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Abstract

The thalamocortical (TC) relay neuron of the dorsoLateral Geniculate Nucleus (dLGN) has borne 

its imprecise label for many decades in spite of strong evidence that its role in visual processing 

transcends the implied simplicity of the term “relay”. The retinogeniculate synapse is the site of 

communication between a retinal ganglion cell and a TC neuron of the dLGN. Activation of 

retinal fibers in the optic tract causes reliable, rapid, and robust postsynaptic potentials that drive 

postsynaptics spikes in a TC neuron. Cortical and subcortical modulatory systems have been 

known for decades to regulate retinogeniculate transmission. The dynamic properties that the 

retinogeniculate synapse itself exhibits during and after developmental refinement further enrich 

the role of the dLGN in the transmission of the retinal signal. Here we consider the structural and 

functional substrates for retinogeniculate synaptic transmission and plasticity, and reflect on how 

the complexity of the retinogeniculate synapse imparts a novel dynamic and influential capacity to 

subcortical processing of visual information.
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More than a relay

The retinogeniculate synapse has been an invaluable workhorse for neuroscience research. In 

recent years, it has served as a powerful model for understanding the molecular and circuit-

level mechanisms that influence normal development and disease (Bishop et al., 1959; 

Sengpiel & Kind, 2002; Kastner et al., 2006; Guido, 2008; Kano & Hashimoto, 2009; Hong 

& Chen, 2011; Stephan et al., 2012; Kaplan, 2014). The ability to independently label 

Retinal Ganglion Cells (RGCs) from opposite eyes has enabled the identification of cellular 

and molecular mechanisms of axon mapping, arbor pruning, and synapse elimination that 

drive the refinement of retinotopic maps and eye-specific lamination (Wong, 1999; Luo & 

O’Leary, 2005; Huberman et al., 2008a; Feller, 2009; Kano & Hashimoto, 2009; Hong & 

Chen, 2011). In vitro, the easily accessible bundle of RGC axons in the optic nerve provides 
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a convenient means of selectively activating presynaptic inputs in studies of synaptic 

physiology and plasticity, and is also an excellent system for uncovering mechanisms of 

axon regeneration (Guido, 2008; Hong & Chen, 2011; Benowitz et al., 2017). In vivo, the 

retinogeniculate synapse has been a prominent model system for the study of sub-cortical 

visual processing. Numerous studies have capitalized on the ease of manipulating visual 

stimulation, combined with the ability to simultaneously monitor the activity patterns of 

inputs and outputs of the thalamus to reliably demonstrate that the transfer of information 

from the retina to the visual cortex is the major function of the retinogeniculate synapse 

(Sherman, 2005; Usrey & Alitto, 2015; Weyand, 2016).

Despite the tenacity of the term “relay” to describe the function of the dLGN, the 

retinogeniculate synapse does not simply transfer a copy of RGC activity patterns to the 

cortex. Over the past few decades, a number of retinogeniculate attributes have been shown 

to play a role in modifying visual information before conveying it to the cortex (Blitz et al., 

2004; Sherman, 2007; Usrey & Alitto, 2015; Weyand, 2016). Simultaneous recording of the 

firing patterns of RGC inputs and TC target neurons in vivo has shown that the reliability of 

action potential generation in TC neurons depends on the local activity context, such as 

neuromodulatory signaling or the membrane potential. These factors can dictate or modulate 

the firing pattern (“tonic” or “burst”) of a TC neuron (McCormick & Bal, 1994; Usrey et al., 

1998; Sherman & Guillery, 2002; Wang et al., 2007). In some cases, a TC neuron is much 

more likely to generate a response to the second of a pair of visually-driven potentials 

arriving in quick succession (separated by less than 30 ms, Mastronarde, 1987; von Krosigk 

et al., 1993; Usrey et al., 1998; Levine & Cleland, 2001; Rowe & Fischer, 2001; Carandini et 

al., 2007; Weyand, 2007; Sincich et al., 2007, 2009; Alitto et al., 2011). This integrative 

function increases the amount of information encoded in thalamic spiking (Wang et al., 

2010). In other cases, a single RGC impulse can result in a post-synaptic burst of multiple 

action potentials (Usrey et al., 1998; Blitz & Regehr, 2003).

Recent work is revealing new receptive field complexity and plasticity in the dLGN that 

further demonstrates significant thalamic processing of visual information en route to the 

cortex, at least in some species. Stimulus orientation selectivity is one salient example of a 

complex feature encoded in subpopulations of dLGN neurons in a variety of species: mouse 

(Marshel et al., 2012; Piscopo et al., 2013; Scholl et al., 2013; Zhao et al., 2013) and rabbit 

(Levick et al., 2010; Hei et al., 2014), with weaker orientation or direction bias occurring in 

the cat (Hubel & Wiesel, 1961; Daniels et al., 1977; Levick & Thibos, 1980; Vidyasagar & 

Urbas, 1982; Soodak et al., 1987; Shou & Leventhal, 1989; Thompson et al., 1994), squirrel 

(Zaltsman et al., 2015), and primate (Lee et al., 1979; Smith et al., 1990; Cheong et al., 

2013). Complex feature selectivity persists in TC neurons after inactivation of the primary 

visual cortex, suggesting that the dLGN may compute orientation or direction selectivity 

rather than inherit it from cortical feedback (cat Vidyasagar & Urbas, 1982; mouse Zhao et 

al., 2013; Scholl et al., 2013). Furthermore, cat TC neurons have a higher stimulus contrast 

sensitivity than their individual inputs, suggesting TC neurons can functionally integrate 

information from multiple RGC inputs (Rathbun et al., 2016). The presence of binocularly 

innervated dLGN neurons in mice, cats, and primates further supports the possibility of 

convergence of multiple RGCs onto single geniculate neurons in mice, cat, and primate 

dLGN (Sanderson et al., 1971; Howarth et al., 2014; Zeater et al., 2015; Rompani et al., 
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2017). Here, we explore synaptic mechanisms and structural attributes that could support the 

diversity of features and functions now emerging in studies of the dLGN. In this review, we 

describe the structural properties of RGC axons and TC neurons, together with their 

biophysical features and plasticity mechanisms. These properties may combine to impart 

novel and adaptive functionality to the dLGN, and to dynamically regulate information flow 

between retina and cortex.

Retinogeniculate synaptic structure

To appreciate the functional complexity in retinogeniculate processing, we first describe the 

underlying synaptic structure. The architecture of the retinogeniculate synapse is conserved 

across species. Glutamate is the excitatory neurotransmitter packed into numerous round 

vesicles contained in large synaptic terminals along the axon (Montero & Wenthold, 1989). 

A single retinal axon terminal can span ~1–4 microns in diameter and contain multiple 

spatially distinct neurotransmitter release sites (cat and mouse studies: Famiglietti & Peters, 

1972; Rafols & Valverde, 1973; Sur & Sherman, 1982; Hamos et al., 1987; Robson, 1993; 

Bickford et al., 2010; Budisantoso et al., 2012; Morgan et al., 2016). RGC boutons contact a 

TC neuron near its cell body, synapsing directly onto the dendritic shaft or dendritic 

appendages that protrude from the proximal shaft or primary dendritic branch points (Rafols 

& Valverde, 1973; Robson & Mason, 1979; Wilson et al., 1984; Hamos et al., 1987; 

Bickford et al., 2010; Morgan et al., 2016). Retinal inputs account for only 5–10% of a TC 

neuron’s synaptic input, whereas cortical feedback projections from Layer 6 occupy the 

distal dendrites, providing as much as 50% of synaptic input (Wilson et al., 1984; Montero, 

1991; Van Horn et al., 2000). Nonetheless, the proximal position of retinogeniculate 

synapses along the dendrite, their synaptic structure with multiple release sites, and their 

large number of synaptic contacts drives powerful and reliable transmission that has earned 

the retinal input the moniker of “driver” to all other inputs’ “modulator” (Guillery & 

Sherman, 2002).

The fine details of retinogeniculate connectivity reveal potential heterogeneity of circuit 

organization and, thereby, of function. A RGC axon contacts a TC neuron with as many as 

59 terminals in cat or mouse (Fig. 1A–1C; Hamos et al., 1987; Robson, 1993; Morgan et al., 

2016). The morphology of these numerous synaptic contacts between a single RGC axon 

and its target TC neuron can range from the simple to the complex (Jones & Powell, 1969; 

Famiglietti & Peters, 1972; Hammer et al., 2015; for finer categorization, see Lund & 

Cunningham, 1972; Robson & Mason, 1979; Morgan et al., 2016). Simple retinogeniculate 

contacts consist of one small or large crenulated bouton contacting a dendrite or dendritic 

appendage. Complex contacts comprise a glomerular structure containing multiple boutons 

from retinal, inhibitory, and neuromodulatory inputs (Robson & Mason, 1979; Koch, 1985; 

Sherman & Guillery, 1996; Sherman, 2004). Although it is not known whether differences in 

bouton morphology correlate with specializations for retinogeniculate information transfer, 

work on cerebellar parallel fibers shows that bouton size can predict sensitivity to 

neuromodulation, and induction of LTP or LTD can induce plasticity in the size of 

hippocampal presynaptic boutons (Toni et al., 1999; Becker et al., 2008; Zhang & Linden, 

2009). Furthermore, the morphology of synaptic contacts is optimized to the requirements of 

sensory transmission in the retina, inner ear, and central auditory synapses (Taschenberger et 
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al., 2002; Matthews & Fuchs, 2010; Freche et al., 2011; Graydon et al., 2014). It is therefore 

likely that the diversity of retinogeniculate contact morphologies reflects differences in their 

contribution to transmission. Indeed, different TC neuron types in cats exhibit biases in 

presynaptic morphology. Cat RGCs and TC neurons are distinguished into three categories 

(X, Y, W) based on the properties of their responses to visual stimuli, including the size of 

the receptive field and the degree of linearity of spatial summation, as well as morphological 

markers. The X and Y classifications refer to relatively homogeneous populations (and are 

often compared to primate M and P pathways), whereas the W (compared to K in primates) 

encompasses a more diverse set of cells with rarely-encountered physiological responses 

(Wilson et al., 1976; Fukuda et al., 1984; Felch & Van Hooser, 2012). Simple contacts 

dominate retinal input onto cat Y cells, whereas X cell dendritic appendages preferentially 

participate in complex synaptic structures (Robson & Mason, 1979; Hamos et al., 1985; 

Koch, 1985; Sherman & Guillery, 1996; Sherman, 2004). Similar distinctions among TC 

neurons have been observed in the mice by morphological analysis, but have not been 

associated with distinct patterns of synaptic structures nor delineated by physiology (Krahe 

et al., 2011; El-Danaf et al., 2015; Sriram et al., 2016).

In addition to potential functional differences reflected in the morphology of presynaptic 

geniculate boutons, the close proximity of clustered multisynaptic boutons in the mature 

synapse makes possible novel interactions between glutamate transients originating in 

separate RGC inputs. Large simple boutons in the rat contain an average of 27 independent 

release sites, whereas each of the boutons in a glomerulus has approximately 6 (Hamos et 

al., 1987; Budisantoso et al., 2012; Hammer et al., 2015). Notably, multiple RGCs may 

contribute to the same cluster or glomerulus of boutons (Hammer et al., 2015; Morgan et al., 

2016). At other CNS synapses, glia ensheath individual boutons and interdigitate into the 

synaptic cleft, preventing glutamate from diffusing, or “spilling over,” to neighboring 

boutons, in part through the action of glutamate transporters, which clear glutamate from the 

extracellular space (Diamond & Jahr, 1997; Danbolt, 2001; Tzingounis & Wadiche, 2007; 

Hauser et al., 2013; Rimmele & Rosenberg, 2016). In contrast, glia do not interdigitate into 

the cleft of single RGC boutons nor within geniculate glomeruli, making the 

retinogeniculate connection conducive to glutamate spillover within and between individual 

boutons (Famiglietti & Peters, 1972; Robson & Mason, 1979; Winfield et al., 1980; Mason, 

1982; Bickford et al., 2010). Although interbouton spillover has not been experimentally 

assessed in the mature dLGN, a simulation that demonstrated the likelihood of spillover 

between distant synapses within the same bouton also implies the possibility of spillover of 

glutamate between closely spaced boutons. Fig. 1D shows an example of two such close 

retinogeniculate boutons along one TC neuron dendrite, highlighting that glutamate released 

from one bouton can diffuse to postsynaptic release sites of the neighboring bouton 

(Budisantoso et al., 2012). At a developmental phase when boutons are less clustered (Sur et 

al., 1984; Hong et al., 2014) and glomeruli have not yet formed, retinogeniculate 

transmission exhibits extensive gluta-mate spillover between neighboring boutons. In fact, 

glutamate from the bouton of one RGC axon can spill over to the synaptic cleft of a 

neighboring RGC axon before eye opening (Hauser et al., 2014). Glutamate spillover can be 

distinguished from direct retinogeniculate synaptic activation by the slower kinetics of the α
−amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated 
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Excitatory Postsynaptic Current (EPSC) and increased sensitivity to γ−DGG (gray traces), a 

low affinity AMPAR antagonist (Fig. 1E). These characteristics indicate that the receptors 

mediating the spillover current are exposed to a lower glutamate concentration than those 

mediating the direct EPSC. Glutamate spillover can therefore diminish synaptic specificity, 

but also result in complex and graded integration of information transmitted from different 

RGC inputs. This mechanism of transmission may be particularly relevant for high-

frequency presynaptic activity (RGCs can reach up to 500 Hz, Nirenberg & Meister, 1997), 

which would promote the pooling and spillover of glutamate. Therefore, the intricate 

morphology of retinogeniculate contacts presents the possibility for a diversity of modes of 

retinogeniculate information transfer, which could vary as a function of preceding sensory or 

modulatory activity.

Short-term plasticity

The mature retinogeniculate synapse boasts multiple bouton contacts, each with many 

release sites, leading to a high probability of release (Yeow & Peterson, 1991; Chen & 

Regehr, 2000; Budisantoso et al., 2012). Combined with the proximity of retinal contacts to 

the cell body that minimizes potential dendritic filtering of the synaptic signal, these 

structural features give rise to an EPSC characterized by rapid kinetics (time constant of 

decay ~2 ms) and large amplitudes in vitro (Chen & Regehr, 2000; example recording in 

Fig. 2A, p26–32). Studies in slices have identified several pre and post-synaptic mechanisms 

of short-term plasticity that modulate these EPSCs to further shape transmission based on 

the activity of the RGC input itself as well as other retinal and nonretinal inputs to that 

neuron. In shaping retinogeniculate transmission, these short-term plasticity mechanisms 

provide the means to dynamically modify the information transmitted from RGC to TC 

neuron output.

A prominent feature of retinogeniculate transmission studied in vitro is short-term 

depression: the second of two impulses separated by a short interval generates a weaker 

response than the first. Both presynaptic mechanisms involving vesicle depletion and 

postsynaptic mechanisms including AMPAR desensitization and N−methyl-D-aspartate 

receptor (NMDAR) saturation contribute to this plasticity (Chen et al., 2002; Blitz et al., 

2004; Budisantoso et al., 2012). In contrast to the short-term depression observed in vitro in 

mice, extracellular recordings of TC neuron activity in vivo in cats and primates consistently 

show paired-stimulus enhancement, such that the second of two retinal impulses separated 

by a brief (<30 ms) interval is more effective at driving a postsynaptic action potential 

(Mastronarde, 1987; Usrey et al., 1998; Levine & Cleland, 2001; Rowe & Fischer, 2001; 

Carandini et al., 2007; Rathbun et al., 2007; Sincich et al., 2007, 2009). In part, this 

contradiction is due to the dependence of short-term depression on the recent history of 

activity at the synapse. Activation of the retinogeniculate synapse in slice usually follows a 

period of quiescence, whereas baseline spontaneous activity maintains synaptic transmission 

in a chronically depressed state in vivo (Levick & Williams, 1964; Stoelzel et al., 2015). A 

train of spikes preceding optic tract stimulation in vitro attenuates the degree of synaptic 

depression (Seeburg et al., 2004; Augustinaite & Heggelund, 2007; Liu & Chen, 2008). 

Further, neurotransmitter inputs from the brainstem and inhibitory neurons can modulate 

retinogeniculate transmission in a context-dependent manner in vivo. To understand the 
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relationship between in vitro and in vivo manifestations of short-term plasticity, we review 

the prominent sources of modulation of retinogeniculate transmission.

Presynaptic modulation

Retinogeniculate transmission is known to be modulated presynaptically by a number of 

neurotransmitter receptors, including GABAB, serotonin 5HT1B (Chen & Regehr, 2003; 

Seeburg et al., 2004), as well as adenosine A1 (Yang et al., 2014) and metabotropic 

glutamate receptors (Hauser et al., 2013; Lam & Sherman, 2013). Activation of the GABAB 

or 5-HT1B receptors strongly depresses neurotransmitter release and relieves short-term 

depression by decreasing the entry of calcium into the presynaptic terminal (see Fig. 2B; 

Chen & Regehr, 2003; Seeburg et al., 2004). While these modulators decrease the strength 

of the retinogeniculate EPSC, they also alter the pattern of action potentials transmitted from 

the pre-to post-synaptic neuron. For example, activation of pre-synaptic 5-HT1B receptors 

leads to preferential transmission of high-frequency over lowfrequency activity, essentially 

acting as a high-pass filter (Seeburg et al., 2004). In some cases, presynaptic modulation can 

be additive. The combined activation of 5HT1B and adenosine A1 receptors, can convert 

presynaptic depression into facilitation (Yang et al., 2014). Therefore, the activity of 

neuromodulatory inputs in vivo can dynamically shape retinogeniculate information transfer 

by modulating the degree of short-term plasticity. It is not known whether the expression of 

presynaptic receptors differs between RGC types or RGC bouton morphologies. However, 

any such differences would add an additional layer of modularity to retinogeniculate 

transmission.

Postsynaptic modulation

In addition to presynaptic depression, postsynaptic glutamate receptor properties also 

contribute to short-term depression and shape the efficacy of retinogeniculate transmission. 

Postsynaptic AMPA and NMDA receptors both exhibit short-term depression, and perform 

complementary functions in retinogeniculate transmission.

AMPAR channel gating properties and the high density of their expression contribute to the 

large, rapid activation, and decay kinetics of the retinogeniculate EPSC (Tarusawa et al., 

2009). Because AMPARs readily conduct at negative potentials, they are effective at 

initiating postsynaptic spiking, even from a relatively hyperpolarized membrane potential 

(Blitz & Regehr, 2003; Augustinaite & Heggelund, 2007; Liu & Chen, 2008). However, 

AMPARs desensitize upon exposure to glutamate and recover with a time constant of ~100 

ms (Chen et al., 2002; Kielland & Heggelund, 2002). These properties lead to short-term 

depression of the AMPAR EPSC. Therefore, AMPARs contribute to the onset of an action 

potential train transmitted from a RGC, initiating robust short-latency spikes during low 

frequency activity, but cannot sustain the robust transmission of high-frequency 

retinogeniculate activity (Blitz & Regehr, 2003). Fig. 2C demonstrates that pharmacological 

blockade of AMPAR with NBQX reduces the initial spikes in response to a stimulus train 

(Turner et al., 1994; Augustinaite & Heggelund, 2007).

NMDA receptor-mediated currents have distinct kinetics and voltage dependence from 

AMPAR (Fig. 3A and 3B). At the retinogeniculate synapse, NMDARs exhibit short-term 
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depression due to their high affinity to glutamate and receptor saturation (Traynelis et al., 

2010). Recovery from NMDAR saturation occurs more quickly than from AMPAR 

desensitization (Chen et al., 2002; Kielland & Heggelund, 2002). TC neuron NMDARs 

experience incomplete Mg2+ block at hyperpolarized potentials, and therefore conduct 

significant current at negative potentials (Liu & Chen, 2008). Fig. 3B and 3C illustrates the 

contribution of NMDAR to transmission over development. NMDARs conduct current for 

many tens of milliseconds during a prolonged decay, which permits the summation of 

closely timed EPSCs, especially within the range of interstimulus intervals (ISIs) that exhibit 

paired-pulse enhancement in vivo, and supports multiple TC neuron spikes even in “tonic” 

mode (Chen et al., 2002; Blitz & Regehr, 2003; Augustinaite & Heggelund, 2007; Liu & 

Chen, 2008; Budisantoso et al., 2012). Blockade of NMDAR dramatically reduces 

retinogeniculate transmission in vivo (Sillito et al., 1990; Kwon et al., 1991), and NMDAR 

current summation in vitro can even drive action potential firing in the presence of AMPAR 

blockers, though with less temporal precision (Fig. 2C; Chen et al., 2002; Blitz & Regehr, 

2003; Augustinaite & Heggelund, 2007; Budisantoso et al., 2012). In fact, the NMDAR 

component of the first EPSC may sufficiently depolarize a TC neuron to spike threshold, 

such that a small or depressed AMPAR current can shorten the latency to first spike 

(Kielland & Heggelund, 2002; Augustinaite & Heggelund, 2007; Budisantoso et al., 2012). 

Therefore, summation of NMDAR currents enhances the probability of TC neuron spiking 

in response to the second and later RGC action potentials during a train. Together with 

modulation and postsynaptic integration (Carandini et al., 2007), the properties of NMDA 

and AMPA receptor currents can reconcile the robust short-term depression seen in vitro 
with paired-pulse enhancement observed in vivo.

An additional factor that could contribute to differences in in vitro and in vivo short-term 

plasticity is the expression of calcium-permeable AMPARs. The retinogeniculate synapse 

differs from other synapses in that the expression of calcium-permeable AMPARs increases 

over development (see Fig. 4A and 4B; Budisantoso et al., 2012; Hauser et al., 2014; Louros 

et al., 2014; compare to Kumar et al., 2002; Soto et al., 2007). Calcium permeable AMPARs 

(those lacking the GluA2 subunit) exhibit stronger desensitization-mediated paired pulse 

depression (Budisantoso et al., 2012). However, depolarization-mediated reduction of 

polyamine block may partly rescue this effect (Rozov et al., 1998; Soto et al., 2007), 

increasing the contribution from AMPARs to transmission later in a train of high frequency 

activity.

The in vitro retinogeniculate preparation has permitted the identification of mechanisms 

regulating retinogeniculate synaptic transmission at an unmatched resolution. The synaptic 

mechanisms discussed above are part of a larger array of factors that affect retinogeniculate 

information transfer, including circuit elements that influence postsynaptic integration in the 

TC neuron: local and extrageniculate GABAergic circuits, reciprocal connectivity with the 

cortex, and brainstem modulatory inputs (reviewed in Sherman & Guillery, 2002). Together, 

these synaptic and circuit mechanisms impart the dynamic features that regulate 

transmission of information at the retinogeniculate synapse. Interestingly, the paired-

stimulus enhancement of retinogeniculate transmission in vivo acts not only to increase the 

signal-to-noise of retino-geniculo-cortical information transfer, but also encode emergent 

features in the spike code (Sincich et al., 2009; Rathbun et al., 2010; Wang et al., 2010). 
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Thus these synaptic mechanisms may also impart novel functionality at the level of dLGN. 

Further, as these mechanisms can rapidly alter the contribution of a particular retinal input to 

postsynaptic spiking, they may regulate the contribution of strong versus weak RGC inputs 

to visual processing (discussed below).

Neurotransmission before eye-opening

The distinct features of the immature retinogeniculate synapse suggest that the immature 

dLGN carries out a different set of computations on incoming retinal information than the 

mature dLGN. Many of the modulatory circuits that shape transmission in the adult dLGN 

begin to innervate TC neurons shortly before eye-opening: corticogeniculate innervation is 

not complete in mice until p14 (Jacobs et al., 2007; Seabrook et al., 2013; Grant et al., 

2016), and cholinergic innervation develops over several postnatal weeks in cats (Carden et 

al., 2000). GABAergic interneurons continue to be recruited into the dLGN at the end of the 

first postnatal week in mice, and GABAergic innervation in rodents and carnivores occurs 

gradually (Shatz and Kirkwood, 1984; Ramoa & McCormick, 1994a; Pirchio et al., 1997; 

Ziburkus et al., 2003; Golding et al., 2014). In addition, presynaptic ultrastructural 

morphology and TC dendritic arbor complexity are immature at eye-opening (Bickford et 

al., 2010). Therefore, retinogeniculate transmission before eye-opening occurs in a very 

different environment than after circuits have matured.

Whereas mature TC neurons receive and integrate information from one or several strong 

retinal inputs that can reach several nA in amplitude, numerous weak inputs, measuring on 

average ~40 pA in amplitude (peak AMPAR EPSC) innervate a TC neuron before eye 

opening (in vitro in mice; Hooks and Chen, 2006). Remarkably, retinogeniculate 

transmission to cortex does occur before input refinement: both the spontaneous patterns of 

activity (retinal waves) that prominently feature in the developing retina, and visually-

evoked stimuli detectable through the closed eyelid influence the activity of the visual cortex 

(Katz & Shatz, 1996; Mooney et al., 1996; Feller, 1999; Akerman et al., 2002; Hanganu et 

al., 2006; Ackman et al., 2012). In slice, the synaptic charge transfer needed to drive TC 

neuron spiking before eye-opening is relatively small: an AMPAR EPSC with a peak 

amplitude of 120 pA is adequate (Liu & Chen, 2008). The coincident activation of a subset 

of the dozen or more converging RGC inputs, perhaps relying on synchronous activity that 

dominates retinal activity during this period of development, can achieve this amplitude 

(Wong et al., 1993; Wong, 1999; Butts & Rokhsar, 2001; Feller, 2009).

Multiple mechanisms contribute to the efficacy of neurotrans-mission at the immature weak 

retinogeniculate synapse. A study using the slow calcium chelator, EGTA-AM, suggested 

that the distance between the presynaptic release machinery and calcium channels at retinal 

terminals is greater at immature presynaptic specializations, resulting in delayed or 

asynchronous release (Borst & Sakmann, 1996; Hauser et al., 2014). Additionally, the 

immature nervous system produces a slower action potential waveform (Taschenberger & 

von Gersdorff, 2000; Murphy & du Lac, 2001) and a lower density of glutamate transporters 

in surrounding astrocytes (Thomas et al., 2011). These properties of the immature synapse 

lead to the prolonged exposure of postsynaptic receptors to glutamate, promoting the 

integration of retinal EPSCs over a longer time scale than after maturation.
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Several postsynaptic mechanisms also improve the integration of weak RGC inputs at young 

ages. The temporal window for postsynaptic summation is much greater before eye opening 

(Liu & Chen, 2008). This is due in part to the higher input resistance in immature neurons 

(Ramoa & McCormick, 1994b; Macleod et al., 1997; Pirchio et al., 1997), as well as 

enhanced conduction through NMDA receptors at negative potentials because of a greater 

contribution of both NR2B as well as NR2C/D subunits at young synapses (Ramoa & 

McCormick, 1994a; Liu & Chen, 2008). These receptors exhibit slower decay kinetics and a 

lower sensitivity to magnesium block (compare between ages in Fig. 3), and their 

contribution declines over development in an activity-regulated manner (Ramoa & Prusky, 

1997; Chen & Regehr, 2000; Liu & Chen, 2008).

AMPAR current amplitudes at the immature retinogeniculate synapse are much smaller than 

later in life (Figs. 2A and 3B). In fact, a substantial fraction (22%) of immature RGC inputs 

are “silent” (lacking detectable AMPAR currents; Isaac et al., 1995; Liao et al., 1995; Chen 

& Regehr, 2000). Transmission before eye opening therefore seems to rely almost entirely 

on NMDAR transmission, with AMPARs influencing the latency to spike (Liu & Chen, 

2008). Finally, immature neurons also exhibit calcium plateau potentials (Jaubert-Miazza et 

al., 2005; Lo et al., 2013), and more depolarized resting membrane potentials that are closer 

to firing threshold (Ramoa & McCormick, 1994b; Macleod et al., 1997; Pirchio et al., 1997), 

increasing the efficacy of individual inputs.

In summary, the developing retinogeniculate synapse exhibits numerous adaptations that 

permit it to integrate and transfer visual signals to cortex even while it undergoes dramatic 

synaptic rearrangement. As these signals arise from the summation of multiple weak 

convergent RGC inputs, the computations that the immature dLGN performs, and therefore 

its role in visual processing, is substantially different from that of the mature dLGN. In 

addition to a role in conveying visual information, retinogeniculate transmission is important 

for cortical map formation (Huberman et al., 2008b; Cang & Feldheim, 2013; Owens et al., 

2015), though its precise computational role is not yet understood.

Retinogeniculate connectivity

Developmental refinement of retinogeniculate connectivity

Retinogeniculate refinement is thought to lead to the maturation of receptive field properties 

in the dLGN. Before eye opening, RGC axons from the two eyes segregate into eye-specific 

layers: segments of the axon arbor that occupy the inappropriate layer are pruned, while the 

appropriately positioned portion of the arbor becomes more elaborate in a number of species 

(Robson, 1981; Mason, 1982; Sretavan & Shatz, 1984, 1986; Campbell & Shatz, 1992; 

Garraghty & Sur, 1993; Dhande et al., 2011; Hong et al., 2014). In vitro studies of the dLGN 

in rodents show that each TC neuron receives weak inputs from more than a dozen RGCs. 

Some of these inputs are subsequently pruned while others strengthen to become dominant 

drivers of postsynaptic activity (reviewed in Guido, 2008; Huberman et al., 2008a; Hong & 

Chen, 2011; Thompson et al., 2017). This refinement occurs over several weeks following 

eye opening in mice. The earliest phases depend on spontaneous input from the retina, while 

visual experience maintains the mature configuration and modifies connectivity via feedback 

from the cortex during a critical period (Hooks & Chen, 2006; Thompson et al., 2016).
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The robust refinement of retinogeniculate connectivity demonstrated in vitro in mice 

corresponds temporally to the developmental transformation of initially broad, irregularly-

shaped or temporally imprecise receptive fields to smaller, sharper, or temporally precise 

ones that closely match the receptive field of the dominant retinal inputs in vivo (cat: Wiesel 

& Hubel, 1963; Daniels et al., 1978; Tootle & Friedlander, 1989; Gary-Bobo et al., 1995; 

Cai et al., 1997; Ferret: Tavazoie & Reid, 2000, Akerman et al., 2002, Davis et al., 2015; 

primate: Blakemore & Vital-durand, 1985; mouse in vitro: Chen & Regehr, 2000; Jaubert-

Miazza et al., 2005). Surprisingly, there is a disconnect between structure and function—

studies in cats, mice, and primates fail to show large-scale pruning of the axon arbor during 

this later window of development (Sur et al., 1984, 1987; Lachica & Casagrande, 1988; 

Hong et al., 2014). A recent study that examined individually reconstructed axon arbors of a 

subtype of mouse RGCs, the BD-RGC (ON–OFF direction-selective RGC, Kim et al., 

2010), found that their size and branching complexity remain stable in the 2–3 weeks 

following eye opening. Instead, during the period of robust functional refinement, changes 

occur in bouton size and distribution along the arbor structure (Hong et al., 2014). Before 

eye-opening, boutons are distributed broadly along the terminal arbor in mice, but gradually 

form tight clusters over the later window of development (for examples of mouse and cat 

RGC axon bouton clustering, see Fig. 1B and 1C). This development suggests that an 

immature axon makes transient contacts with a large number of potential postsynaptic 

targets, but redistributes its inputs onto a few targets during the period of activity-dependent 

refinement. Final pruning of the arbor skeleton, however, does not occur until well after the 

end of the geniculate and cortical critical periods (Hong et al., 2014). These findings are 

consistent with observations in cat and primate studies of the complexity of mature RGC 

axon morphology (Fig. 1A), with multiple segments that can branch off the primary axon 

within the optic tract (Sur & Sherman, 1982; Hamos et al., 1987; Sur et al., 1987; Garraghty 

et al., 1988; Dhande et al., 2011; Hong et al., 2014), although the arbors may be more 

restricted in the primate dLGN (Glees & Le Gros Clark, 1941; Lachica & Casagrande, 1988; 

Michael, 1988; Conley & Fitzpatrick, 1989). In cat, one RGC axon arbor spans the territory 

of far more postsynaptic neurons than it contacts (Hamos et al., 1987). Reduction of the X-

RGC axon arbor occurs between 4 and 12 weeks postnatal, after the peak of ocular 

dominance plasticity (Hubel & Wiesel, 1970; Sur et al., 1984).

Therefore, while retinogeniculate development yields a circuit with appreciable functional 

specificity, the anatomical correlates of this process suggests latent complexity in the mature 

system. The breadth of the RGC axon arbor, which may impart the potential to synapse onto 

new TC partners even in the adult, together with short-term plasticity mechanisms that 

modulate the efficacy of existing contacts, provide the scaffold for dynamic computation 

beyond the relay of retinal firing patterns to the cortex (Alonso et al., 2006; Martinez et al., 

2014; Usrey & Alitto, 2015).

Convergence at the retinogeniculate synapse

Retinogeniculate convergence (and divergence) add complexity to visual processing in the 

dLGN. The simplest circuit, where 1 RGC contacts 1 TC neuron, is most consistent with the 

concept of a thalamic “relay” (Glees & Le Gros Clark, 1941; Sherman & Guillery, 1996). 

More complex circuits with converging RGC inputs and/or diverging single RGC axons onto 
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multiple target TC neurons increase the likelihood of the emergence of novel visual features 

or receptive field properties (Dan et al., 1998; Alonso et al., 2006; Koepsell et al., 2009; 

Usrey & Alitto, 2015; Sherman, 2016; Weyand, 2016). For these reasons, studies 

quantifying connectivity, and in particular, the degree of retinogeniculate convergence, is an 

active area of research.

A tour-de-force serial electron microscopy (EM) reconstruction of the synaptic contacts of 

one branch of an X-type retinal axon in the cat dLGN demonstrated that a RGC axon makes 

connections selectively rather than randomly. The reconstructed portion of the axon 

(reproduced in Fig. 1A) innervated three X-cells and one Y-cell, and its inputs accounted for 

as much as 33, 49, and 100% of total innervation to the X-cells, and as little as <6% to the 

Y-cell. This study concluded simultaneously that a TC neuron can receive inputs from 

multiple RGCs (convergence), and that some of those inputs can also contact other TC 

neurons (divergence/multiplexing; Hamos et al., 1987). However, the single X-cell that 

received all of its inputs from the labeled axon remains the best-recognized result, serving as 

exemplary anatomical evidence for low retinogeniculate convergence. In contrast, Robson 

(1993) estimated that cat Y-cells receive upwards of 10 inputs per cell, suggesting that 

convergence varies depending on cell type.

Recent studies using new anatomical methods in p30 mice, however, came to a conclusion 

that counters the general view of low convergence. Morgan and colleagues used an approach 

that combines serial section EM with circuit tracing, to identify the presynaptic RGC axons 

that connect to reconstructed postsynaptic TC neurons in the dLGN. They observed at least 

40 RGC axon segments contacting one of these TC neurons (Morgan et al., 2016). Many 

axons also promiscuously diverged to innervate numerous other TC neurons. Hammer and 

colleagues reached a number closer to 10 inputs per cell from observations of bouton 

clustering of multi-color fluorescently labeled RGC axons (Brainbow labeling) in the mouse 

LGN (Hammer et al., 2015). However, these studies were not able to trace the axon 

segments to the primary axon, raising the possibility that they were overestimating the 

number of inputs to a given TC neuron. Overcoming this limitation, and despite low 

efficiency of rabies tracing, Rompani and colleagues showed that 1–36 RGCs innervate 

monocular neurons, and up to 91 RGCs from both eyes converge onto binocularly 

innervated neurons in the mouse dLGN. The three anatomical studies made no distinctions 

between X- and Y-cells, but the rabies tracing identified three different patterns of 

convergence in the binocular dLGN region (Rompani et al., 2017). Importantly, these studies 

cannot determine whether all the identified contacts are functional; many convergent inputs 

could be nonfunctional remnants of refinement, as final pruning of the axon arbor occurs 

between p30 and p60 (Hong et al., 2014). Nonetheless, these independent studies using 

disparate anatomical methods demonstrate that tens of RGCs may converge onto mature 

mouse TC neurons.

To date, most functional studies have yielded a more conservative estimate of convergence 

than the ultrastructural literature. In the rodent slice prep, estimates of the number of afferent 

inputs obtained by varying the intensity of optic tract stimulation yield numbers ranging 

from 1 to 5 (Chen & Regehr, 2000; Jaubert-Miazza et al., 2005; Ziburkus & Guido, 2006; 

Hooks & Chen, 2007; Chung et al., 2013; Lee et al., 2014; Dilger et al., 2015). However, 
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this approach likely underestimates convergence due to the severing of axons in slice. It also 

averages across the population of TC neurons accessible with this method, with no 

distinction between TC neuron sub-types with different input convergence that may exist in 

the mouse dLGN (Krahe et al., 2011).

Estimates of retinogeniculate connectivity from carnivores and nonhuman primates have 

largely utilized recordings that assess the correlation of spiking activity of RGC-TC neuron 

pairs in vivo (Cleland et al., 1971; Levick et al., 1972; Kaplan & Shapley, 1984; 

Mastronarde, 1987, 1992; Usrey et al., 1998; Rowe & Fischer, 2001; Carandini et al., 2007; 

Sincich et al., 2007; Rathbun et al., 2010). Many of these experiments show that a geniculate 

X-cell (cat) or M or P cell (primate) receives at least one dominant input that reliably drives 

EPSCs preceding all or most of a TC neuron’s spikes (Cleland et al., 1971; Cleland & Lee, 

1985; Soodak et al., 1987; Sincich et al., 2007). Others, however (especially those focusing 

on Y cells in cats), show that the contribution from individual RGCs exhibits greater 

variability, and the activity of a single retinal input rarely accounts for the entirety of the 

activity of its TC neuron partner (Hubel & Wiesel, 1961; Cleland & Levick, 1971; Cleland 

et al., 1971; Levick et al., 1972; Mastronarde, 1992). Interestingly, one study using paired 

recordings across both X- and Y-cells yielded examples of RGCs that drove as few as ~1% 

to as many as 82% of a TC neuron’s action potentials (Usrey et al., 1999); similar results 

later emerged in the Y pathway (Yeh et al., 2009; Rathbun et al., 2016; considered in detail 

in; Weyand, 2016). Furthermore, several studies corroborate anatomical observations of 

divergence, such that neurons with most closely matching receptive fields exhibit the 

greatest correlation among their firing patterns (Alonso et al., 1996; Usrey et al., 1998).

The variability in the contribution of a single RGC to postsynaptic spiking in cat dLGN is 

consistent with anatomical studies, if the number of contacts between a single RGC axon 

and TC cell relates to the functional strength of the individual input (Hamos et al., 1987). 

The findings in cat are also consistent with in vitro functional data from mice. Even in adult 

mice (p60), the distribution of single RGC input amplitudes ranges from a tens of pA to 

several nA in strength (Fig. 4D; Hooks & Chen, 2008; Hong et al., 2014; Thompson et al., 

2016). The fact that weak convergent inputs persist into adulthood, in both cats and mice, 

suggest that they have relevance for retinogeniculate function (Alonso et al., 1996; Dan et 

al., 1998; Usrey et al., 1999).

Taken together, the retinogeniculate circuit exhibits organization that is set up to actively 

tune, select, or elaborate information that is being conveyed from the retina to the cortex, 

suggesting that the dLGN participates in complex processing of visual information 

(Sherman, 2016). While similarities across species support this view, insight into the 

function of dLGN should come from further elucidation of the differences between mice, cat 

and primates.

Retinogeniculate plasticity

In addition to short-term plasticity, the retinogeniculate circuit exhibits long-term plasticity 

of synaptic weights. The finding that both weak and strong inputs innervate mature TC 

neurons and contribute to their spiking activity highlights the possibility that experience-
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dependent plasticity of RGC input strength and number relies on the balancing of synaptic 

weights in the adult circuit (Thompson et al., 2016). The retinogeniculate connectivity map 

remodels to experience during development, and may also do so in mature animals. 

Depriving juvenile mice of visual experience for a week starting at p20 (late dark rearing) 

disrupts retinogeniculate connectivity, decreasing the amplitude of the average retinal input 

and increasing the overall number of RGC inputs onto TC neurons (Hooks & Chen, 2006, 

2008; Narushima et al., 2016). This manipulation also reduces the clustering of RGC axon 

boutons without significantly altering the size of the arbor or the number of boutons (Hong 

et al., 2014). Together, these observations suggest that while connectivity between axons and 

targets is selective, the large size of the arbor builds flexibility into the system: dramatic 

change in visual experience, such as late dark rearing can resculpt connectivity by 

rearranging boutons and adjusting input strength (Louros et al., 2014) without investing into 

remodeling the entire axonal arbor. Because excess branches of RGC arbors do not prune 

down until at least p60 in mice, retinogeniculate connectivity may exhibit substantial 

plasticity until at least this age (Hong et al., 2014).

A well-established mechanism for altering synaptic strength in response to activity or 

experience is through changes in AMPAR content of the post-synaptic density (Huganir & 

Nicoll, 2013). Several studies link the regulation of AMPAR trafficking and function to 

modulation of the strength of juvenile retinogeniculate synapses. The retinogeniculate 

synapse is one among several synapses that recruit GluA1-containing AMPARs in response 

to sensory stimulation (Clem & Barth, 2006; Kielland et al., 2009; Louros et al., 2014), 

suggesting that GluA1-dependent AMPAR-driven forms of transmission play an important 

role in the development and plasticity at this synapse (Fig. 4A–4C; activity-dependent 

changes in AMPAR subunit composition reviewed in Cull-Candy et al., 2006; Liu & Zukin, 

2007; Lee et al., 2014). AMPAR subunit content is sensitive to visual experience: mice 

subjected to late dark rearing exhibited a decrease in AMPAR current rectification, a 

measure of the fraction of calcium-permeable to calcium-impermeable AMPARs in the 

postsynaptic density. In contrast, mice that never had any visual experience (chronically dark 

reared from birth) exhibited normal rectification (Fig. 4C; Louros et al., 2014). Experience-

dependent changes in AMPAR content and function at the retinogeniculate synapse rely in 

part on stargazin, a transmembrane AMPA regulatory protein that modifies the trafficking 

and channel kinetics of AMPARs (Straub & Tomita, 2012). Indeed, late dark rearing 

increases the expression and phosphorylation of star-gazin, which can in turn regulate the 

composition of postsynaptic AMPARs in both a Hebbian (Tomita et al., 2005) or 

homeostatic manner (Louros et al., 2014). Finally, changes in AMPAR expression also 

mediate the role of MHC class I molecule H2-Db in retinogenicu-late developmental 

refinement (Lee et al., 2014). H2-Db is one of a series of immune-related molecules that 

shape retinogeniculate development (Shatz, 2009; Schafer & Stevens, 2010). Mice lacking 

H2-Db expression exhibit an increase in calcium-permeable AMPARs at retinogeniculate 

synapses, corresponding to a deficit in LTD. Together, these studies bespeak a critical role of 

AMPAR regulation in retinogeniculate synaptic plasticity, which may persist into adulthood.

Both Hebbian and homeostatic mechanisms of synaptic plasticity have been shown to alter 

retinogeniculate synaptic strength during development (Mooney et al., 1993; Butts et al., 

2007; Ziburkus et al., 2009; Krahe & Guido, 2011; Lin et al., 2014; Louros et al., 2014). 
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High frequency stimulation of the optic tract, or low frequency stimulation coincident with 

postsynaptic depolarization in slices from immature ferret dLGN result in long-term 

enhancement of the EPSC, with contribution from NMDAR activation (Mooney et al., 

1993). However, in rat, the same high-frequency stimulus results in long-term depression in 

dLGN explants before eye-opening, but long-term potentiation later in development 

(Ziburkus et al., 2009). Finally, plasticity rules based on burst timing have been identified 

before eye-opening (Butts et al., 2007 in rat), but these plasticity rules have not been 

examined in more mature slices. On the other hand, the contribution of homeostatic 

plasticity in retinogeniculate plasticity has been suggested through studies involving 

monocular deprivation, chronic dark rearing, manipulation of stargazin, and deletion of 

Mecp2 (a transcription factor necessary for homeostatic scaling up in the visual cortex; 

Blackman et al., 2012; Noutel et al., 2011; Krahe & Guido, 2011; Lin et al., 2014; Louros et 

al., 2014). Similar paradigms likely also drive synaptic plasticity at the fully mature 

retinogeniculate synapse.

Recently described instances of rapid plasticity across species could also engage Hebbian or 

homeostatic mechanisms at the retinogeniculate synapse and cause a shift in the strength of 

individual retinogeniculate inputs (Moore et al., 2011; Aguila et al., 2017). In fact, dLGN 

neurons readily adapt to changes in visual input. For example, pharmacologic blockade of 

On-center RGC activity in adult cats rapidly uncovers Off-center responses in dLGN 

neurons previously exhibiting On-center responses, instead of silencing them (Moore et al., 

2011). Further, acute suppression of cortical feedback in awake monkeys shifted the 

receptive field position of a subset of TC neurons (Aguila et al., 2017). Finally, rabbit 

genicu-late neurons exhibit bidirectional sensory adaptation that improves signal detection 

(Stoelzel et al., 2015). While modulatory mechanisms could shape the response of the TC 

neuron to rapid changes in upstream inputs, the specificity that TC neuron responses exhibit 

in these studies indicates instead a role for rapid shifts in the synaptic efficacy of 

retinogeniculate connections. These changes occur too rapidly to rely on structural 

rearrangements of retinogeniculate connections, their timecourse is consistent with possible 

unsilencing or strengthening of functionally silent or weak sub-threshold inputs via the 

insertion of postsynaptic receptors at dormant synaptic sites. Of course, local inhibitory 

circuits may also contribute to rapid shifts in RGC input efficacy (Fisher et al., 2017). 

Changes that occur over days rather than hours may also recruit the redistribution of 

presynaptic boutons along the broad RGC axon arbor. The capacity of the diverse types of 

retinogenicu-late synaptic contacts for functional plasticity remains unexplored.

The expression of a variety of mechanisms for modification of synaptic weights is layered 

on top of a potentially densely interconnected network that is evident in considerable 

retinogeniculate divergence and convergence. Combined with the observation that both weak 

and strong inputs innervate mature TC neurons, these plasticity mechanism may endow the 

dLGN with a role in visual learning on multiple time scales (Ramos et al., 1976; Albrecht et 

al., 1990).
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Conclusion

Recent work is revealing new complexities of retinogeniculate transmission and circuit 

organization that further expand the potential role of the dLGN in visual processing beyond 

its classic attributes (Steriade et al., 1997; Sherman & Guillery, 2001). The morphological 

diversity of synaptic motifs and complex connectivity patterns, combined with short- and 

long-term plasticity mechanisms of the retinogeniculate circuit demonstrate that the 

retinogeniculate synapse makes substantial and dynamic contributions to the processing of 

visual information. Weak or non-dominant retinogeniculate inputs in the mature dLGN, 

which have repeatedly been dismissed as insignificant, as errors of development or leftovers 

from developmental plasticity with no functional relevance (Sur et al., 1984; Garraghty et 

al., 1985; Hamos et al., 1987), likely enhance extraction of visual features in the geniculate 

and visual cortex, and serve as strategic reserves of plasticity. Moreover, the convergence of 

potentially heterogeneous RGC inputs onto single geniculate neurons could give rise to new 

receptive field features such as orientation selectivity in mouse dLGN, as recently proposed 

(Stafford & Huberman, 2017). Finally, the interplay between the strength and short-term 

plasticity properties of RGC inputs in the context of convergence and divergence adds to the 

richness of the dLGN circuitry.

Much is still left to understand about the extent and underlying basis of plasticity in the 

dLGN. However, the idea that the mature geniculate system can utilize activity-dependent 

plasticity mechanisms to fine-tune the contribution of its individual inputs in response to 

novel visual challenges, experiences, changes in modulatory state, or retinal degeneration 

appears to be rapidly gaining experimental support. Future studies are needed to clarify the 

differences in the number of inputs that converge onto TC neurons between species, because 

the results may correlate with the degree by which new receptive field features emerge at the 

level of dLGN. Elucidation of whether and how weak inputs contribute to visual processing 

in different species will also uncover the richness of thalamic function.

The continually expanding toolbox for interrogating diversity in neuronal circuits is already 

uncovering nuances in the contribution of different RGC types to TC neuron function 

(Storchi et al., 2015; Denman et al., 2016). Advances in methods for labeling, activating, and 

measuring the activity of different neuronal populations that have been deployed extensively 

in mice may also reveal underappreciated subtleties of retinogeniculate transmission in other 

species (Scholl et al., 2013; Zaltsman et al., 2015; Zeater et al., 2015; Suresh et al., 2016). 

Shifting models of the organization of the visual system that take into account the important 

nuances of retinogeniculate functional organization and plasticity are certain to provide new 

models of visual system development and function.
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Fig. 1. 
Synaptic structure shapes retinogeniculate transmission. (A) Tracing of an HRP-filled X-

RGC arbor in the cat dLGN shows the location and morphology of a single branch (red box) 

of the X-RGC arbor used for EM reconstruction. This branch of the axon contacts 4 TC 

neurons out of 40 available neurons in the territory of the arbor. The remainder of the axon 

was not reconstructed, and likely contacts several other TC neurons. Bottom inset shows the 

location of the axonal arbor in the context of the cat LGN. Figure modified from Hamos et 

al. (1987). Unmarked scale bar = 100 μm. (B, C) Reconstructed arbors of single RGC axons 

showing distribution of presynaptic boutons into dense clusters in the LGN of (B) an adult 

cat and (C) a p20 mouse. Note the clustering of boutons along the arbor. Image in B is 

modified from Robson et al. (1993), showing a segment of a RGC axon; Image in C is from 

Hong et al. (2014), showing a BD-RGC axon. Scales bars are 100 μm. (D) A 3D 

reconstruction of a TC neuron dendrite and sites of contact between two neighboring RGC 

boutons from Budisantoso et al. (2012). In the top image, the dendrite and its appendages 

are depicted in blue, whereas pink and red sites label the postsynaptic densities of the two 

axons. In the bottom image, the structure of the terminals of two axons has been added. 

Spillover can occur between these two nearby terminals. (E) Evidence of spillover-mediated 

responses to the stimulation of a single RGC axon before eye opening. Two different 

synaptic responses were observed in response to single retinal fiber stimulation. Shown are 

recordings from TC neurons in whole cell voltage clamp at −70 mV in a dLGN slice in the 

presence of the NMDAR blocker, 20 μM CPP. On the left is an example of a 

retinogeniculate AMPAR EPSC with characteristic rapid rise time and decay kinetics (black 

trace). On the right is an atypical AMPAR EPSC response notable for significantly slower 

rise time and decay kinetics (black trace). The two types of EPSCs differ in their sensitivity 

to the low-affinity AMPAR antagonist, γ−DGG. Low affinity antagonists can be used to 

assess the relative concentration of glutamate in the synaptic cleft (Clements et al., 1992; 

Diamond & Jahr, 1997). As γ−DGG competes with glutamate for binding to AMPAR, its 

efficacy of inhibition decreases with increasing glutamate concentration. γ−DGG has only a 
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small effect on the amplitude of the fast EPSC, but dramatically reduces the amplitude of the 

slow EPSC (overlaid gray traces), consistent with lower peak glutamate concentration in the 

synaptic cleft of the slow EPSC. Because the EPSCs are evoked by minimal stimulation, the 

rapid EPSC represents a direct input from a single RGC axon that forms a direct synapse 

onto the voltage-clamped relay neuron, whereas the slow EPSC corresponds to the activation 

of a RGC axon that does not directly synapse onto the voltage-clamped neuron. Modified 

from Hauser et al. (2014). All figures reprinted with permission.
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Fig. 2. 
Contributions of retinogeniculate short-term plasticity. (A) Representative traces of AMPAR 

and NMDAR mediated currents recorded before eye opening (left) and in a mature mouse 

(right) in response to the stimulation of the optic tract. Whole-cell voltage clamp recordings 

were performed with bicuculline to block GABAA−receptor mediated currents. At −70 mV 

holding potential, AMPARs mediate the fast activating and decaying current. AMPAR and 

NMDAR currents both contribute to the EPSCs recorded at +40 mV with AMPARs 

contributing to the rapid rise and the NMDAR currents contributing to the slow decay of the 

EPSC. The average amplitude of AMPAR currents increases over development. (B) 5-CT-

mediated activation of serotonin receptors alters retinogeniculate short-term plasticity. 
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Experiments were performed in retinogeniculate slices from mature mice. Top and bottom 

traces overlay pairs of retinogeniculate EPSCs evoked with varying ISI before (top) and after 

(bottom) the application of 5-CT to active 5HT-1 receptors expressed in presynaptic 

retinogeniculate boutons. Application of 5-CT reduces the amplitude of the first EPSC and 

relieves short-term depression, increasing the amplitude of the second EPSC preferentially at 

short interstimulus interval. (C) Physiologically relevant stimulation frequencies 

preferentially diminish the contribution of AMPARs to relay neuron firing. Current clamp 

recordings of action potential firing in response to trains of optic tract stimulation in the 

presence of AMPAR (NBQX) or NMDAR (CPP) antagonists. Holding potential −50 mV. 

Blockade of AMPARs alters the latency to first spike but only minimally reduces the overall 

number of spikes. In contrast, blockade of NMDARs abolished EPSC summation toward 

action potential firing; only the first stimulus evokes an action potential, reflecting the 

contribution of AMPARs that rapidly desensitize after the first pulse. Therefore, NMDAR 

currents can sustain action potential generation without AMPAR contribution. Adapted from 

(A) Chen and Regehr (2000), B) Liu and Chen (2008) and (C) Augustinaite and Heggelund 

(2007). All figures reprinted with permission.
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Fig. 3. 
Contribution of NMDAR-currents to retinogeniculate transmission over development. (A) 

NMDAR EPSCs recorded in the presence of the AMPAR blocker, NBQX, at +40 and −55 

mV holding potentials in a p10 (left) and a p29 (right) retinogeniculate slice. Normalized 

traces are shown. Note the acceleration in NMDAR current decay time over development. 

(B) Example EPSCs recorded in young (top) and mature (bottom) TC neuron in slice before 

(left) and during (right) the application of NBQX. Holding potential, −55 mV. (C) NMDAR 

currents contribute more to the total retinogeniculate charge transfer at p9–11 than p26–32; 

however, even at the mature synapse, NMDARs contribute nearly half of the total charge 

transfer. Figure adapted from Liu and Chen (2008). All figures reprinted with permission.
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Fig. 4. 
Substrates for retinogeniculate plasticity. (A) Overlaid AMPAR current traces recorded from 

different holding potentials to assess the current voltage (I–V) relationship. Currents in the 

presence of CPP to block NMDAR currents and with spermine in the internal solution to 

examine the degree of I–V rectification. Calcium-permeable AMPARs exhibit a rectifying I–
V relationship. Traces were recorded at 20 mV increments from −60 to +60 mV holding 

potentials. Left-example obtained before eye opening; right, example from a mature slice. 

From Hauser et al. (2014). (B) Change in the average AMPAR EPSC I–V relationship over 
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development. Rectification of I–V currents increases significantly from p9–11 to maturity, 

indicating a gradual increase in the contribution of CP-AMPARs to AMPAR-mediated 

currents. Modified from Hauser et al. (2014). Red: p9–11; blue: p15–16; black: p27–32. (C) 

Changes in AMPAR subunit composition in response to visual experience. The effect of 

visual deprivation from p20 (late-dark rear, LDR) or dark rearing from birth (chronic dark 

reared, CDR) on the AMPAR EPSC I–V relationship. Rectification of AMPAR currents is 

reduced in LDR but not in chronically dark reared (CDR) mice when compared to normally 

reared mice (light rear, LR) mice. P = 0.03. Recordings performed at p27–32. Modified from 

Louros et al. (2014). (D) Comparison of the distribution of amplitudes of single fiber RGC 

inputs in juvenile (p27–34) and adult (p60+) mice show the persistence of weak (small-

amplitude) inputs with age. Modified from Hong et al. (2014). All figures reprinted with 

permission.
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