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Abstract

This review highlights the role of three key immune pathways in
the pathophysiology of major retinal degenerative diseases includ-
ing diabetic retinopathy, age-related macular degeneration, and
rare retinal dystrophies. We first discuss the mechanisms how loss
of retinal homeostasis evokes an unbalanced retinal immune reac-
tion involving responses of local microglia and recruited macro-
phages, activity of the alternative complement system, and
inflammasome assembly in the retinal pigment epithelium.
Presenting these key mechanisms as complementary targets, we
specifically emphasize the concept of immunomodulation as
potential treatment strategy to prevent or delay vision loss.
Promising molecules are ligands for phagocyte receptors, specific
inhibitors of complement activation products, and inflammasome
inhibitors. We comprehensively summarize the scientific evidence
for this strategy from preclinical animal models, human ocular
tissue analyses, and clinical trials evolving in the last few years.
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Introduction

Diabetic retinopathy (DR) and age-related macular degeneration

(AMD) are the two most frequent retinal degenerative and neovas-

cular diseases in the developed world. While the former is an end-

stage diabetic complication and leading cause of visual impairment

among working-age adults, the latter is the most common cause of

blindness in the elderly, especially among Caucasians. Around one-

third of the population is diagnosed with diabetes, with one-tenth

having vision-threatening disease course which includes diabetic

macular edema (DME) or proliferative diabetic retinopathy (PDR;

Ting et al, 2016). Also alarming are the epidemiologic facts about

AMD with more than 150 million people worldwide suffering from

early forms and around 10 million people developing the late stages

which are geographic atrophy (GA) and neovascular AMD (Wong

et al, 2014). Characteristic for DR and the neovascular form of AMD

is blood vessel growth from the subretinal space into the retina. The

vascular network not only forms in an unregulated manner, but also

becomes leaky. New vessel formation is driven by the angiogenic

factor vascular endothelial growth factor (VEGF), and hence, both

diseases are treated with intravitreal injections of VEGF inhibitors;

however, treatment success is not guaranteed (Cummings & Cunha-

Vaz, 2008). Moreover, no treatment options are currently available

for patients suffering from GA. Another group of blinding diseases

lacking established therapeutic options are inherited retinal degener-

ations, such as retinitis pigmentosa (RP). RP is the most frequent

monogenic photoreceptor degenerating disease with an estimated

prevalence of 1:4,000 (Haim, 2002).

The vertebrate retina is a highly organized layered structure with

more than 60 distinct cell types (Masland, 2001; Hoon et al, 2014).

Both the highly active photoreceptor cells and the phagocytic retinal

pigment epithelium cells (RPE) contribute to the generation of meta-

bolic by-products (Chiu & Taylor, 2011; Datta et al, 2017). With

increasing age, there is a decline in functionality of retinal cells

(Damani et al, 2011; Mitter et al, 2014). Hence, the cells are less

effective in dealing with the accumulating metabolic waste (Wang

et al, 2009; Mitter et al, 2014). Moreover, the decline in functional-

ity is accompanied by a drop in efficacy, for instance, of the RPE to

phagocyte shedded photoreceptor debris (Nandrot et al, 2004; Gu

et al, 2012; Mazzoni et al, 2014). Throughout lifetime, this complex

organ is challenged by a variety of noxious insults including hypox-

ia, hyperglycemia, and inherited mutations (Fritsche et al, 2016;

Masuda et al, 2017). These circumstances demand constant surveil-

lance of the retina for the detection and defense against pathologic

perturbation. To meet this demand, the retina is equipped with a

highly sensitive innate immune system. This immune system

includes (i) surveilling microglia cells, which migrate to the site of

damage and phagocyte apoptotic material (Karlstetter et al, 2015),

(ii) activation of the complement system to opsonize cellular debris

(Xu & Chen, 2016), and (iii) inflammasome assembly in the RPE
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(Doyle et al, 2012; Gao et al, 2015). When not tightly controlled,

these immune pathways pose threat to the surrounding host tissue.

Hence, a cross-talk with Müller cells and retinal neurons through

the release of regulatory molecules, including complement factors,

chemokines, and neurotrophic factors, limits overt immune activa-

tion in the healthy retina (Harada et al, 2002; Langmann, 2007;

Wolf et al, 2013). In the event of a transient imbalance in retinal

physiology, rapid activation of the immune response will induce

restoration of tissue homeostasis and function. However, in case of

persistent insult, chronic over-activation of the inflammatory

response can lead to devastating tissue remodeling (Chen & Xu,

2015). Pro-inflammatory factors such as reactive oxygen species

(ROS), TNF-a, and CCL2 as well as complement activators such as

C1q are released into the cytosol by overly active microglia (Scholz

et al, 2015a; Madeira et al, 2018). Furthermore, microglia over-

express the anaphylatoxin receptors C5aR and C3aR, while comple-

ment inhibitors such as CFH and CFI are downregulated (Zipfel &

Skerka, 2009; Guillonneau et al, 2017; Madeira et al, 2018).

Complement factors also act as enhanced triggers for inflammasome

assembly, which leads to the activation of the pro-inflammatory

cytokines pro-IL-1b and pro-IL-18 (Nebel et al, 2017; Madeira et al,

2018). The resulting chronic inflammatory response is associated

with a decline in RPE function and structure, breach of the blood–

retina barrier (BRB), new vessel formation, and recruitment of chor-

oidal macrophages (Donoso et al, 2006; Liu et al, 2013; Sato et al,

2018). Hence, these circumstances necessitate therapy approaches

targeting the malfunctioning immune response. Therefore, inhibit-

ing sustained inflammation represents a plausible therapeutic target

to treat a broad range of retinal pathologies (Langmann, 2007).

Here, we comprehensively summarize the role of the three key

innate immune pathways in the most common retinal degenerative

diseases. Furthermore, we comment on recent developments in

preclinical models targeting these pathways and summarize the

current status of clinical trials.

Targeting mononuclear phagocytes in retinal
degenerative diseases

Mononuclear phagocytes in the healthy and diseased retina

Cells of the mononuclear phagocyte (MP) lineage include circulating

blood monocytes, tissue-resident macrophages, dendritic cells, and

microglia (Chow et al, 2011). These cells can be differentiated by

their ontogeny, location, function, and phenotype (Guilliams et al,

2014). MP ontogeny is a research area with much controversy;

however, fate-mapping studies have established that unlike blood-

borne monocyte-derived macrophages, microglia originate from

primitive myeloid progenitors in the extra-embryonic yolk sac

which migrate into the CNS before the blood–brain barrier (BBB) is

established (Ginhoux et al, 2010). Once the tissue is matured, the

self-renewing microglia population is maintained in the brain

parenchyma and the retina throughout the entire life span where

they compose the resident immune cells (Réu et al, 2017). Interest-

ingly, in the adult retina, microglia replenish from two distinct

extra-retinal sources as shown by pharmacologic depletion using

the selective CSF1R inhibitor PLX5622 (Huang et al, 2018a). Unlike

brain microglia, the cells in the retina were not repopulated from

nestin-positive precursors (Huang et al, 2018b). Instead, replenished

microglia in the retina displayed a dual extra-retinal origin and long-

distance migration ability. First, the residual microglia in the optic

nerve repopulate the retina along the center-to-periphery axis, and

second, macrophages from the ciliary body and iris relocate to the

periphery and migrate toward the center. Furthermore, repopulated

microglia fully restore the broad functionalities of naive microglia

Glossary

Fate-mapping
A method applied in developmental biology, for understanding the
embryonic origin of tissues in the adult organism by investigating the
correspondence between individual cells (or groups of cells) at one
stage of development, and their progeny at later stages.

Geographic atrophy (GA)
An advanced form of AMD characterized by the presence of atrophic
lesions of the outer retina, resulting from loss of photoreceptors,
retinal pigment epithelium (RPE), and underlying choriocapillaris.

Humanized antibodies
Antibodies from non-human species whose protein sequences have
been modified to increase their similarity to antibody variants
produced naturally in humans in order to reduce the immunogenicity.

Immunomodulation
Therapeutic interventions modulating the immune response to a
desired level rather than suppressing it. The aim is to enhance
beneficial functions while minimizing host harming processes of the
immune system.

Innate immune system
Nonspecific defense mechanisms that deliver host defense
immediately or within hours of pathogen appearance or tissue insult.

Microglia
Resident immune cells of the brain and retina that are derived from
primitive myeloid progenitors originating from the yolk sac. Microglia
cells are a long-living, autonomous, and self-renewing population and
are not replenished from postnatal hematopoietic.

Mononuclear phagocytes
Mononuclear cells include circulating blood monocytes, tissue-resident
macrophages, dendritic cells, and microglia with the ability to
phagocytose.

Non-proliferative diabetic retinopathy (non-PDR)
An early stage of diabetic retinopathy characterized by damage to
retinal vasculature and loss of pericytes. It can further progress into
PDR defined by pathological neovascular growth, vitreous hemorrhage,
retinal scars, and detachment, resulting in irreversible vision loss.

Ontogeny
All the developmental events that occur during the existence of a
living organism. In cell biology, ontogeny refers specifically to
developmental and differentiation processes within a cell lineage.

Phagoptosis (primary phagocytosis)
Cell death resulting from phagocytosis of reversibly stressed cells by
phagocytes, provoked by exposure of “eat-me” signals (e.g.,
phosphatidylserine) and/or loss of “don’t-eat-me” signals (e.g.,
polysialic acid).

Rd1 and rd10
Two of the 16 naturally occurring mouse mutant lines that manifest
degeneration of the photoreceptors. Rd1 and rd10 mice carry mutation
in exon 7 and exon 13 of the beta subunit of the rod phosphodiesterase
gene, respectively.
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(Huang et al, 2018a; Zhang et al, 2018). These repopulation mecha-

nisms are mainly regulated by the neuronal chemokine CX3CL1 and

its receptor (CX3CR1) in microglia (Zhang et al, 2018).

In the mature retina, microglia reside in the inner and outer plexi-

form layers and form a sophisticated network of non-overlapping

cells (Hume et al, 1983). Here, these cells exhibit an abundantly rami-

fied morphology spanning the complete nuclear layers with their long

protrusions (Karlstetter et al, 2015). The dynamic nature of microglia

allows them to execute housekeeping functions. The most crucial role

is the constant active surveillance of retinal homeostasis where they

are indispensable for the immune response and synaptic pruning and

transmission (Schafer et al, 2012; Wang et al, 2016a).

In order to sense the environment for endogenous or exogenous

non-physiological stimuli, microglia engage surface receptors or

pattern recognition receptors (PRRs; Kettenmann et al, 2011; Kigerl

et al, 2014). These surface receptors ligate complement compo-

nents, cytokines, chemokines, and damage- or pathogen-associated

molecular patterns (DAMPs/PAMPs; Karlstetter et al, 2015). In the

event of an insult, microglia sense the danger signals and respond

by retracting their surveilling processes concomitant with upregulat-

ing the expression of surface receptors (Jurgens & Johnson, 2012).

Furthermore, they proliferate and migrate to the site of damage,

while releasing pro-inflammatory cytokines and ROS to neutralize

the damage (Ferrer-Martin et al, 2015). Moreover, their phagocytic

capacity is significantly enhanced to effectively clear debris and

prevent accumulation of waste products (Kohno et al, 2014). In the

healthy retina, the insult is rapidly neutralized, the damaged tissue

is repaired, and a return to homeostasis is achieved with only very

little retinal remodeling (Chen et al, 2012). This finite microglial

activation is beneficial since the toxicity associated with the immune

response is outweighed by the toxicity produced due to the noxious

insult (Guillonneau et al, 2017). However, under aggravated condi-

tions owing to genetic predispositions or high glucose levels, micro-

glial activation persists (Gupta et al, 2003; Omri et al, 2011). Non-

resolving inflammation causes terminal damage since the increased

release of neurotoxic by-products and the lack of regenerative

capacity prevent retinal recovery (Chen & Xu, 2015). Furthermore,

over-reactive microglia are not able to distinguish between stressed

and apoptotic cells, and thus phagocyte viable neurons as well

(phagoptosis; Brown & Neher, 2012, 2014). Under these circum-

stances, neurotoxic microglia accumulate at the site of damage and

fail to return to their homeostatic state (Tang & Kern, 2011; Ardeljan

& Chan, 2013). Additionally, by the secretion of chemokines such as

CCL2, microglia attract further phagocytes, which include infiltrat-

ing monocytes and choroidal macrophages due to the leakage of the

BBB and the newly formed blood vessels (Caicedo et al, 2005; Senn-

laub et al, 2013). Indeed, such changes in retinal microglia morphol-

ogy, location, and infiltration of macrophages are common

hallmarks of AMD, DR, and hereditary retinopathies (Fig 1; Karlstet-

ter et al, 2015; Guillonneau et al, 2017).

Early aspects of DR consist of microaneurysms and intraretinal

microvascular anomalies (non-PDR), while PDR involves neovascu-

larization and preretinal and vitreal hemorrhages (Das et al, 2015;

Lechner et al, 2017b). Due to these clinical features, DR was only

regarded as a vascular complication; however, recent investigations

have identified inflammation as an important contributing factor in

disease development (Adamis, 2002; Rangasamy et al, 2012). Eleva-

tion in systemic and local chemokine concentration is present in

patients suffering from DR (Petrovic et al, 2010; Koleva-Georgieva

et al, 2011; Suzuki et al, 2011). Several authors could demonstrate

increased levels of TNF-a, IL-8, CCL2, IL-1b, and IL-6 in the vitreous

fluid (Demircan et al, 2006; Murugeswari et al, 2008; Boss et al,

2017). Furthermore, peripheral monocytes from DR patients secrete

high amounts of IL-1b, IL-6, TNF-a, IL-8, and IL-1ra (Hatanaka et al,

2006; Bradshaw et al, 2009). These inflammatory cytokines are asso-

ciated with phagocyte reactivity and serve as chemoattractants for

invading macrophages. Leakage of the retinal vasculature is mainly

induced by VEGF, but also involves TNF-a, which decreases the

expression of tight junction proteins ZO-1 and claudin-5 (Behl et al,

2008; Aveleira et al, 2010). The increase in endothelial cell perme-

ability then leads to further immune cell recruitment and disease

manifestation. Indeed, histopathological analysis of eyes from

patients with non-PDR and PDR exhibited increased numbers of

hypertrophic microglia which correlated with disease severity (Zeng

et al, 2008). MPs were clustered around retinal hemorrhages and

microaneurysms. In late stages, increased numbers of phagocytes

were present in the ganglion cell layer, in the newly formed blood

vessels, and around the optic nerve head (Zeng et al, 2008). Also,

there is ample evidence that hyperglycemia induces immune cell

reactivity through oxidative stress or indirectly via effects mediated

by stressed retinal cells in the proximity (Du et al, 2002; Rashid et al,

2018). Oxidative stress in hyperglycemia is driven by accelerated free

radical production concomitant with compromised antioxidant

generation (Cameron et al, 1994; Tomlinson & Gardiner, 2008).

These circumstances cause translocation of nuclear factor-kappa B

(NF-jB), pro-inflammatory cytokine expression, and MP activation

(Nishikawa et al, 2000).

Age-related macular degeneration, the leading cause of vision

loss in the elderly, is a disease of the macula–RPE–choroid interface

(Bhutto & Lutty, 2012; Ardeljan & Chan, 2013; Biesemeier et al,

2014). The RPE is essential for the maintenance and survival of

photoreceptor cells by engulfing and degrading shedded photorecep-

tor disks and protecting the retina against light and oxidative stress

(Young, 1967; Boulton, 2013; Mazzoni et al, 2014). These circum-

stances require a high metabolic activity rendering the RPE very

susceptible to oxidative damage (Mitter et al, 2012). Oxidative stress

is therefore a risk factor for AMD and hence needs rapid neutraliza-

tion to ensure proper vision (Jarrett & Boulton, 2012). Indeed, the

RPE engages in autophagy and mitophagy, directing ROS-producing

mitochondria to lysosomes, as defense mechanisms against ROS

increase (Lee et al, 2012; Mitter et al, 2012; Ferguson & Green,

2014). Mitter et al (2014) found an age-related increase in

autophagosomes and proteins involved in autophagy in the RPE;

however, these factors were significantly reduced in human AMD

donor eyes. Deteriorated autophagy concomitant with increased

accumulating ROS results in aggregation of damaged organelles and

toxic by-products including the photoreactive age-pigment lipofus-

cin (Wang et al, 2009; Mitter et al, 2014). These deposits become

apparent as drusen located in the sub-RPE area and subretinal space

during early AMD (Ishibashi et al, 1986; Abdelsalam et al, 1999;

Gupta et al, 2003; Fritsche et al, 2016). Strikingly, drusen compo-

nents include lipoproteins and complement factors serving as attrac-

tants and activators of MPs (Penfold et al, 1985; Johnson et al,

2000; Hageman et al, 2001; Nozaki et al, 2006; Buschini et al,

2011). Indeed, bloated phagocytic microglia were found to closely

associate with drusen in AMD patients (Gupta et al, 2003). While
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the elimination of retinal debris by MPs is principally positive,

impaired function during aging of these cells leads to sustained pro-

inflammatory environment (Streit et al, 2004; Chan-Ling et al, 2007;

Damani et al, 2011). A comparative transcriptome analysis of AMD

and normal human donor eyes demonstrated a significant over-

expression of immune-related transcripts including complement and

chemokine mRNAs in all AMD samples (Newman et al, 2012).

Furthermore, high levels of CCL2 and VEGF, two cytokines involved

in MP recruitment and choroidal neovascularization (CNV), are

present in ocular fluids from neovascular AMD patients (Fauser

et al, 2015; Lechner et al, 2017a). As a consequence, accumulating

subretinal microglia can directly induce death of nearby photorecep-

tors. This suggests that microglial reactivity is a driving force in

photoreceptor demise and disease manifestation.

Unlike AMD, which is a multifactorial disease, hereditary degen-

erations of the human retina are mostly monogenic. The majority of

the documented mutations are associated with genes expressed in

photoreceptors and RPE (Karlstetter et al, 2015; RetNet, 2018). RP,

the most common form of hereditary retinal degeneration, is charac-

terized by night blindness and tunnel vision due to rod demise
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Figure 1. Schematic representation of microglial activity in the retina.

Under homeostatic conditions, resident microglia mainly populate the plexiform layers. With their long protrusions, they continuously scan their environment and
phagocytose cell debris. Different insults leading to abnormal cell functions or degeneration in the RPE, the photoreceptor layer, and the ganglion cell layer rapidly alert
microglia. Resident microglia migrate to the lesion sites, where they transform into amoeboid full-blown phagocytes and recruit macrophages from the periphery. Modified
from Karlstetter et al (2010).
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(Hartong et al, 2006). Even more, late stages of RP are characterized

by central vision loss attributed to the secondary death of cone

photoreceptors (Hartong et al, 2006). Involvement of MPs was

proven by analyzing retinal sections with concentric RP demonstrat-

ing bloated microglia in the photoreceptor layer with rhodopsin-

positive inclusions (Gupta et al, 2003; Zhao et al, 2015a,b,c). The

authors hypothesized that activated phagocytes release pro-inflam-

matory cytotoxic factors that subsequently trigger the death of adja-

cent cones. The resulting pro-inflammatory environment leads to

further recruitment of MPs which, when overly activated, are

unable to discriminate between dead versus stressed-but-viable

neurons and hence engage in phagoptosis (Brown & Neher, 2012,

2014). Indeed, co-staining of rhodopsin with apoptosis markers in

mouse models of RP demonstrated rhodopsin-positive inclusions

that were mostly TUNEL-negative (Zhao et al, 2015a,b,c). Further-

more, microglial phagocytosis in the ONL corresponded to concur-

rent exposure of phosphatidylserine which serves as an “eat-me”

signal in stressed rods. Also, microglia were found to upregulate

lactadherin/milk fat globule-EGF factor 8 protein (MFG-E8), a

“bridging” molecule between phagocytes and phosphatidylserine on

neurons to facilitate rapid engulfment and internalization of stressed

neurons (Neniskyte & Brown, 2013).

Therapeutic strategies targeting mononuclear phagocytes in preclinical

models of retinal degenerative diseases

As discussed above, MP activation in the retina is initiated either

through direct recognition of immune triggers, such as DAMPs/

PAMPs, chemoattractants, and complement components, or indi-

rectly by sensing an amplitude of stressors in the surrounding envi-

ronment including ROS and “eat-me” signals from dying cells.

Overshooting MP reactivity often leads to tissue damage, but their

depletion does not always result in tissue homeostasis (Zhao et al,

2015a,b,c). Several studies point out that microglia are indispensable

for the maintenance of synaptic structures in the adult CNS. Their

depletion in the mature CNS can cause deficits in learning tasks and

a significant reduction in motor-learning-dependent synapse forma-

tion (Parkhurst et al, 2013). More importantly, phagocyte ablation in

the adult retina leads to the degeneration of photoreceptor synapses

in the outer plexiform layer and hence a functional deterioration in

retinal light responses (Wang et al, 2016a). Therefore, effective

immunomodulatory compounds should dampen the overt pro-

inflammatory response of retinal phagocytes but preserve their

homeostatic functions which are vital for retinal integrity.

Mononuclear phagocytes are composed of a heterogeneous popu-

lation with diverse functionalities (Hanisch, 2013). What remains

inconclusive is whether the beneficial and detrimental effects

carried out by reactive MPs are executed by the same population or

by distinct subtypes. Distinguishing these cell populations is a chal-

lenging task. For instance, infiltrating macrophages cannot be easily

separated from resident microglia in laser-induced CNV in mice.

Laser-induced CNV is extensively applied in retinal research since it

recapitulates several main features of exudative AMD (Lambert

et al, 2013). The laser impact results in the rupture of Bruch’s

membrane, a rapid recruitment of MPs, and penetration of choroidal

capillaries into the avascular retina within a few days. In contrast,

alternative models for experimental CNV that involve injections of

pro-angiogenic substances have a much lower incidence of neovas-

cularization (Shah et al, 2015). In order to specifically target

resident microglia and to distinguish them from short-lived infiltrat-

ing cells in this model, we used tamoxifen-inducible conditional

Cx3cr1CreER mice to delete the floxed gene for interferon-a/b recep-

tor 1 (Ifnar1; Luckoff et al, 2016). These Cx3cr1CreER:Ifnar1fl/fl mice

were subjected to laser injury 4 weeks after tamoxifen injection

when monocyte-derived macrophages were already washed out and

replaced. However, no differentiation between retinal microglia and

potentially long-lived tissue-resident macrophages in the periphery

could be achieved (Reyes et al, 2017). Another elegant approach for

cell discrimination is to use fate-mapping combined with endoge-

nous genetic reporters and multiple expression markers. O’Koren

et al (2016) demonstrated that retinal microglia have a unique CD45

(low) CD11c(low) F4/80(low) I-A/I-E(�) signature which is

conserved in the steady state and during retinal injury. By investi-

gating these cells, the authors found that microglia migrate to the

photoreceptor outer segments while monocyte-derived macrophages

appear throughout the entire retina (Reyes et al, 2017). For further

insights into microglia heterogeneity, the reader is directed to other

excellent reviews (Hanisch, 2013; Reyes et al, 2017).

Genetic mouse models combined with experimental approaches

mimicking retinal degenerative diseases have greatly expanded our

knowledge on the mechanisms involved in retinal MP activation

(Luckoff et al, 2017). In the following section, we present main

concepts for microglia-related immunomodulation. These strategies

involve the prevention and/or resolution of retinal degeneration and

neovascularization by (i) targeting activating and inhibitory cell

surface receptors, (ii) modulating intracellular molecules, and (iii)

controlling released inflammatory mediators.

Purinergic receptors The purines adenosine triphosphate (ATP) and

adenosine serve as neuro- and gliotransmitters in the retina

contributing to the bidirectional neuron–glia communication as well

as the cross-talk between photoreceptors and the RPE (Newman,

2006; Housley et al, 2009; Wurm et al, 2010). Physiologically, puri-

nes are tonically released in the dark; however, this release is

elevated when neurons are active (Khakh & North, 2006; Uckermann

et al, 2006; Niyadurupola et al, 2013). Growing evidence suggests

that dysregulated purinergic signaling contributes to gliosis in the

diseased retina (Sanderson et al, 2014). Degenerating cells or

elevated glucose levels increase the extracellular ATP concentration,

which activates the P2X7 receptor (P2X7R) on MPs and induces a

chemokine release through PKC/MAP kinase pathway activation

(Fig 2; Potucek et al, 2006; Costa et al, 2009; Shiratori et al, 2010;

He et al, 2017). ATP stimulation evokes the release of pro-inflamma-

tory cytokines IL-6, TNF-a, and CCL2 in primary microglia, which

was absent when P2X7 was deleted (Morigiwa et al, 2000; Shieh

et al, 2014). In a murine model of axonal injury that culminates in

the death of retinal neurons, P2X7-deficient mice exhibited a delayed

loss of retinal neurons and a decrease in phagocytic microglia

(Nadal-Nicolas et al, 2016). Moreover, intravitreal administration of

the selective P2X7 antagonist A438079 delayed axotomy-induced

ganglion cell death.

Adenosine is a neuromodulator critically involved in neurode-

generative diseases (Yu et al, 2004; Kalda et al, 2006). It modulates

microglial reactivity mainly through the activation of its G-protein-

coupled receptor A2A (A2AR; Fig 2; Cunha, 2001; Canas et al,

2009). Strikingly, agonists of A2AR potentiate LPS-induced micro-

glial reactivity (Saura et al, 2005). Conversely, its pharmacological
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inhibition results in neuroprotective effects by attenuating microglial

NO production and modulating cyclooxygenase-2 (COX2) expres-

sion in a rat model of striatal excitotoxicity (Saura et al, 2005;

Minghetti et al, 2007). Similarly, inhibition of A2AR prevents micro-

glial reactivity in mice that were subjected to intraperitoneal LPS

injection (Rebola et al, 2011) and selective A2AR blockade reduces

NO production in microglia (Madeira et al, 2015). In a retinal degen-

eration model of transient ischemia–reperfusion, intravitreal injec-

tion of the A2AR-blocking compound SCH58261 attenuated

neuronal loss by inhibiting microglial reactivity (Madeira et al,

2016). In microglia, A2AR clearly facilitates the release of cytokines

and NO production, which are likely induced through increased

cAMP levels and the activation of protein kinase A (PKA; Fig 2;

Moreau & Huber, 1999). Subsequent activation of MAP kinases

including extracellular signal-regulated kinase (ERK) 1/2 and

IkappaB kinase (IKK) then induces altered gene expression (Kyriakis

& Avruch, 2001; Schulte & Fredholm, 2003; Chio et al, 2004; Dang

et al, 2014). Recently, we showed that A2AR antagonism also limits

complement and inflammasome activation (Madeira et al, 2018).

The exposure of human microglia to RPE cell debris induced activa-

tion of the complement cascade which is strongly associated with

the pathogenesis of AMD (Zipfel & Skerka, 2009; Schick et al,

2017). Inhibition of A2AR prevented this change in microglial

complement activation as well as inflammasome activation in
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Figure 2. Activation pathways and therapy targets for mononuclear phagocytes.

(1) The purines ATP and adenosine ligate to their receptors P2X7 and A2AR, respectively, which act through PKA/PKC signaling and thereby activate IKK. IKK aids to cleave and
translocate NF-jB into the nucleus and induce inflammatory gene expression and cytokine release. A2AR additionally potentiates the expression of the complement
component C3 and the opsonin C1q. Neuroprotective effects were observed when A2AR and P2X7R were blocked using the selective inhibitors SCH58261 and A438079,
respectively. (2) Intravitreal administration of polySia avDP20 compensates for desialylated neurons by binding to its receptor SIGLEC-11 and inhibiting neurotoxic
inflammation through its ITIM domain. During inflammation, desialylated neurons activate CR3 associated ITAM and thereby trigger excessive release of ROS via NOX2. (3)
The IFN-b pathway involves STAT1- and STAT2-induced SOCS1/SOCS3 release which reduces cytokine expression through a negative feedback and inhibits IL-6 signaling. (4)
Neutralizing antibodies such as infliximab aid to neutralize cytosolic TNF-a. (5) TSPO ligands such as XBD173 stimulate the production of neurosteroids which limit the
release of pro-inflammatory cytokines. (6) Minocycline is a potent inhibitor of NF-jB signaling.
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ARPE-19 cells that were exposed to conditioned media from acti-

vated microglia treated with the A2AR blocker. Therefore, selective

A2AR antagonists could serve as tools to modulate microglial activ-

ity and limit RPE inflammatory response.

CD200 receptor CD200 is a transmembrane glycoprotein expressed

on the vascular endothelium, photoreceptors, RPE, and ganglion

cells. Its respective receptor is expressed on microglia which, upon

ligand binding, provides a potent quiescence signal (Dick et al,

2001, 2003). Deficiency in CD200 signaling is associated with micro-

glial proliferation and strong iNOS expression, indicating a latent

pro-inflammatory condition (Dick et al, 2003). In an animal model

of uveoretinitis, CD200 deficiency caused increased numbers of

microglia concomitant with increased expression of iNOS (Broderick

et al, 2002). Similarly, in the murine laser model of exudative AMD,

CD200R knockout animals displayed significantly increased new

vessel formation and elevated levels of VEGF-A, arginase 1, and IL-

1b (Horie et al, 2013). Conversely, intravitreal injection of the

CD200R agonistic monoclonal antibody DX109 diminished micro-

glial reactivity and macrophage infiltration, thereby suppressing

pathological angiogenesis and vascular damage (Horie et al, 2013).

Also, systemic administration of DX109 was effective in suppressing

IFN-c-mediated phagocyte activation and protected against tissue

damage during experimental autoimmune uveoretinitis (Copland

et al, 2007). Hence, CD200R agonists could be used to diminish pro-

angiogenic and pro-inflammatory gene expression which prevents

pathological angiogenesis.

Polysialic acid receptors In the vertebrate CNS, polysialic acid

(polySia) caps consistent of a-8-linked N-acetylneuraminic acids are

commonly attached to glycoproteins of healthy neurons (Schnaar

et al, 2014; Hildebrandt & Dityatev, 2015). PolySia can alleviate

neurotoxicity via binding to sialic acid-binding immunoglobulin-like

lectin 11 (SIGLEC-11), a primate lineage-specific receptor (Angata

et al, 2002; Linnartz-Gerlach et al, 2014). Interestingly, some strains

of neuroinvasive bacteria can also produce capsular polysaccharide

identical to polySia in order to escape immune recognition in the

human host (Troy, 1992; Schwarz et al, 2017). Ectopic expression

of human SIGLEC-11 in cultured murine microglia suppressed the

LPS-induced transcription of the pro-inflammatory mediators IL-1b
and iNOS (Wang & Neumann, 2010). SIGLEC-11 mediates immune

inhibition through its cytosolic immunoreceptor tyrosine-based inhi-

bition motif (ITIM; Fig 2). Binding of polySia to its receptor leads to

phosphorylation of ITIM (Linnartz & Neumann, 2013). Successive

recruitment of the second messenger SHP1 dephosphorylates the

intracellular immunoreceptor tyrosine-based activation motif

(ITAM), thus limiting a number of downstream pathways linked to

the phagocytosis of neurites and NADPH oxidase (NOX2)-mediated

production of ROS (Fig 2; Graham et al, 2007; Hamerman et al,

2009). Under pathological conditions, immune cells secrete neura-

minidases which cleave sialic acid residues on neurons (Amith et al,

2010; Pshezhetsky & Hinek, 2011; Nomura et al, 2017). Desialylated

neurons are consequently opsonized by complement component

C1q, which is produced and secreted by microglia (Linnartz et al,

2012; Madeira et al, 2018). Indeed, soluble sialic acid residues accu-

mulate in serum, and C1q is found in the retina during early stages

of AMD (van der Schaft et al, 1993; Goswami et al, 2003). Subse-

quently, the opsonized glycocalyx is recognized by complement

receptor 3 (CR3) coupled to ITAM leading to phagocytosis of the

neuronal structures (Fig 2; Linnartz et al, 2012). Intriguingly, block-

age of CR3 prevented neurite phagocytosis by microglia, which was

as seen when polySia was removed from cultured neurons by treat-

ment with sialidases (Wang & Neumann, 2010).

These results point toward a polySia-based therapy to target

inflammation. Consistently, studies showed that nanomolar concen-

trations of low molecular weight polySia with average degree of

polymerization of 20 (polySia avDP20) significantly reduced pro-

inflammatory gene transcription, abnormal phagocytosis, and oxida-

tive burst in human macrophages challenged with LPS or amyloid-

b1–42 (Shahraz et al, 2015). Furthermore, we used humanized

transgenic mice expressing human SIGLEC-11, subjected them to

laser injury, and treated them with intravitreal injections of polySia

avDP20 (Karlstetter et al, 2017). Already low doses of polySia

avDP20 significantly reduced microglial activation and vascular

leakage by reducing TNF-a and VEGF-A levels as well as superoxide

production (Fig 2). As a second mechanism of action, independent

from SIGLEC-11 signaling, higher doses of polySia avDP20 blocked

alternative complement activation and reduced membrane attack

formation in the diseased retina (Karlstetter et al, 2017).

Interferon-b (IFN-b) Important evidence for potent immunomodula-

tory effects of IFN-b on brain microglia came from gene deletion

studies in experimental autoimmune encephalomyelitis (EAE)

mouse models. Animals lacking either the Ifn-b gene or its cognate

interferon-a/b receptor (Ifnar) exhibited elevated microglial reactiv-

ity concomitant with an even severe EAE disease phenotype when

compared to wild-type controls (Teige et al, 2003; Prinz et al,

2008). More importantly, IFN-b treatment in a multiple sclerosis

patient completely reversed subfoveal neovascularization and

choroiditis emphasizing the therapeutic potential of IFN-b for

inflammatory and vascular diseases of the eye (Cirino et al, 2006).

We have therefore studied whether IFN-b therapy could have

beneficial immunomodulatory effects in the laser CNV model for

exudative AMD. We demonstrated that systemic administration of

IFN-b not only inhibited MP reactivity and macrophage recruitment

but also reduced vascular leakage and neoangiogenesis (Luckoff

et al, 2016). The immune cell reactivity was evaluated by counting

the total number of reactive MPs in the laser spot and their ramifi-

cation status. Both parameters were significantly affected by IFN-b
treatment. Conversely, genetic deletion of Ifnar1 in mice resulted in

aggravated disease after laser treatment. Similar results were

obtained with a microglia-specific conditional deletion of IFN-b
signaling (Cx3cr1CreER:Ifnar1fl/fl). Our results provide a mechanistic

explanation for earlier publications where damage associated with

laser photocoagulation in rabbits and monkeys was successfully

treated with IFN-b (Tobe et al, 1995; Kimoto et al, 2002). Apart

from affecting microglial reactivity by blocking the production of

neurotoxic superoxide radicals, IFN-b also promotes RPE homeosta-

sis and suppresses proliferative activity of endothelial cells (Kimoto

et al, 2002; Jin et al, 2007).

Despite the clear indications of a protective IFN-b signaling in

retinal microglia, the exact molecular pathways remain poorly

understood. IFN-b signaling involves the transcription of suppressor

of cytokine signaling 1 (SOCS1) and SOCS3 by translocating the tran-

scription factors STAT1 and STAT2 into the nucleus (Rashid et al,

2018; Fig 2). SOCS1 and SOCS3 expression is known to engage in
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inhibitory signals to mitigate microglial activation and prevent cell

toxicity (Kimura et al, 2005; Baker et al, 2009; McCormick & Heller,

2015). Supporting evidence comes from a study where SOCS3 defi-

ciency in myeloid cells exaggerated retinal degeneration and acceler-

ated retinal angiogenesis in a murine model of uveoretinitis (Chen

et al, 2018). In these mice, SOCS3-deficient retinas demonstrated

higher levels of pro-inflammatory cytokines IL-1b, TNF-a, and IFN-c
as well as angiogenic factors including VEGF-A. Similarly, SOCS1

protected retinal cells from staurosporine- and H2O2-induced apopto-

sis (Yu et al, 2011). Also, members of the SOCS family are poten-

tially key physiological negative regulators of IL-6 signaling in

macrophages (Croker et al, 2003; Wilson, 2014; Fig 2).

TSPO ligands Translocator protein 18 kDa (TSPO) is a highly

conserved 5a-helical transmembrane protein located on the outer

mitochondrial membrane (Girard et al, 2012). Highly induced TSPO

protein expression is predominantly found in activated microglia

during various neuropathological conditions (Daugherty et al, 2013;

Karlstetter et al, 2014; Rashid et al, 2018). Concomitantly, astro-

cytes and Müller cells upregulate the secretion of an endogenous

TSPO ligand, diazepam binding inhibitor (DBI) protein which is

sensed by microglia and serves to limit the magnitude of microglial

reactivity by inducing feedback regulation (Wang et al, 2014).

Finally, triakontatetraneuropeptide (TTN), the biologically active

cleavage product of DBI, triggers the transformation of activated

microglia to baseline quiescence (Wang et al, 2014).

Based on this concept of feedback regulation, synthetic TSPO

ligands were effective immunoregulators in various animal models

for neurological diseases including Alzheimer’s disease, multiple

sclerosis, and anxiety disorders (Rupprecht et al, 2009; Barron et al,

2013). In our study on retinal degeneration, we tested the ability of

the specific TSPO ligand XBD173 to dampen microglial reactivity in

the acutely white light-damaged mouse retina (Fig 2). In this model,

exposure to intense white light leads to a significant loss of photore-

ceptor cells and thinning of the outer nuclear layer within a few

days after dark adaptation and light exposure (Wenzel et al, 2005).

We found that systemic administration of XBD173 markedly limited

the accumulation of amoeboid microglia in the outer retina and

protected from overt cell death (Scholz et al, 2015a). Mechanisti-

cally, XBD173 efficiently suppressed pro-inflammatory gene expres-

sion in cultured microglia and reduced neuronal cell death in

microglia-conditioned medium (Karlstetter et al, 2014). Moreover,

XBD173 triggered a neuroprotective microglia phenotype in

explanted organotypic mouse retinal cultures (Karlstetter et al,

2014). These effects mediated by XBD173 were prevented upon

blocking the enzymatic conversion of cholesterol to pregnenolone

(Fig 2), which can be converted to progesterone, a potent neuros-

teroid with pleiotropic neuroprotective properties (Pettus et al,

2005; Guennoun et al, 2015; Cai et al, 2018). In rd1 mice, a model

for retinitis pigmentosa, oral progesterone treatment decreased glio-

sis and cell death leading to improved retinal function (Sanchez-

Vallejo et al, 2015). Similarly, TTN stimulation of microglia

increased levels of dehydroepiandrosterone, an effective anti-inflam-

matory neurosteroid (Wang et al, 2014), and the TSPO ligand Ro5-

4864 effectively reduced diabetic neuropathy through a local

increase in neurosteroids (Giatti et al, 2009). These findings clearly

support the concept that TSPO exerts its neuroprotective effects by

modulating neuronal steroidogenesis.

Minocycline Minocycline is a membrane-permeable semi-synthetic

tetracycline derivative with strong neuroprotective and

immunomodulatory effects (Garrido-Mesa et al, 2013). Minocycline

blocks microglial activation in response to a variety of inflammatory

stimuli by inhibiting Toll-like receptor 2 (TLR2) and TLR4 signaling

(Nikodemova et al, 2006; Halder et al, 2013). TLRs induce a potent

immune response upon recognition of PAMPs (Uematsu & Akira,

2006). Receptor signaling triggers cytokine production through

translocation of NF-jB into the nucleus which is essential for the

defense of the host cell (Beutler, 2004). Increased expression of

TLR2 and TLR4 concomitant with elevated NF-jB levels is often

found in human monocytes under conditions of hyperglycemia

(Mohammad et al, 2006; Dasu et al, 2008). In the mouse retina,

pre-diabetic conditions and high-fat diet caused TLR4-dependent

activation of microglia ad macrophages concomitant with vision

loss (Lee et al, 2015). Microglia themselves can experience necrop-

tosis, a form of inflammatory cell death, through TLR4 activation in

rd1 mice, thereby exacerbating retinal inflammation and damage

(Huang et al, 2017).

Minocycline potently inhibits NF-jB transcriptional activity by

blocking the degradation of IjBa (Nikodemova et al, 2006; Fig 2).

Systemic minocycline therapy in light-damaged mice reduced pro-

inflammatory cytokine release, prevented microgliosis, and

preserved photoreceptor function in the retina (Zhang et al, 2004;

Scholz et al, 2015b). Similarly, minocycline inhibited microglial

reactivity and photoreceptor apoptosis in the rd10 mouse model of

human RP (Peng et al, 2014). In a streptozotocin (STZ)-induced rat

model of DR, minocycline blocked microglial COX2 expression and

prevented the release of IL-1b and TNF-a with concomitant reduc-

tion in caspase-3-mediated apoptosis (Krady et al, 2005). Recent

evidence also suggests that minocycline can block the expression of

PARP1, a chromatin-associated enzyme which promotes the expres-

sion of IL-1b and TNF-a in glial cells, and thereby reduces retinal

apoptosis (Wu et al, 2015).

Cytokine inhibition Enhanced levels of pro-inflammatory cytokines

are involved in AMD (de Oliveira Dias et al, 2011), RP (He et al,

2015), and DR (Patel et al, 2008). Specifically, the cytokines TNF-a,
IL-1b, and IL-6 are significantly elevated in retinal pathologies at the

time point of immune cell reactivity (Armstrong et al, 1998; Oh

et al, 1999; Seddon et al, 2005; Poon et al, 2015; Zhao et al, 2015a).

Therefore, scavenging of cytokines has been a valid therapeutic

concept in these retinal pathologies.

Several TNF-a-inhibiting antibodies have been developed and

tested as potential therapy options for retinal degenerations includ-

ing preclinical models for AMD, glaucoma, and ischemic retinopa-

thy (Al-Gayyar & Elsherbiny, 2013). Secretion of TNF-a by

phagocytes stimulates VEGF production in RPE and promotes angio-

genesis, hence being a candidate target for treating AMD and DR

(Cousins et al, 2004; Regatieri et al, 2009). TNF-a is also a negative

regulator of the RPE transcription factor orthodenticle homeobox 2

(OTX2) which orchestrates expression of critical genes involved in

proper retinal function (Mathis et al, 2017). In various rodent

models, researchers demonstrated positive effects of intravitreal

injections of the TNF-a antibodies (Shi et al, 2006; Regatieri et al,

2009). Histopathological findings confirmed that CNV lesions in

treated mice were smaller in size compared to the control animals

(Shi et al, 2006). Furthermore, intravitreal injection of low doses of
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infliximab (10–40 lg) abates the cytokine availability and modu-

lates angiogenesis (Fig 2; Regatieri et al, 2009). Studies in monkey

demonstrated that intravitreal injections of adalimumab and the

single-chain antibody fragment ESBA105, both potent TNF-a inhibi-

tors, resulted in CNV reduction, whereas topical treatment had only

weak effects (Lichtlen et al, 2010).

IL-1b is strongly involved in neovascularization by triggering the

release of angiogenic factors (Joyal et al, 2011; Horie et al, 2013;

Rivera et al, 2013). Thus, IL-1b induces a robust release of

semaphoring-3A in retinal ganglion cells and RPE in an oxygen-

induced retinopathy model (Martin et al, 2004; Joyal et al, 2011).

Sema3A critically contributes to vascular decay and misguided

revascularization (Rivera et al, 2013). Furthermore, excessive IL-1b
release induces P2X7R expression on monocytes, thereby triggering

further IL-1b release and retinal apoptosis (Giuliani et al, 2017).

Inhibition of IL-1b or P2X7R completely prevented the inflamma-

tion-associated photoreceptor demise (Hu et al, 2015). Recently,

Natoli et al (2017) showed that inhibition of retinal IL-1b reduced

phagocyte accumulation and photoreceptor death via downregulat-

ing chemokine expression by Müller cells and RPE in rats with focal

photo-oxidative damage.

Likewise, high levels of IL-6 are significantly related to AMD

progression and increased in mice with experimentally induced

CNV (Seddon et al, 2005; Izumi-Nagai et al, 2007). Systemic admin-

istration of the anti-IL-6R monoclonal antibody MR16-1 effectively

suppressed the expression of CCL2 and VEGF and reduced macro-

phage infiltration as well as the CNV area (Izumi-Nagai et al, 2007).

IL-6 is known to repress Fas ligand expression in the RPE, which

then leads to impaired clearance and accumulation of MPs in the

subretinal space (Levy et al, 2015).

Chemokine modulation Fractalkine or CX3CL1 is a neuronal chemo-

kine which binds to its receptor CX3CR1 on microglia and macro-

phages (Geissmann et al, 2003; Wolf et al, 2013). The tightly

regulated cross-talk between neurons and microglia involving

CX3CL1–CX3CR1 has an important role in immunoregulation and

neuroprotection in the brain and the retina (Wolf et al, 2013; Zieger

et al, 2014). Thus, CX3CR1-deficient mice show a higher susceptibility

to subthreshold light challenge leading to the accumulation of subreti-

nal microglia, which can be prevented by keeping the animals in the

dark (Combadière et al, 2007; Chinnery et al, 2012). Inhibition of CC-

motif chemokine ligand 2 (CCL2) or IL-1b also prevented inflamma-

tory macrophage recruitment and photoreceptor degeneration in these

animals (Sennlaub et al, 2013; Eandi et al, 2016). Conversely, positive

modulation of CX3CL1–CX3CR1 signaling in the diabetic mouse retina

by intravitreal administration of recombinant fractalkine effectively

reduced microglial proliferation (Mendiola et al, 2017).

The otherwise low expression of CCL2 in the retina is strongly

enhanced under stressful conditions (Nakazawa et al, 2007; Chen

et al, 2012). It is primarily secreted by activated microglia to recruit

inflammatory monocytes expressing CCR2 (Mizutani et al, 2012;

Sennlaub et al, 2013). The pro-inflammatory CCL2/CCR2 axis repre-

sents a valid target for inhibition to restore immune balance. Thus,

rats receiving intravitreal injection of CCL2 siRNA showed a mark-

edly decreased phagocyte accumulation and photoreceptor apopto-

sis after light damage (Rutar et al, 2012). Similarly, CCR2 knockout

mice had much lower photoreceptor demise after chronic blue light

exposure (Hu et al, 2016), less pro-inflammatory cells and CNV in

the laser-damage model (Robbie et al, 2016), and fewer subretinal

macrophages when immunized with carboxyethylpyrrole-modified

albumin as trigger for oxidative stress (Cruz-Guilloty et al, 2013).

The secretion of CCL3 by microglia is an early event in the

pathologies of the Abca4�/� Rdh8�/� mouse model of Stargardt

disease and the Mertk�/� mouse model of RP (Kohno et al, 2014).

Consequently, knockout of CCL3 in these mice resulted in a milder

disease form with increased retinal thickness, fewer numbers of

subretinal phagocytes, and marked reduction in vascular leakage

(Kohno et al, 2014).

Mononuclear phagocyte-targeted therapy in patients with retinal

pathologies

Hyper-reflective foci When monitoring the retina of wet AMD

patients using spectral domain optical coherence tomography (SD-

OCT), small, dense particles—thereby referred to as hyper-reflective

foci (HF)—were identified (Framme et al, 2010; Altay et al, 2016).

Similarly, HF were found in eyes of patients with different stages of

diabetic retinopathy (De Benedetto et al, 2015; Korot et al, 2016),

and a positive correlation between HF number, hard exudate size,

disease severity, and inflammation has been recognized (Bolz et al,

2009; Lammer et al, 2014; Niu et al, 2017). Interestingly, the appear-

ance and resolution of HF can be used to complement current diag-

nostic tools and predict disease progression and therapeutic success

(Gallagher et al, 2007; Coscas et al, 2013; Abri Aghdam et al, 2015).

These findings led to the assumption that HF may represent either

migrating RPE cells or reactive and bloated immune cells (Framme

et al, 2010; Christenbury et al, 2013; Coscas et al, 2013; Gocho et al,

2013). Pang et al compared HF with histological analyses in two

donor eyes and found cholesterol crystals, indicating that HF are

either RPE cells or lipid-filled phagocytes (Ogino et al, 2012; Pang

et al, 2015). Thus, the success of phagocyte-targeting therapies could

be potentially assessed by monitoring the presence and number of

retinal HF using non-invasive OCT imaging.

Clinical trials Despite the very promising results in a wide range of

preclinical studies targeting retinal phagocytes, only limited data are

available from clinical trials. In a phase I/II study, Nussenblatt et al

compared three immunosuppressive agents—daclizumab, rapa-

mycin, and infliximab—in combination with anti-VEGF therapy in

AMD patients (Nussenblatt et al, 2010). The authors found that

treatment with the anti-IL-2 receptor antibody daclizumab, as well

as the mTOR inhibitor sirolimus, but not infliximab, decreased the

number of anti-VEGF intravitreal injections. However, no significant

changes in visual acuity were evident. In contrast, other studies

reported positive effects on vision gain following intravitreal or

systemic infliximab treatment in patients with AMD and DR

(Sfikakis et al, 2005, 2010; Theodossiadis et al, 2009) although

some retinotoxicity was found in a small group of patients (Giganti

et al, 2010).

Oral minocycline treatment was tested in five patients with DME

and one patient with RP (Cukras et al, 2012; Baumgartner & Baum-

gartner, 2013). A 6-month treatment with minocycline improved

visual function, central macular edema, and vascular leakage in the

DME patients (Cukras et al, 2012). The RP patient received minocy-

cline together with the anti-apoptotic drug deprenyl for 120 months

and showed a slower decline in visual field as estimated from the
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previously documented disease course (Baumgartner & Baumgart-

ner, 2013).

Targeting the complement system in retinal
degenerative diseases

The complement pathways

The complement system, with over 30 small proteins, is a crucial

component of innate immunity. Its origins can be traced back to a

billion years ago when primitive proteins evolved to protect cells from

pathogens. However, it was only discovered around 125 years ago as a

liver-derived heat-labile substance circulating in the blood that “comple-

ments” antibodies in lytic killing of bacteria, fungi, and viruses.

The system becomes activated in a cascade fashion when trig-

gered through one or more of the three major pathways: the classi-

cal pathway (CP), the mannose-binding lectin (MBL) pathway, and

the alternative pathway (AP; Fig 3). There are two critical steps for

the full activation of the complement pathways: C3 cleavage and C5

cleavage by relevant convertases (Fig 3).

These convertases generate (i) C3b that may participate in

opsonizing pathogens or dead cells and promoting their clearance,

or form C5 convertase in the AP’s feedback loop (Fig 3), (ii) C3a

and C5a that can induce vasodilation, increase the permeability of

small blood vessels, and induce contraction of smooth muscles

(Fig 3), and (iii) C5b-C9, also called membrane attack complex

(MAC) that can modulate the immune response or affect cell cycle

when released as a soluble form and at sublytic levels (Lueck et al,

2011; Lakkaraju et al, 2014) or form transmembrane channels on

cell surfaces causing lysis (Fig 3).

Activation of the complement system is tightly controlled by a

group of soluble and membrane-bound regulators, including (i) C1-

inhibitor (C1INH) that inactivates C1r and C1s or MASP1 and

MASP2 proteases and prevents CP- and MBL-mediated complement

activation, (ii) factors that accelerate the decay of convertases, such

as the membrane-bound CD55 or fluid phase factor H (CFH), and

the transmembrane CD46, and (iii) CD59 that blocks the MAC

assembly (Morgan & Wong et al, 1995; Zipfel & Skerka, 2009;

Schmidt et al, 2016; Fig 3).

Although the main source of circulating complement components

is the liver, complement proteins, receptors, and regulators are also

produced and expressed locally by other cells, including immune

cells and various tissue cells (Heeger & Kemper, 2012; Kolev, 2014).

Locally produced complements are known to play an important role

in tissue homeostasis, and thus, dysfunction or dysregulation of the

system may contribute to various diseases. Recent studies have

shown that the complement system can also be activated inside the

cell, and intracellular complement activation is known to be

involved in many important cellular functions, including intracellu-

lar pathogen recognition/elimination, cytokine production, and

metabolism (Arbore et al, 2017; Kolev & Kemper, 2017; Liszewski

et al, 2017).

Complement regulation in the retina

As an immune privileged tissue, the retina is segregated from

systemic circulation by various barriers (e.g., BRBs), and circulating

complement proteins are not able to freely move into the retinal

parenchyma under physiological conditions. However, the retina

itself produces a variety of complement proteins, receptors, and

regulators (Anderson et al, 2010). For example, transcripts of C1qb,

C1r, C2, C3, C4, CFB, and CFH were detected in the retina and RPE/

choroid of human (Anderson et al, 2010) and mouse eyes (Luo

et al, 2011). Complement regulatory proteins such as CD46 (Vogt

et al, 2006; Fett et al, 2012), CD55 and CD59 (Vogt et al, 2006), and

CFH (Chen et al, 2007) as well as complement receptors CR1 and

C3aR (Fett et al, 2012) and C5aR (Vogt et al, 2006) were found in

retinal neurons and RPE cells.

Complement genes in the retina (Chen et al, 2010) and RPE/

choroid (Chen et al, 2008) are expressed in an age-dependent fash-

ion. Also, the expression of C3, C4, and CFB in mouse retina can be

affected by cataract surgery (Xu et al, 2011) and irradiation (Chen

et al, 2012). Recently, an age-related accumulation of MAC was

found in the choriocapillaris of healthy donor eyes (Mullins et al,

2014; Chirco et al, 2016). The role of complement proteins in retinal

cell homeostasis and activation remains to be fully elucidated, and

this should be an important point of consideration when targeting

the complement system for treating retinal diseases.

The role of the complement system in retinal degeneration

The underlying pathologies of DR are retinal microvascular

damage and neuronal degeneration. C3d and C5b-9 have been

detected in the choriocapillaris of DR eyes (Gerl et al, 2002) as

well as in retinal vessels of patients suffering from type 2 diabetes

for more than 9 years (Zhang et al, 2002), suggesting that the

complement system may damage vascular endothelial cells

through C5b-9-mediated lytic killing in diabetic eyes. In addition,

uncontrolled complement activation may also contribute to peri-

cyte loss in DR. Retinal pericyte-reactive autoantibodies have been

detected in patients with DR (Zhang et al, 2016) and in vitro stud-

ies have shown that the autoantibody-initiated complement activa-

tion can induce pericyte damage and loss of function (Li et al,

2012). Increased C3a and C5a were detected in the serum (Zhang

et al, 2016) and vitreous of patients with PDR (Muramatsu et al,

2013). C3a- and C5a-induced inflammation may also contribute to

DR pathogenesis. For example, Müller cells constitutively express

C5aR and the expression can be upregulated by hyperglycemia and

inflammatory stimuli such as prostaglandin E, which then results

in the release of IL-6 and VEGF, both known to be critically

involved in DR pathology (Cheng et al, 2013).

The role of the complement system in the pathogenesis of AMD

has been studied and reviewed extensively over the past decade

(Warwick et al, 2014; Bora et al, 2015; McHarg et al, 2015). Key

facts supporting the role of the complement system in the pathogen-

esis of AMD include the following: (i) Several complement compo-

nents have been detected in drusen and AMD lesions (Anderson

et al, 2002, 2010); (ii) higher plasma levels of C3a, C3d, Bb, and

C5a have been observed in AMD patients (Scholl et al, 2008;

Reynolds et al, 2009; Lechner et al, 2016); (iii) polymorphisms in a

number of complement genes (CFH, CFB, C2, SERPING1, and C3)

are genetic risk factors of AMD (Edwards, 2008; Cipriani et al,

2012); and (iv) inhibition of complement suppresses laser-induced

CNV in mice (Nozaki et al, 2006; Bora et al, 2010; Kim et al, 2013;

Lipo et al, 2013). Mechanistically, CFH may inhibit CD47-mediated

resolution of subretinal inflammation and this inhibitory effect

could be enhanced by the AMD associated CFH (H402) variant

(Calippe et al, 2017).
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A recent transcriptome study of two advanced stages of RP in

dogs showed strongly increased gene expression of inflammasome

and complement factors in the retina (Sudharsan et al, 2017).

However, earlier studies reported reduced C3 and C4 levels and

increased immune complexes in the sera from RP patients, and this

reduced systemic complement activity appears to be related to poor

disease prognosis (Heredia et al, 1984). The rhodopsin T17M muta-

tion also reduces C3 secretion in RPE cells (Xiong et al, 2017),

suggesting that some RP-related genes may regulate complement

expression/secretion by RPE cells. Humphries et al showed that

C1q, the primary component of the classical pathway of the comple-

ment system, is a survival factor for cone cells, and C1q deficiency

promoted photoreceptor death in Rho�/� mice, a mouse model of

Leber’s congenital amaurosis (LCA; Humphries et al, 2012). Further

understanding the role of complement system activation in RP may

uncover novel targets for therapy.

Modulating the complement system for the management of retinal

degenerative diseases

Despite extensive research and significant advances in understand-

ing the role of the complement system in retinal health and disease,

the therapeutic value of these findings has only been tested in small

groups of selected patients, such as the GA type of AMD (see

below). A number of reasons may explain the slow progression in

translations. First, complement dysregulation is not the primary

cause of disease. The complement system only comes into play

when retinal damage is evident. Therefore, modulating the comple-

ment system without addressing the initial cause of the disease may

have limited impact on disease progression. Second, the physiologi-

cal purpose of complement activation is likely to limit retinal

damage and promote repair although excessive C3a, C5a, and C5b-

C9 may be detrimental. It is, therefore, critical to differentiate the

beneficial roles from the detrimental roles of complement activation
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Figure 3. Complement activation, regulation, and immune functions.

(A) The complement system can be activated by three pathways: the classical pathway (CP), mannose-binding lectin (MBL) pathway, and the alternative pathway (AP);
all lead to the cleavage of C3 and C5 and the formation of C5b-C9. In the CP and MBL pathways, the C3 and C5 convertases are C4b2a and C4b2a3b, whereas in the
AP, they are C3bBb and C3bBbC3b, respectively. Once C3 is cleaved into C3a and C3b, the C3b fragment can form C3bBb to amplify the complement activation
cascade. Therefore, even if the initial activation is mediated by CP or MBL pathway, the cascade is ultimately amplified by the AP. (B) The complement activation
cascades are regulated at multiple levels. Properdin is the only factor that stabilizes C3bBb and enhances complement activation. CFI, CD46, CFH, CR1, and C4BP
prevent the assembly of C3 and C5 convertases by further breaking down C3b and C4b, whereas CD55, CR1, CFH, and C4BP can dissociate C3 and C5 convertases.
CD59 and S protein can prevent the assembly of C5b-C9. (C) Activation of the complement system generates C3a, C3b, and C5a fragments that are actively involved in
immune responses. The soluble form of and sublytic levels of C5b-C9 can regulate immune cell functions, whereas the membrane MACs directly kill pathogens and
cells.
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in retinal degeneration. Third, complement proteins and regulators

may modulate retinal disease independent from the complement

cascades. Complement-based therapies are at different stages of clin-

ical development for retinal diseases, particularly AMD (Xu & Chen,

2016).

Early clinical trials have proven that complement inhibitors are

generally safe and well tolerated when injected intravitreally. The

phase II/III studies have been conducted predominately in GA

patients. For example, the latest C3-targeted inhibitor APL-2 has

shown promising effect in the phase II study (NCT02503332),

which reported a 29% reduction in the rate of GA lesion growth

and 20% reduction in the group that received APL-2 injection

every other month. A greater effect was observed during the

second 6 months of the study where a reduction in GA growth

rate of 47 and 33% was seen in patients with monthly and every

other month treatment, respectively. The phase III study is

planned to begin in the second half of 2018 (Apellis-Pharmaceuti-

cals, 2018).

Lampalizumab (FCFD4514S) is a humanized IgG Fab fragment

against CFD, thereby reducing the activation of the alternative

complement pathway (Katschke et al, 2012). A phase II study

(MAHALO) reported a 20% reduction in lesion area progression

compared with sham control after 18-month treatment of monthly

intravitreal injections. Further subgroup analysis revealed a 44%

reduction in patients who carry the CFI risk allele (rs17440077;

Yaspan et al, 2017). However, further phase III studies (Spectri,

NCT02247531; and Chroma, NCT02247479) failed to confirm the

therapeutic effect in GA patients.

CLG561 is a fully humanized anti-properdin antibody Fab frag-

ment. Properdin promotes the association of C3b with CFB and

provides a focal point for the assembly of C3 convertase C3bBb. A

phase II study evaluating the safety and efficacy of intravitreal injec-

tions of CLG561 as a monotherapy and in combination with LFG316

in GA patients is ongoing (NCT02515942).

It must be noted that several other complement trials have ended

early due to disappointing interim results. This highlights our lack

of basic understanding of the mechanisms by which complement

factors influence AMD. Thus, we are currently unable to address

precisely when, where, and how to modulate the complement path-

way in AMD and other retinal degenerative conditions.

Targeting inflammasome activation in retinal
degenerative diseases

The inflammasome signaling pathway

The inflammasomes are cytosolic macromolecular signaling

complexes that mediate IL-1b and IL-18 secretion the lytic cell death

called pyroptosis. They play a crucial role in innate immunity by

coordinating host immune response to invading pathogens or host-

derived danger signals. Assembly of inflammasomes is triggered by

different PRRs, including nucleotide-binding oligomerization

domain-like receptors (NLRs), absent in melanoma 2 (AIM2)-like

receptors (ALRs), or tripartite motif (TRIM) family receptors, which

are capable of recognizing PAMPs and DAMPs. Assembly of the

inflammasomes allows for the cleavage and activation of inflamma-

tory caspases, which in turn cleave pro-inflammatory cytokines pro-

IL-1b and pro-IL-18 into their active forms.

Since NLRP1 was first described to form the inflammasome in

2002 (Martinon et al, 2002), members of the NLR family (NLRP1,

NLRP3, and NLRC4) as well as other proteins (AIM2, pyrin) have

been confirmed to initiate formation of inflammasomes (Broz &

Dixit, 2016; Mathur et al, 2017). There are also other less well-char-

acterized PRRs, such as NLRP2, NLRP6, NLRP7, NLRP9b, NLRP12,

IFN-c-inducible protein 16 (IFI16), and retinoic acid-inducible gene I

(RIG-I; also known as DDX58) which have also been reported to

activate caspase-1 (Broz & Monack, 2013; von Moltke et al, 2013;

Broz & Dixit, 2016; Man & Kanneganti, 2016).

To date, the best studied and well-characterized NLR molecule is

NLRP3 (also known as NALP3, cryopyrin, CIAS1, and Pypaf1).

Assembly of NLRP3 requires two signals: (i) a priming signal which

activates NF-kB, subsequently promoting the transcription of NLRP3

and pro-IL-1b, and (ii) an activation signal which facilitates the

oligomerization of NLRP3, ASC, and procaspase-1, resulting in the

activation of NLRP3 inflammasome and secretion of mature IL-1b
and IL-18 (Fig 4; Bauernfeind et al, 2009; Franchi et al, 2012, 2014;

Juliana et al, 2012). In addition to the canonical inflammasomes, the

non-canonical inflammasome signaling pathways also exist, which

target caspase-11 in mice and caspase-4 and caspase-5 in humans. Shi

et al (2014) have shown that caspase-4/5/11 can directly respond to

cytoplasmic LPS leading to self-oligomerization and activation.

Clinical data on involvement of inflammasome in retinal diseases

Aberrant inflammasome activation has been implicated in multiple

diseases, including retinal diseases. For instance, Tarallo et al (2012)

displayed that NLRP3, IL-1b, and IL-18 mRNA abundance in the RPE

from human eyes with GA was markedly elevated compared to

normal age-matched control eyes. Others also observed upregulation

of NLRP3, pro-IL-1b, and pro-IL-18 mRNA in the macula of both GA

and nAMD (Cao et al, 2016; Wang et al, 2016b). Zhao et al (2015a)

analyzed the protein level of pro-IL-1b and IL-1b in vitreous samples

from patients with retinal diseases. The results show that pro-IL-1b
levels in nAMD, polypoidal choroidal vasculopathy (PCV), and

Eales’ disease vitreous samples were significantly elevated, and IL-

1b expression in nAMD, PCV, Eales’ disease, and RVO vitreous

samples was significantly elevated when compared with the control

group. Interestingly, IL-1b levels in serum samples of PCV and

nAMD were significantly decreased in the same study.

Inflammation is assumed to be involved in the generation of

neovascularization in PDR (Zhou et al, 2012). Most recently, Louko-

vaara et al (2017) reported that NLRP3 inflammasome activation is

associated with the pathogenesis of PDR. It is also demonstrated that

high intraocular pressure (IOP)-induced retinal ischemia could trigger

caspase-8 signaling to activate NLRP1 and NLRP3 inflammasomes

and IL-1b secretion via TLR4 signaling in both mouse and rat models

(Chi et al, 2014). These results provide new insights into the patho-

genesis and development of new therapeutic strategies for clinical

treatment by linking NLRP3 inflammasome and retinal diseases.

Triggers of inflammasome activation in the retina

Oxidative stress Increasing evidence suggests that ROS induces the

activation of NLRP3 inflammasome and enhances the secretion of

IL-1b (Zhang et al, 2015; Choe & Kim, 2017). In STZ-induced

diabetic mice, rod demise was accompanied by an increase in LC3A

protein, a marker for autophagosomes (Mizushima & Yoshimori,
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2007; Piano et al, 2016). Similarly, ARPE-19 cells showed signs of

autophagy together with ROS release in response to high-glucose-

induced stress (Shi et al, 2015). Inhibition of the autophagic

response activated even more NLRP3 and caused IL-1b release. The

authors speculate that the cells incapable of removing ROS-gener-

ating mitochondria may trigger NLRP3 inflammasome activation

(Youle & Narendra, 2010; Shi et al, 2015). Thus, NLRP3 inflamma-

some activity is stimulated by ROS accumulation and counter-

balanced by autophagy (Zhou et al, 2010b).

Retinal lipofuscin contains lipid peroxidation- or glycoxidation-

induced end products 4-hydroxynonenal (HNE), malondialdehyde

(MDA), and advanced glycation end products (AGEs; Schutt et al,

2003). Kauppinen et al (2012) reported that HNE induced signifi-

cantly increased NLRP3 mRNA levels and IL-1b and IL-18 produc-

tion in RPE cells.

Thioredoxin (TRX)-interacting protein (TXNIP), a TRX-binding

protein, is thought to be an endogenous inhibitor of TRX reductase

activity. TXNIP dissociates from TRX at high concentrations of H2O2

and interacts with NLRP3. ROS-dependent TXNIP–NLRP3 associa-

tion was also found in monosodium urate crystals or R-837-treated

macrophages (Zhou et al, 2010a). TXNIP can also mediate retinal

inflammation, gliosis, and apoptosis in experimental diabetes (Devi

et al, 2012). Zhou et al demonstrated a vital role of TXNIP in innate

immunity through NLRP3 inflammasome activation and release of

IL-1b under oxidative stress. Recent studies demonstrated that ROS–

TXNIP pathway mediates NLRP3 inflammasome activation in DR

conditions in vitro and in vivo in rats. High glucose induces

sustained upregulation of TXNIP, ROS generation, and inflammation

in a Müller cell line of rats, and antioxidants or TXNIP silencing

blocked IL-1b and IL-18 secretion in high-glucose-exposed human

retinal microvascular endothelial cells (Devi et al, 2012; Chen et al,

2017). These results provide a potential therapeutic target for the

treatment of DR.

Lysosomal membrane permeabilization Lysosomal membrane

permeabilization (LMP) is a key mechanism upstream of NLRP3
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Figure 4. Molecular mechanisms of NLRP3 inflammasome priming and activation.

Schematic representation of the NLRP3 inflammasome pathway which requires two signals: (i) a priming signal which activates NF-kB, subsequently promoting the
transcription of NLRP3 and pro-IL-1b, and (ii) an activation signal which facilitates the oligomerization of NLRP3, ASC, and procaspase-1, resulting in the activation of NLRP3
inflammasome and secretion of mature IL-1b and IL-18.
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inflammasome activation, which induces subsequent cytosolic leak-

age of lysosomal components (Hornung et al, 2008; Stutz et al,

2009). Lysosome rupture triggers various cellular responses, includ-

ing NLRP3 inflammasome activation, autophagy, and cell death

(Okada et al, 2014). As lysosomes are organelles containing abun-

dant amount of Ca2+, lysosome rupture induces Ca2+ influx from

the lysosome into the cytosol activating the NLRP3 inflammasome

through the CaMKII–TAK1–JNK pathway (Okada et al, 2014). TAK1

and JNK are activated in response to a soluble lysosomotropic agent

L-leucyl-L-leucine methyl ester (LLME) stimulus, and inhibitors of

cathepsin B, cysteine proteases, or 5-Z-oxozeaenol (a TAK1 inhi-

bitor) strongly attenuate the LLME-induced activation of JNK. JNK

is a family member of MAPK that responds to stress and that can

regulate the activation of the NLPR3 inflammasome through ASC

oligomerization. Furthermore, various LMP stimuli trigger signifi-

cant K+ efflux (Munoz-Planillo et al, 2013). Katsnelson et al (2015)

reported that Ca2+ influx and K+ efflux are rapidly triggered after

murine dendritic cell treatment with LLME. The lipofuscin compo-

nent N-retinylidene-N-retinyl-ethanolamine (A2E) was also shown

to trigger LMP (Taylor et al, 1992; Tomany et al, 2004). Brandstetter

et al found that lipofuscin-mediated phototoxicity results in LMP

with cytosolic leakage of lysosomal enzymes and subsequent activa-

tion of caspase-1 and inflammasome with secretion of IL-1b and IL-

18 in RPE cells. NLRP3 inflammasome activation induced by LMP

may contribute to AMD pathology through the release of pro-inflam-

matory cytokines such as IL-1b as well as through caspase-1-

mediated pyroptosis (Tseng et al, 2013; Brandstetter et al, 2015b).

ATP and P2X7 receptor P2X7R chiefly acts through the recruitment

of the NLRP3 inflammasome complex (Giuliani et al, 2017). As a

known and powerful activator of the NLRP3, P2X7R modulates

NLRP3 expression at mRNA and protein levels, and excessive acti-

vation results in RPE cell death (Franceschini et al, 2015). During

P2X7R opening, it directly allows K+ efflux and Ca2+ influx along

the concentration gradient. K+ efflux is now acknowledged as a

very potent stimulus for caspase-1 activation and pro-IL-1b release

that activates the NLRP3 inflammasome (Franchi et al, 2007;

Petrilli et al, 2007; Franceschini et al, 2015). Recent evidences

suggest that P2X7R and NLRP3 interact directly at discrete sub-

plasmalemmal cytoplasmic sites. P2X7R and NLRP3 can be co-

localized by confocal microscopy and co-immunoprecipitated in

both mouse microglia and mouse peritoneal macrophages

(Franceschini et al, 2015).

Adenosine triphosphate promotes caspase-1 activation, NLRP3

activation, IL-1b and IL-18 maturation and release, and cell death

(Ferrari et al, 1997a; Perregaux et al, 2000). RPE cells and neural

retina have been shown to release ATP in response to stimulation

(Neal & Cunningham, 1994; Mitchell, 2001; Eldred et al, 2003;

Newman, 2003; Pearson et al, 2005; Reigada & Mitchell, 2005;

Reigada et al, 2005), which can act on P2X7R in the RPE cells via an

autocrine or a paracrine manner (Perez et al, 1986; Xia et al, 2012).

Yang et al (2011) reported that the P2X7R is expressed in both

native and cultured human RPE cells and its activation induces both

Ca2+ signaling and apoptosis in RPE cells. Furthermore, BzATP-

induced RPE apoptosis was blocked or significantly inhibited by

P2X7R antagonists BBG, KN-62, and oxidized ATP. Oxidized ATP,

an irreversible blocker of P2X7R, abrogates ATP-induced IL-1b
release from immune cells (Ferrari et al, 1997b). All of these above

suggest that the over-activation of P2X7R may contribute to the

development of GA.

Complement components Recently, Brandstetter et al (2015a)

showed that complement component C5a is a priming signal for the

NLRP3 inflammasome in RPE cells that mediates inflammasome

activation by lipofuscin/blue light-induced photo-oxidative damage.

There is also research showing that C1q represents an activation

signal for the NLRP3 inflammasome, acting in a caspase-1- and

phagolysosome-dependent manner in LPS-primed mouse bone

marrow-derived macrophages and THP1 human monocytic cells

(Doyle et al, 2012). In addition to C1q, C3a and MAC trigger

inflammasome activation (Asgari et al, 2013; Triantafilou et al,

2013). C3a induces NLRP3 inflammasome activation and IL-1b
secretion in human monocytes by controlling the release of intracel-

lular ATP into the extracellular space (Asgari et al, 2013). However,

sublytic MAC attack generates pores on the membrane that allow

Ca2+ influx, and thus increase cytosolic Ca2+ concentration,

triggering NLRP3 activation and IL-1b production (Triantafilou et al,

2013).

Amyloid-b Amyloid-b (Ab) is a component of drusen and has been

suggested as pathogenic factor in AMD (Johnson et al, 2002). It is a

pathogenic trigger peptide that induces inflammation and neurotoxi-

city in the retina. Intrinsic cytotoxicity of Ab is due to its aggregated

forms as soluble oligomers or insoluble fibrils (Gao et al, 2015). Ab
(1–40) and Ab(1–42) are the two most common isoforms of Ab,
which are recognized to be the most relevant forms to induce

neurodegeneration in amyloidosis (Zhang et al, 2012). Increasing

Ab(1–42) secretion was found in senescent ARPE-19 cells (Glotin

et al, 2008). Accumulating evidence suggests that increasing Ab
deposition with age may contribute to the development of AMD

(Johnson et al, 2002; Dentchev et al, 2003; Zhao et al, 2015b). In

addition to Ab’s cytotoxicity, NLRP3 inflammasome activation

induced by Ab may be responsible for RPE dysfunction. Halle et al

(2008) reported that NLRP3 inflammasome activation is initiated by

fibrillar Ab-induced lysosomal damage which increased release of

lysosomal protease cathepsin B in microglia. As a trigger, Ab stimu-

lates RPE cells and results in accelerating the secretion of IL-1b
(Kurji et al, 2010).

Alu RNA Alu RNA, a non-coding RNA transcribed from Alu

elements, plays a prominent role as gene modulator via genome

shaping, transcriptional regulation, and mRNA alternative splicing

(Hasler et al, 2007). Alu RNA accumulation secondary to DICER1

deficiency in the RPE has been implicated in GA (Tarallo et al,

2012). Kaneko et al (2011) showed that a reduction in RNase

DICER1 leads to accumulation of Alu RNA transcripts in the RPE of

GA patients. Delivery of a plasmid coding for Alu RNA upregulated

NLRP3 and IL-18 mRNAs in mouse RPE cells and induced ROS

production in human RPE cells (Tarallo et al, 2012). These results

suggest that Alu RNA triggers NLRP3 priming and mitochondrial

ROS in RPE cells. ERKs promote cell death in a variety of chronic

neurodegenerative states. Increased ERK1/2 phosphorylation was

observed in the RPE of human eyes with GA, and Alu RNA-induced

RPE degeneration in mice is rescued by intravitreous administration

of PD98059, an inhibitor of the ERK1/2-activating kinase MEK1

(Dridi et al, 2012). Thus, RPE degeneration induced by DICER1
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depletion or Alu RNA over-expression may be mediated by ERK1/2

signaling (Dridi et al, 2012). ERK1/2 signaling also regulates angio-

genesis and CNV (Hua et al, 2011; Xie et al, 2011). Therefore,

ERK1/2 activation is a potential target for both atrophic and neovas-

cular AMD.

Strategies for therapeutic modulation of inflammasome activation

IL-1b inhibitors IL-1b is a key inflammatory cytokine regulated by

the inflammasome, and increased levels of IL-1b are present in DR

(Kowluru et al, 2011; Liu et al, 2012) and AMD (Lavalette et al,

2011; Tarallo et al, 2012). Amelioration of IL-1b activation prevents

mitochondrial dysfunction and DNA damage (Kowluru et al, 2011).

Furthermore, glucose-induced apoptosis of retinal endothelial cells

is prevented by neutralization of IL-1b through incubating the cells

with an IL-1b antibody or IL-1b receptor antagonist (Kowluru &

Odenbach, 2004). The importance of IL-1b in retinal diseases makes

IL-1 inhibition a therapeutic option. The IL-1b receptor antagonist

anakinra (ANA), anti-IL-1b antibody canakinumab (CAN), and

recombinant humanized anti-IL-1b antibody gevokizumab (XOMA

052) have good clinical results in ocular diseases such as uveitis

secondary to Behçet’s disease (BD; Gul et al, 2012; Ugurlu et al,

2012; Vitale et al, 2014; Cantarini et al, 2015; Emmi et al, 2016).

ANA and CAN have been shown to be an effective and safe thera-

peutic option for BD-related refractory or long-standing uveitis with

a significant reduction in the rate of ocular inflammatory flare, reso-

lution of active retinal vasculitis, preservation of visual acuity, and

significant decrease in required steroid dosages (Fabiani et al,

2017). Ildefonso proposed that anti-inflammatory genes delivered

by an adeno-associated virus (AAV) vector could be used as poten-

tial treatments for retinal inflammation (Ildefonso et al, 2015). Eyes

injected with the caspase activation and recruitment domain

(CARD) AAV vector had a significant decrease in both IL-1b secre-

tion and infiltrating cells (Ildefonso et al, 2015). Data on the efficacy

of IL-1b inhibition therapy in inflammasome-related retinal diseases

are currently lacking.

NLRP3 inhibitors Direct inhibition of NLRP3 is an obvious

approach for suppressing inflammasome activity. Recently, a

small-molecule inhibitor MCC950 (also known as CRID3), which

is a diarylsulfonylurea-based compound, was reported to be a

potent and highly specific inhibitor of NLRP3, but not the AIM2,

NLRC4, and NLRP1 inflammasomes (Coll et al, 2015). Coll et al

(2015) reported that MCC950 could suppress both canonical and

non-canonical NLRP3 activation by preventing ASC complexes

instead of blocking K+ efflux, Ca2+ flux, or NLRP3–ASC interac-

tions. By reducing IL-1b and IL-18 secretion, the substance allevi-

ated the severity of EAE and cryopyrin-associated periodic

syndromes (CAPS) in mouse models. MCC950 thus is a potential

therapeutic for NLRP3-associated diseases. It has also been

reported in APP/PS1 mice, an AD model, that MCC950 suppresses

inflammasome activation and IL-1b production, stimulates Ab
phagocytosis in vitro, and reduces Ab accumulation (Dempsey

et al, 2017). With regard to the retina, MCC950 is capable of

inhibiting NLRP3 inflammasome activation and apoptosis in

human retinal endothelial cells (HRECs) under high-glucose

conditions, likely through downregulation of the Nek7–NLRP3

pathway (Zhang et al, 2017).

Another substance that inhibits NLRP3 is the ketone body

b-hydroxybutyrate (BHB; Youm et al, 2015). Unlike MCC950, BHB

blocks only the canonical NLRP3 inflammasome activation pathway

by preventing K+ efflux and reducing ASC oligomerization and

speck formation (Youm et al, 2015). It reduces IL-1b and IL-18

production in human monocytes and attenuates caspase-1 activation

and IL-1b secretion in mouse models of NLRP3-associated diseases,

such as Muckle–Wells syndrome, familial cold autoinflammatory

syndrome, and urate crystal-induced peritonitis. Both the

MCC950 and BHB hold promise as potential novel pharmaceutical

approach for treating DR, AMD, and other NLRP3-induced ocular

diseases.

Nucleoside reverse transcriptase inhibitors Nucleoside reverse

transcriptase inhibitors (NRTIs) are widely used to treat AIDS by

blocking HIV replication. Fowler et al (2014) discovered that NRTIs

inhibit P2X7-mediated NLRP3 inflammasome activation indepen-

dent of reverse transcriptase inhibition. Clinically relevant NRTIs

such as lamivudine (3TC), stavudine (d4T), and abacavir (ABC)

were shown to block caspase-1 activation induced by Alu RNA in

RPE cells (Fowler et al, 2014). Furthermore, NRTIs were efficacious

in mouse models of GA and choroidal neovascularization. Intravit-

reous injection of the NRTIs 3TC, zidovudine (AZT), and ABC

significantly suppressed laser-induced CNV and VEGF-A secretion in

wild-type mice but not P2rx7�/� mice (Mizutani et al, 2015). This

suggests NRTIs as a possible new therapeutic approach for both dry

and wet AMD.

Conclusion

In the current review, we point out the fundamental similarity

between AMD, DR, and hereditary retinopathies (using the exam-

ple of RP)—and possible other retinal diseases as well—namely

non-resolving and overwhelming inflammation. We pointed out

three arms of inflammation which are activation of (i) mononu-

clear phagocytes, (ii) the complement system, and (iii) the

inflammasome. All three arms are intertwined and cannot be

treated exclusively without affecting each other, hence represent-

ing an attractive therapy target. Complement receptors are

expressed on MPs while NLRP inflammasomes lead to IL-1b acti-

vation and secretion contributing significantly to microglial activa-

tion and macrophage recruitment. Perturbations of immune-

suppressive capacities of the RPE, retinal neurons, and macroglia

due to aging, hyperglycemia, or other defects evoked by genetic

risk variants lead to non-resolving inflammation. Hence, the

proposed therapeutic options are auspicious approaches to start

with.

Pending issues
(i) Experimental studies on separating retinal immune cell popula-

tions.
(ii) Linking retinal microglia and macrophage phenotypes and func-

tions with disease outcome.
(iii) Identifying optimal targets in the complement cascade.
(iv) Clinical studies with immunomodulatory compounds.
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