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Abstract

Global ecosystem function is highly dependent on climate and atmospheric composition, yet 

ecosystem responses to environmental changes remain uncertain. Cold, high-latitude ecosystems 

in particular have experienced rapid warming1, with poorly understood consequences2–4. Here, we 

use a satellite observed proxy for vegetation cover – the fraction of absorbed photosynthetically 

active radiation5 – to identify a decline in the temperature limitation of vegetation in global 

ecosystems between 1982 and 2012. We quantify the spatial functional response of maximum 

annual vegetation cover to temperature and show that the observed temporal decline in 

temperature limitation is consistent with expectations based on observed recent warming. An 

ensemble of Earth system models from the Coupled Model Intercomparison Project (CMIP5) 

mischaracterized the functional response to temperature, leading to a large overestimation of 

vegetation cover in cold regions. We identify a 16.4% decline in the area of vegetated land that is 

limited by temperature over the past three decades, and suggest an expected large decline in 

temperature limitation under future warming scenarios. This rapid observed and expected decline 

in temperature limitation highlights the need for an improved understanding of other limitations to 

vegetation growth in cold regions3,4,6, such as soil characteristics, species migration, recruitment, 

establishment, competition, and community dynamics.
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Main

A global increase in green vegetation has been observed over recent decades7,8 and widely 

attributed to both direct and indirect anthropogenic influences, primarily elevated 

atmospheric CO2, but also to changes in climate, nitrogen deposition, and land use change 
8–11. The global greening has contributed to changes in biophysical feedbacks such as 

evapotranspiration and albedo12, along with an increased terrestrial carbon sink13, which 

together have served to slow the rate of global warming2. Uncertainties remain, however, 

regarding the drivers of the reported greening, and their spatial variation, and thus the 

likelihood of continued greening.

Ecosystems in cold regions in particular have exhibited rapid increases in green vegetation 
3,7. Plot scale evidence suggests a link to warming4,6, but direct attribution of observed 

regional trends to environmental changes has been elusive. Regional studies have relied on 

multi-factorial simulation experiments with global vegetation models8,11,14. But vegetation 

models are known to perform poorly for high-latitude and cold-limited ecosystems15–17, 

overestimating both the extent of green vegetation and the trend in recent decades17. Model 

results suggest a role of climate change and CO2 in the observed greening trend8,10,11,14,18, 

but direct attribution is hindered by model spread and uncertainty14.

Here, we develop a data-based approach19,20, using three decades of remotely sensed 

estimates of the fraction of absorbed photosynthetically active radiation (fAPAR), a proxy 

for productive foliage cover21, to characterize the relationship between maximum annual 

foliage cover (Fmax) and the summer warmth index (SWI5, the sum of the monthly mean 

temperatures above 5°C). We use the approach, which was previously developed for water 

limited ecosystems19,20, to identify the spatial distribution of ecosystems in which Fmax is 

limited by temperature, and thus to track changes in temperature limitation over time. By 

estimating the temperature sensitivity of Fmax (γF
T) using spatial gradients, and comparing 

with expected changes in Fmax due to observed changes in temperatures, we show a long-

term increase in foliage cover that is consistent with the expected influence of recent 

warming. The observed greening occurred together with a large decline in the spatial extent 

of temperature limitation over recent decades, in particular for northern high-latitude 

ecosystems. Finally, we use an ensemble of global Earth System Models (ESMs) from the 

recent Coupled Model Intercomparison Project (CMIP5) to examine the impact of future 

projected temperature changes on the spatial extent of temperature limitation, and to assess 

ESM skill in estimating the sensitivity of maximum foliage cover to changes in temperature.

Our functional responses analysis of global satellite observations from the Global Inventory 

Modeling and Mapping Studies (GIMMS3g5) shows the spatial dependence of vegetation 

cover on temperature (Fig. 1), with low maximum foliage cover in colder regions (low 

SWI5) and high maximum foliage cover in warmer regions. We examined the 95th percentile 

of the distribution of annual Fmax (F95, %), which characterizes the maximum Fmax attained 

globally for a given annual SWI5. We delineated the regions where temperature strongly 

affected Fmax, and found it depended linearly on SWI5 under colder conditions (Fig. 1). The 

slope of the F95 edge quantifies the temperature sensitivity of Fmax (γF
T, % °GDD5

−1), and the 
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temperature at saturation (SWI5 = 43.2 ± 1.36 °C, mean ± st. dev.) delineates the region 

where Fmax is limited by temperature (Fig. 1, Fig. S1).

We examined changes in the slope and intercept of F95 during the GIMMS3g observational 

record (1982–2012) and found both an increasing intercept (4.16 ± 1.47 % decade−1, mean 

± 95% CI) and a declining slope (−0.10 ± 0.05 % decade−1) (Fig. 2) for F95 relative to the 

baseline SWI5 from 1982–1984. An increasing intercept indicates an increase in F95 in 

regions that were temperature limited at the start of the measurement record, with a 26.5 

± 1.9% increase in F95 in the most temperature limited regions (Fig. 2, Fig. S2). A 

decreasing slope implies that regions that were more temperature limited at the start of the 

observational record are greening faster than regions that were less temperature limited. The 

changes in the relationship between Fmax and SWI5 in temperature-limited regions are 

consistent with accelerated warming in colder regions1 and could indicate a change in 

temperature limitation over time.

We used a space for time substitution to examine whether the observed changes in Fmax in 

temperature-limited regions are consistent with observed long-term (1982–2012) changes in 

temperature. To do so, we predicted the expected change in F95 (F95 = I + γF
TSWI5), where I 

and γF
T are estimated as the intercept and slope of the relationship between F95 and SWI5 

from the start of the observational record (1982–1984), and SWI5 is temporally dynamic 

throughout the observational record. The change in F95 over time, predicted based on 

temporally-static spatial changes in F95, was statistically equivalent to the observed long-

term change (p < 0.01, Chow test, Fig. 3). Observed temperature changes implied a 

somewhat lower increase in F95 in the most temperature-limited regions (19.12 ± 2.27%, 

Fig. 3), but with a smaller decline in the F95 slope over time than observed. The concordance 

of the observed and expected change in F95 suggests that the observed long-term increase in 

Fmax is consistent with a response to long-term warming, though other factors such as CO2 

fertilization and nitrogen deposition could also play a role.

Ecosystems below the temperature limitation threshold in the relationship between F95 and 

SWI5 (Fig. 1) represented 19.87 ± 0.67% of the total vegetated area of the extra-tropical 

northern latitudes at the start of the measurement record (1982–1984), and are primarily 

located at high-latitudes and on the Tibetan Plateau (Fig. 4). Our results indicate that the 

spatial extent of temperature limitation of Fmax has declined by 16.35 ± 0.64% over the 

observational record. The release from temperature limitations was largely experienced at 

the southern edge of high-latitude ecosystems. We estimate 45% and 85% reductions in the 

temperature-limited area by 2100 for CMIP5 ensemble warming projections under 

Representative Concentration Pathway (RCP) 4.5 and RCP8.5, respectively (Fig. 4).

By focusing on the 95th percentile, the space for time substitution utilized here minimizes 

the influence of other limitations to growth19,20, thus allowing for the identification of the 

independent temperature sensitivity. In reality, however, multiple factors limit maximum 

vegetation cover in cold regions, including nutrient availability, rooting depth, permafrost 

dynamics, and soil moisture. We estimate that 44% of the vegetated land surface identified 

as temperature-limited is primarily temperature-limited, defined as being within ±10% of the 

Keenan and Riley Page 3

Nat Clim Chang. Author manuscript; available in PMC 2019 February 20.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



potential Fmax (Fig. S3, S4). This proportion suggests that the vegetation cover response to 

warming of the remaining 56% will likely be mediated by other factors. Indeed, the mean 

long-term increase in maximum vegetation cover for vegetated areas that are primarily 

temperature-limited was 1.48 ± 0.05 % decade−1 (mean ± std. error), whereas vegetated 

areas limited by both temperature and other factors had smaller increases of 0.8 ± 0.03 % 

decade−1. The predicted declines in the temperature-limited area therefore do not necessarily 

translate into a uniform increase in vegetation cover. For instance, warming also extends the 

growing season length, which may lead to earlier snow-melt, increase peak season water 

stress, and thus reduce vegetation cover22. In addition, the space for time approach 

inherently assumes a climate-vegetation equilibrium, which may lead to overestimated rates 

of change due to the inability of species range shifts to keep pace with warming23,24. Finally, 

we note that long-term satellite records are subject to uncertainty related to orbital effects 

and platform changes, though such issues are expected to be lower at high latitudes25.

The temperature sensitivity of F95 in the examined CMIP5 ESMs spanned a large range 

(Fig. 5), from a positive γF
T of 1.56 (% °GDD5

−1) in the Canadian Earth System model 

(CanESM2), to a relatively flat temperature sensitivity in the CCSM4 and NorESM models, 

which both use the CLM4 land surface model (Table S1), and are the only models to include 

an explicit nitrogen cycle. On average, the models underestimated the observed γF
T by 63.53 

± 50.8% (mean, standard deviation), with only CanESM2 giving a temperature sensitivity 

larger than that observed. The underestimated sensitivity was reflected in an overestimated 

F95 at low temperatures (Fig. 5b, Fig. S5) of 77.48 ± 41.45%. The overestimated F95 and 

underestimated γF
T in the CMIP5 models are consistent with, and shed light on, previous 

reports that vegetation cover is consistently overestimated at high latitudes in CMIP5 

models15,16 and dynamic vegetation models17. Combined with reports of a persistent 

underestimation of photosynthetic capacity at high latitudes in terrestrial biosphere 

models26, these results suggest that models of cold limited ecosystems need improvement, 

and call into question their utility for attribution8,14. Our results provide a benchmark for 

model development, though further analysis is needed to identify the responsible processes 

that govern the relationship between temperature and vegetation cover.

The greening of the Earth is a widespread phenomenon, one that models have primarily 

attributed to changes in atmospheric CO2 and climate8,11. Here we use direct observations to 

isolate the functional response of vegetation cover to temperature in temperature-limited 

regions and report an observed greening consistent with the effect of long-term temperature 

changes. The identified temperature sensitivity shows that growing season warmth is a 

dominant factor for vegetation production in cold regions, confirming previous reports of 

temperature controls on both spatial and temporal vegetation dynamics27–29. Our analysis 

also suggests a large reduction in ecosystem temperature limitation under future warming, 

though other limitations will likely play a large role in mediating the extent to which high-

latitude ecosystems green. For example, arctic tundra soils are nutrient poor and, through 

stoichiometric requirements, impose limits on potential biomass, although mineralization of 

previous frozen soil N may30 or may not31 offset those limitations. Similarly, the 

waterlogged soils of extensive northern wetlands are unsuitable for dense vegetation, 
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regardless of the temperature limitation. Other limitations include the limited ability of 

species to migrate and adapt to the distinct environmental conditions of high-latitude 

ecosystems23,24. Current models need to accurately reproduce the effect of temperature on 

vegetation cover. That said, the expected release from temperature limitation under future 

warming highlights the importance of non-temperature limitations in mediating ecosystem 

responses to future climate change.

Methods

Satellite data

We used estimates of the fraction of absorbed photosynthetically active radiation (fAPAR) 

from the Global Inventory Modelling and Mapping Studies third-generation fAPAR data 

product (GIMMS3g5), available for the period 1982–2012. The data set is provided 

biweekly at 0.083° spatial resolution and was regridded to match the spatial resolution of the 

climate data. Maximum annual fAPAR (Fmax) was calculated as the maximum recorded 

value during each year. fAPAR is closely related to the photosynthetic activity of plants, and 

therefore constitutes an indicator of the presence and productivity of live vegetation.

Climatic variables

Monthly fields of air temperature at a 0.5° spatial resolution were obtained from the Climate 

Research Unit (CRU) high-resolution gridded datasets version 3.2432. The monthly mean air 

temperature values were converted to annual values of summer warmth by summing all 

monthly temperature values above a baseline of 5 °C (SWI5). This approach is designed to 

account for changes in temperatures that effect vegetation growth, whilst minimizing 

changes in temperatures that are too low to influence vegetation. Using a base temperature 

of 0 °C (SWI0) led to the inclusion of low temperature and low fAPAR pixels that were 

relatively insensitive to temperature change, but did not affect the overall results (Fig. S6).

Breakpoint regression analysis

Three-year running mean Fmax values were binned according to their corresponding 

temperature values for 5° temperature bins19,20. For each bin, the upper and lower 95th, 90th 

and 75th percentiles were determined for each running mean block. Breakpoint regression 

was applied to the 95th percentile values (F95) using multi-phase linear regression. We 

estimated uncertainties of fit parameters through Monte Carlo simulations of zero-mean 

deviates based on the Cholesky decomposition of the covariance matrix. The regression of 

the 95th percentile of Fmax represents the maximum Fmax attainable for a given SWI5, thus 

minimizing the influence of other factors, such as precipitation or aridity, on the derived 

responses (Fig. S8). The breakpoint of the regression identifies the region where the 

vegetation–temperature relationship plateaus and vegetation ceases to be temperature-

limited. Note that the breakpoint temperature was relatively insensitive to the percentile used 

(Fig S7). We constructed time series of the slopes and intercepts of the breakpoint regression 

and determined linear trends for both variables, using changes in the Fmax - SWI5 

relationship but keeping SWI5 fixed to that experienced in the first three-year window of the 

observational record (1982–1984). As running means were used to construct the time series, 
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non-independent running mean blocks were removed before determining the strength and 

significance of trends.

CMIP5 simulations

We analyzed output from 10 Coupled Model Intercomparison Project Phase 5 (CMIP5) 

coupled carbon-climate models (Table S1) obtained from the Program for Climate Model 

Diagnosis and Inter-comparison (PCMDI) Earth System Grid (ESG) (http://pcmdi9.llnl.gov/

esgf-web-fe/)). The land components of these ESMs differ in their representations of 

vegetation types, soil properties, human disturbances, and carbon and nitrogen pools. We 

used model output of leaf area and air temperature at native spatial resolution, and converted 

to the fraction of absorbed photosynthetically active radiation using the standard conversion 

of Beer’s law, which accounts for the exponential decline in absorbed radiation with 

increasing leaf area. Values of Fmax, F95 and SWI5 were calculated through a functional 

response analysis as with the remote sensing observations. We used historical simulations 

(1980–1990) for the comparison of spatial responses of Fmax to SWI5, and projections of 

future monthly temperatures from 2010 to 2100 under two representative concentration 

pathways (RCPs), 4.5 and 8.5.

Data Availability

The data that support the findings of this study are publicly available. The satellite fAPAR 

data are hosted on NASA NEX (see instructions at http://sites.bu.edu/cliveg/datacodes/). The 

CMIP5 simulation outputs are available from the Program for Climate Model Diagnosis and 

Inter-comparison (PCMDI) Earth System Grid (ESG) (http://pcmdi9.llnl.gov/esgf-web-fe/). 

The climate data used (CRU3.24) can be downloaded from https://crudata.uea.ac.uk/cru/

data/hrg/. All code is available from the corresponding author upon request.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. The spatial relationship between temperature and vegetation cover.
Spatial relationship between the summer warmth index (SWI5, °C) and the annual maximum 

fraction of absorbed photosynthetically active radiation (Fmax, %), for the three-year period 

from 1982–1984. The 95th percentile of the distribution of Fmax (F95) in each 5°C bin 

represents the maximum attainable Fmax for a given annual SWI5 (black dashed line). A 

breakpoint regression applied to the 95th percentile approximates the sensitivity of Fmax to 

spatial changes in SWI5 (red dashed line), and delineates regions where Fmax is temperature 

limited and those that are not, as either below or above the breakpoint (vertical dashed line).
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Fig. 2 |. Changes in temperature limitation.
a, The slope of the relationship between 95th percentile (F95) of the maximum annual 

fraction of absorbed photosynthetically active radiation (Fmax) and the summer warmth 

index (SWI5). b, The intercept of the relationship between F95 and SWI5. Error bars 

represent 95% confidence intervals. The red dashed lines show fitted linear regressions, with 

slope m (a, % °SWI5
−1 yr−1; b, % yr−1) and statistical significance p.
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Fig. 3 |. Observed and predicted changes in F95.
Each solid line represents the observed F95 for a specific three-year period, starting from 

1982–1984 (black) and ending in 2010–2012 (blue). Gray lines show F95 for intermediate 

three-year periods. The red dashed line represents the predicted temporal change in F95 

based on the observed spatial sensitivity to SWI5 and observed long-term changes in SWI5.
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Fig. 4 |. Current and predicted changes in the relative spatial extent of temperature limited area 
of vegetated land.
Shaded areas in a and b represent areas where Fmax indicated temperature limitation at the 

start of the observational record (1982–1986) but did not by the corresponding year. Bright 

green areas represent the change in the observational record to 2010, and other shades 

represent projected changes based on temperature projections from the CMIP5 models under 

RCP 4.5 (a) and RCP 8.5 (b). The proportion of vegetated areas that are temperature limited 

over time is shown in c, relative to the extent of vegetated areas that were temperature 

limited at the end of the measurement record (2010–2012), for the mean (dashed lines) and 

standard error (shaded areas) of an ensemble of 10 ESMs (Table S1) from the CMIP5 

ensemble under RCP 4.5 (blue) and RCP 8.5 (green).
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Fig. 5 |. Earth System Model (ESM) estimates of the relationship between maximum vegetation 
cover and temperature.

The sensitivity (γF
T) was estimated as the slope of the relationship of the 95th percentile 

(F95) of maximum modeled fAPAR (Fmax) and the summer warmth index (SWI5) based on 

ESM modeled temperatures. The observed γF
T and intercept (horizontal bars) were estimated 

from the relationship between GIMMS3g Fmax observations and CRU monthly 

temperatures. The dashed blue line represents the mean observed value.The shaded blue area 

and model error bars represent the standard deviation about the mean. Model details are 

provided in Table S1, and individual model functional responses are presented in Fig. S5.
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