptional activators, Runx2 and 

Sox9, that mediate chondrogenesis (Katagiri et al., 1994; Denker et al., 1999; Haas and 

Tuan, 1999; Schmitt et al., 2003; Shea et al., 2003; Hashimoto et al., 2008; Kwon et al., 

2013; Liao et al., 2014; Zhou et al., 2016). RUNX2 is a transcription factor regulating the 

differentiation of mesenchymal cells to chondrocytes, and chondrogenesis is disrupted in 

Runx2−/− mice (Komori et al., 1997; Inada et al., 1999; Takarada et al., 2013). SOX9 is a 

transcription factor that regulates differentiation of embryonic cartilage and induces 

chondrogenic differentiation of myogenic cells (Wright et al., 1995; Akiyama et al., 2002; 

Cairns et al., 2012; Liao et al., 2014; Zhou et al., 2016). In micromass culture, the lizard 

satellite cells concomitantly up-regulated expression of bmp2, runx2, and sox9 significantly, 

and formed dense nodules (Figs. 4–6). Expression of the cartilage specific matrix proteins, 

col2a1 and acan, that are also SOX9 target genes, by lizard satellite cells was consistent with 

the onset of chondrogenesis (Fig. 6). Cartilage specific matrix protein expression in lizard 

satellite cells was also confirmed by Alcian blue staining (Fig. 4) and detection of collagen 

2A1 by ICC (Fig. 6). We found that mouse satellite cells in micromass culture did not 

initiate chondrogenesis (Figs. 4–6). These data indicate that lizard satellite cells can enter a 

different musculoskeletal lineage by endogenously up-regulating the expression of the BMP 

morphogens and cartilage specific proteins and point to important differences in the 

regulation of expression of these genes in the lizard. The up-regulation of cartilage specific 

regulators by lizard satellite cells, indicates that the PAX7 positive satellite cells in fact have 

greater potency as stem cells and are able to differentiate along multiple musculoskeletal 

lineages to form cartilage, and skeletal muscle and potentially tendons. Further research is 

required to confirm and elucidate the mechanisms underlying this process.

The expression of Msx1 and Msx2 was ranked higher in lizard compared to mouse satellite 

cells. These transcriptional repressors play important roles in embryonic chondrogenesis in 

mammals (Odelberg et al., 2000; Satokata et al., 2000; Ishii et al., 2005). In amphibians, 

these proteins are important for dedifferentiation of muscle during limb regeneration and are 

expressed in the blastema (Echeverri and Tanaka, 2002). When C2C12 myotubes in culture 

expressed Msx1 or Msx2 from inducible viral promoters, these proteins caused delamination 

of single cells from the myotubes. The expression of myogenic marker genes was decreased 

in these cells, but less than 10 percent re-entered the cell cycle (Odelberg et al., 2000; 

Yilmaz et al., 2015). The expression of these two genes in proliferating lizard satellite cells 

may indicate that they are necessary for maintenance of proliferation, or Msx1 and Msx2 
may have another role in the increased plasticity of the lizard satellite cells.

Not surprisingly, our data also showed that lizard satellite cells demonstrated changes in 

gene expression that are consistent with decreased fibrosis, important for successful 

regeneration. For example, Decorin (Dcn) encodes an extracellular matrix protein that 

decreases the fibrotic response during muscle regeneration (McCroskery et al., 2005; Li et 

al., 2007; Li et al., 2008) and is expressed at a higher level in lizard as compared to mouse 

satellite cells. Similarly, Tgfb2 and Fzd1, are both implicated in fibrosis in dystrophic and 

aged skeletal muscle (Brack et al., 2007; Biressi et al., 2014), and were expressed at much 

lower levels in lizard than in mouse myoprogenitors.
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Taken together, these data suggest that some lizard satellite cells have increased 

musculoskeletal potential governed by changes in the regulation of gene expression, as only 

the tail is regenerated. Further inquiry into these changes will not only shed light on the 

mechanisms of lizard tail regeneration, but also provide a means for approaching improved 

tissue engineering of mammalian muscle and cartilage from satellite cells. Understanding 

the regeneration strategy employed by reptiles could provide important genetic information 

regarding specific pathways or genes whose regulation could be altered to improve the 

potential therapeutic uses of satellite cells in mammals.
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Highlights

• Bioinformatic comparisons demonstrate that the transcriptome of PAX7+ 

lizard cells is most similar to those of satellite cells of mice and humans.

• Lizard satellite cells express genes involved in chondrogenesis, myogenesis, 

and BMP/TGFβ signaling genes.

• Lizard satellite cells can condense into Alcian blue and collagen 2A1 positive 

nodules and express chondrogenic genes in micromass culture without added 

morphogens.
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Figure 1. XGSA analyses comparing the transcriptome from lizard satellite cells to multiple 
tissues from the mouse and human ENCODE projects.
XGSA comparison of marker genes with 94 mouse (A), and 139 human (B) tissues reveals 

that the lizard satellite cell transcriptome (Hutchins et al., 2014) displayed highest similarity 

with mouse and human satellite cells. Depicted are the top 10 most similar for each species 

comparison. For complete comparisons see Supplemental Figure 1. Parentheses after sample 

names are used to differentiate replicate transcriptomes.
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Figure 2. Gene rank comparison of mouse and lizard satellite cell transcriptomes.
Heatmaps of genes involved in the TGFβ/BMP signaling pathway (A) and musculoskeletal 

development (B) show differential rankings between mouse and lizard satellite cells. Genes 

with the highest rank (highest level of expression) are closer to 1, and those with the lowest 

rank (lowest expression in that species) are closer to 20,000.
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Figure 3. Comparison of highly differentially ranked musculoskeletal genes.
A comparison of the functions of genes whose rank fell between 1 and 5,000 (top 20%) for 

lizard and mouse satellite cells. In lizard cells 44.3% of the genes were involved in skeletal 

muscle development and differentiation, whereas in mouse cells this was 63.4% of the top 

ranked genes. Cartilage specific genes were expressed in both populations, 29.5% and 

18.3% of top ranked lizard and mouse genes, respectively. There are genes that have roles in 

both skeletal muscle and cartilage development and they represented 23% of lizard and 

15.5% of mouse genes. Both cell types expressed a limited number of tendon specific genes 

at high levels. These data indicated that genes with the highest level of expression in lizard 

satellite cells represent fewer myogenic genes and an increase in genes involved in 

chondrogenesis.

Palade et al. Page 23

Dev Biol. Author manuscript; available in PMC 2019 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Micromass culture of lizard satellite cells results in condensation of cells into Alcian 
blue positive chondrogenic nodules.
Mouse and lizard satellite cells were cultured in micromasses of 1×106 cells on Matrigel 

coated 24 well plates for 7 days in either growth (A-C, G-I) or chondrogenic differentiation 

medium (D-F, J-L) without added BMPs. Mouse satellite cells formed myotubes with many 

nuclei, as detected by DAPI nuclear stain, in growth medium (A, B, white arrows) and 

smaller myotubes in chondrogenic differentiation medium (D, E white arrows), but no 

defined nodules were noted. Lizard satellite cells in growth medium differentiated into a few 

small myotubes, and smaller nodules with undefined edges that stained with Alcian blue (G-
I, black arrows). Large Alcian blue positive nodules were found in micromasses cultured in 

differentiation medium, consistent with the onset of chondrogenesis in vitro (J-L, black 

arrows). Photomicrographs are representative, magnification is 100X except for 

photomicrographs of DAPI stained micromasses, which are 200X, bars = 100μm, n=6 

micromasses for each condition.
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Figure 5. Expression of lineage-specific regulatory genes in lizard and mouse satellite cells 
cultured in micromass.
Micromasses of mouse and lizard satellite cells were cultured for 7 days in growth (GM) or 

chondrogenic differentiation media (DM) and gene expression was determined by gene 

specific qRT-PCR. Mouse satellite cells demonstrated decreased Pax7 expression in 

micromass culture, while anole cells up-regulated this gene (A). Both species of satellite 

cells expressed Myod1 and Runx2 (B,C), but only lizard cells significantly up-regulated the 

chondrogenesis regulator sox9 (D). Lizard satellite cells up-regulated bmp2 expression 

significantly in GM, and further increased expression significantly in DM (E). Murine 

satellite cells demonstrated no significant change in the expression of Bmp2 when compared 

to Day 0. However, DM samples were significantly up-regulated compared to GM (E). 

Lizard satellite cells significantly up-regulated bmp6 only when cultured in chondrogenic 

differentiation medium, while mouse cells demonstrated significant up-regulation of Bmp6 
expression in growth medium as well (F). Graphs are as labeled. Data are expressed as 
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relative gene expression and are the result of 3 biological replicates, each done in triplicate. 

Statistical analysis was done by one way ANOVA; * indicates p<0.05 when compared to 

Day 0 and ** denotes that DM and GM for that species are significantly different from each 

other (p<0.05).
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Figure 6. Extracellular matrix gene expression in micromass cultures demonstrate that lizard 
cells express cartilage-specific genes.
Micromasses were cultured for 7 days in growth (GM) or chondrogenic differentiation 

media (DM). Gene expression was determined by gene specific qRT-PCR. Collagen 1a1 

(Col1a1), was up-regulated in both species in DM (A), while collagen 2a1 (col2a1), a 

cartilage specific collagen, was detected in lizard satellite cells only (B). Osteopontin (Opn), 

was increased in mouse cells but not significantly, it was significantly down-regulated in 

lizard cells (C). Aggrecan (acan) expression was detected only in lizard micromasses, where 

it was significantly up-regulated in GM and further increased in DM (D). qRT-PCR data are 

expressed as relative gene expression and are the result of 3 biological replicates, each done 

in triplicate. Statistical analysis was done by one way ANOVA; * indicates p<0.05 when 

compared to Day 0 and ** denotes that DM and GM for that species are significantly 

different from each other (p<0.05); ND= not detected. Protein expression was determined by 

ICC, using a monoclonal anti-COL2A1 antibody and anti-mouse-HRP and the DAB 
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substrate to detect the protein. Mouse satellite cells exhibit background staining that is 

indistinguishable from the no primary antibody control (NPC) sample (E-G). Chondrogenic 

nodules express COL2A1 protein in lizard micromasses in both culture conditions, although 

the staining is more robust in DM (H, I). To show the specificity of the anti-COL2A1 

antibody in lizard, IF was done with an anti-mouse-FITC secondary antibody on transverse 

sections of regenerating lizard tails 120 DPA. The matrix of the cartilage is evident 

compared to the NPC control (J).
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Table 1.
Average number, and surface area, of nodules in micromass.

The average number, and surface area, of nodules in day 7 micromasses was quantified using ImageJ (n=6 

micromasses for each experimental condition).

Growth Medium (GM) Chondrogenic Medium(DM)

Average nodule number (average nodule area)

Mouse  0 0.67 (0.029 mm2)

Lizard 30.8 (0.027 mm2) 18 (0.048 mm2)
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