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Abstract

Background: One of the 3 tracks of iDASH Privacy & Security Workshop 2017 competition was to execute a whole
genome variants search on private genomic data. Particularly, the search application was to find the top most
significant SNPs (Single-Nucleotide Polymorphisms) in a database of genome records labeled with control or case. In
this paper we discuss the solution submitted by our team to this competition.

Methods: Privacy and confidentiality of genome data had to be ensured using Intel SGX enclaves. The typical
use-case of this application is the multi-party computation (each party possessing one or several genome records) of
the SNPs which statistically differentiate control and case genome datasets.

Results: Our solution consists of two applications: (i) compress and encrypt genome files and (ii) perform genome
processing (top most important SNPs search). We have opted for a horizontal treatment of genome records and
heavily used parallel processing. Rust programming language was employed to develop both applications.

Conclusions: Execution performance of the processing applications scales well and very good performance metrics
are obtained. Contest organizers selected it as the best submission amongst other received competition entries and
our team was awarded the first prize on this track.

Keywords: Genome variants search, Genomic data privacy, IDASH competition, Intel SGX

Background
In this paper we describe the solution submitted by our
team to the second task of iDASH Privacy & Security
Workshop 2017 competition [1]. Before proceeding to
solution description itself we start by introducing some
background and related works. Afterwards we describe
more formally competition problem together with a typi-
cal use-case.

Related works
DNA is the molecule that stores genetic instructions used
by any living organism in their growth, development and
functioning. The DNA molecules are organized in chains
which form the genome. Studying human genome has
plenty of practical applications in the medical, social,
legal fields, etc. Any two individuals share about 99.9%
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of their genomic DNA and the remaining 0.1% track the
differences between them. The vast majority of these dif-
ferences take the form of single-nucleotide polymorphism
(SNP). A SNP is a substitution of one base pair at a certain
location when compared to a reference genome. Genome
SNP variations are studied in order to track disease genes
or heritable traits.

One important genomic application is the search for
top most significant SNPs, in a dataset labeled with con-
trol and case, which are chosen according to the statistical
χ2 test.

As an example, this application can be used to detect
genome differences between a group of persons which
has a disease and another group which does not have it.
The most significant SNPs (supposedly) influence disease
susceptibility.

Genome sequencing cost decreases each year [2]. More
and more genome data is available for full scale medical
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research [3]. Cloud storage and computing is a straightfor-
ward solution to the challenge of storing and processing
huge amounts of genomic data [4]. However, outsourcing
genomic data to an untrusted cloud environment can be
difficult or even impossible because of privacy and con-
fidentiality concerns [5, 6]. Many research works [7–9]
study the inference of sensitive personal information (e.g.
person identity and appearance, disease condition) from
genomic data.

Homomorphic encryption is a solution which can
ensure genomic data privacy while being able to perform
computations. Homomorphic property of group based
cryptography was stated in [10]. The first fully homo-
morphic encryption scheme (supporting both addition
and multiplication) was introduced by Gentry in [11].
Since then, several other authors proposed new and more
efficient homomorphic encryption schemes [12–14]. The
most recent one [15] being able to execute a 2-input
Boolean gate in less than 13 milliseconds. On a side note,
this encryption scheme was used by 2 teams in the third
track of iDASH 2017 competition [1]. From an applicative
point of view, the authors of [16–20] introduced and dis-
cussed the use of homomorphic encryption to genomic
data processing (e.g. genetic association, logistic regres-
sion, genomic medicine). Secure multi-party computation
protocols can also be used to provide private genomic
data analysis [21–23]. The main issue of these solutions
is the performance bottleneck when applied to large-scale
genomic data computations.

Hardware assisted privacy preserving solutions (i.e.
Intel Software Guard Extensions (SGX)) allow to lever-
age the performance gap of cryptography only based
solutions (e.g. homomorphic and functional encryption,

multi-party computation protocols, etc.). Intel SGX allows
to pragmatically instantiate diverse cryptographic con-
cepts without huge overhead. Secure genomic computa-
tions using Intel SGX have been studied in many research
works: rare disease analysis [24], genomic queries [25],
etc. The 2017 iDASH competition second track was to
perform a whole genome variants search in a multi-party
context.

Overview of intel SGX
Intel’s Software Guard Extensions (SGX) was first intro-
duced in 2015 on the Skylake micro-architecture. The aim
of this extension is to provide a Trusted Execution Envi-
ronment (TEE) in which applications can protect critical
code and data against malicious privileged system code
(operating system, hyper-visor, BIOS, etc.). The trusted
part of the application is called an enclave in SGX dialect.
The key point is that enclave code and data inside the
CPU perimeter runs in the clear, but are encrypted out-
side. Figure 1 illustrates the execution of an application
using SGX. SGX is built on three components:

• 17 new CPU instructions,
• a Memory Encryption Engine (MEE) to

encrypt/decrypt on the fly,
• a MEE buffer of 128MB, in which 96MB are available

to the application.

More information on Intel SGX can be found in
the white-paper [26] and a detailed description [27].
Possible use-cases of SGX applications are secure
remote computation, secure web browsing, digital rights
management, etc.

Fig. 1 Overview of an SGX application runtime
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Even if at first view one can think that Intel SGX allows
to securely execute applications on encrypted data, par-
ticular attention should be paid to the manner applica-
tions are implemented. Existing works [28–30] present
side-channel (cache timing, page faults, memory access
patterns) attacks on SGX enclaves. They arrive to dis-
cover secrets (e.g. secret key of an encryption algorithm)
from applications executed inside an enclave. This attack
is possible because of the information which leaks from
application execution and highly depends on how the
application was implemented.

VCF file format
The Variant Call Format (VCF) is a format of text files
used for storing genome variations. Compared to other
file formats which store lots of redundant data (as men-
tioned earlier 99.9% of genome is shared between individ-
uals), a VCF file tracks only differences from a reference
genome. In this work we suppose that VCF files contain
only SNP gene differences. A sample of VCF file (first 8
lines) is given below:
##real id in 1000genome project: HG00253

#CHROM POS ID REF ALT QUAL FILTER TYPE

1 13110 rs540538026 G A 100 PASS heterozygous

1 13116 rs62635286 T G 100 PASS heterozygous

1 13118 rs200579949 A G 100 PASS heterozygous

1 14930 rs75454623 A G 100 PASS heterozygous

1 15211 rs78601809 T G 100 PASS homozygous

1 18849 rs533090414 C G 100 PASS homozygous

A VCF file contains meta-information lines (starting
with two “#” symbols), one header line (starting with
a “#” symbol) and then one data line per SNP. Each
SNP information line contains exactly 8 fields. First 5
fields are: chromosome identifier (CHROM), position
within chromosome (POS), unique SNP identifier (ID),
reference (REF) and alternate (ALT) base. We consider
that chromosome and position fields are integers. SNP
identifier is a string. Reference and alternate base are
non equal symbols from the set {A,C,G,T,N}. The
last field (TYPE) shows whether SNP is heterozygous or
homozygous. One important property of VCF files is that
SNPs are sorted in increasing order by chromosome and
position.

Methods
Use-case
An important step towards better understanding of
human genome is the share of genomic data between
entities possessing genome databases (research institu-
tions, state agencies, etc.). This does not necessarily imply
an actual share of genomic databases between two or
more entities, which can be a cumbersome and even
impossible due to legal restrictions. Legislation in many

countries impose a strict regulation on human genome
privacy and confidentiality when storing, sharing and
manipulating genomic databases. It can materialize itself
in carrying out analyzes on a joined view of individual
databases and sharing only the results of these analy-
ses. The whole genome variants search for the top most
important SNPs introduced previously is a good exam-
ple of such analysis. Obtained results will have smaller
statistical error because of a larger size input dataset
when compared to an analysis performed over individual
datasets.

Figure 2 illustrates a typical use-case of computing the
top most important SNPs for several entities. n actors pos-
sessing genomic data files (VCF format for illustration)
are involved in this use-case. Confidentiality of genomic
data is ensured by dedicated hardware (Intel SGX – intro-
duced in the previous sub-section). The process starts
with establishing trust in the computation server, namely
the SGX enclave. The SGX enclave proves its authenticity
to an actor, a key-exchange protocol (e.g. Diffie–Hellman)
is used to establish a shared secret (a symmetric encryp-
tion key ski, i ∈ 1 . . . n) between the actor and the enclave.
Once a trusted communication channel is established
each actor sends its encrypted VCF files to the compu-
tation server. In our case, AES encryption with 128-bit
keys in GCM (Galois/Counter Mode) mode is used. The
GCM mode provides both data authenticity (integrity)
and confidentiality.

Application: top most important SNPs search
The algorithm (a high-level view) for finding the top K
most important SNPs in a genomic dataset labeled with
control and case consists in the following steps:

1 compute SNP presence counters CTRL_CNT and
CASE_CNT in control and respectively case VCF files,

2 compute the χ2 statistic for each found SNP,
3 return the top K most important SNPs.

Fig. 2 Use-case for multi-party search over encrypted genomic data
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CTRL_CNT and CASE_CNT are maps which associate
to each SNP an integer value designating the number of
control and respectively case VCF files this SNP is found
in. For example CTRL_CNT[SNP] gives the number of
control VCF files containing genome difference SNP. We
recall that homozygous SNPs count twice in these pres-
ence maps.

χ2 statistic
The Pearson’s χ2 test allows to determine if there is
significant difference between observed and expected fre-
quencies in one or more categories. In the context of
genome search use-case the χ2 test is used to find which
SNP distributions have the largest evidence of statistical
difference between case and control datasets.

Let s be a SNP found in a VCF file. Let nctrl and ncase
denote the number of times SNP variation s appears in
control and respectively case files (zero if not present). We
have nctrl = CTRL_CNT[ s] and ncase = CASE_CNT[ s].
Let Nctrl and Ncase be respectively the number of control
and the number of case files multiplied by 2 (as homozy-
gous counts twice). SNP s observed frequencies O and
expected frequencies E are given by:

O = [nctrl, ncase, Nctrl − ncase, Ncase − ncase]
E = [

Nctrl · f , Ncase · f , Nctrl · (
1 − f

)
, Ncase · (

1 − f
)]

Here, f = (nctrl+ncase)
(Nctrl+Ncase)

is s frequency in both datasets.

The χ2 test statistic value is equal to
∑

i
(Oi−Ei)2

Ei
. The

p-value is the probability that a random variable following
a χ2 distribution will be larger than the above test statistic
value (i.e. the survival function). The SNPs which have the
largest p-values are those whose distributions differ the
most in case and control datasets. To find the top K most
significant SNPs one needs to compute p-values for each
SNP in input genome dataset and to return K SNPs with
largest p-values.

Results
Software architecture
In this sub-section we describe the global software archi-
tecture. We limit the discourse to genome processing part
only and ignore the key-exchange part. Thus, in what fol-
lows we suppose that actors trust the SGX enclave and
that the enclave has all the decryption keys.

We split the genome processing use-case operation
in two parts: (i) compress and encrypt input genome
data files and (ii) build CTRL_CNT and CASE_CNT maps
and compute top K most important SNPs (denoted the
processing part). Each part is implemented in a sep-
arate application. The first application (compress and
encrypt) is performed by the actors possessing VCF

files and the second one by the enclave. In the fol-
lowing subsections we discuss in more details these
applications.

Compress & encrypt
As expected, this application compresses and encrypts a
VCF file given as input. The compression step consists
in rewriting SNPs from a text format into an equiva-
lent binary format. Each VCF file SNP (i.e. a data line) is
packed into 80 bits (10 bytes). Table 1 gives more informa-
tion about the number of bits allocated to each SNP data
line field. This compression is adapted to the specific VCF
file format used in the contest and becomes lossy when
the generic VCF format is used.

Before proceeding to encryption a given number of con-
tiguous SNPs are grouped into blocks. Block binary SNPs
are encrypted using AES in GCM mode. The format of a
block of encrypted SNPs is given in Table 2. Here, the first
field gives the number of SNPs in the block. IV is a random
nonce used so that same input block of SNPs generates a
different ciphertext. MAC is the message authentication
code output of AES-GCM encryption needed to prove
block authenticity. Followed by the encrypted stream of
binary formatted SNPs.

In a compressed VCF file all the blocks contain the
same number of SNPs, except for the last one. Com-
pressed and encrypted files are smaller when compared
to initial ones, therefore the network traffic between the
actors and the computation server is also lower. Another
advantage is that using binary format input files, inside
an enclave, is less prone to side-channel information
leakage.

Processing
Searching for the top most important SNPs starts once all
of the encrypted VCF files are received by the computa-
tion server. In the high-level algorithm given in previous
section, during first step SNP counters CTRL_CNT and
CASE_CNT are computed. All input VCF files must be
read through before these maps are completely filled in
and can be used to compute χ2 statistic p-values.

We notice that for computing the χ2 statistic for a given
SNP s we need only the presence counters for this SNP (i.e.
map values CTRL_CNT[ s] and CASE_CNT[ s]). The idea of
horizontal partitioning the computation follows from the
previous remark. So instead of filling presence maps for
all the SNPs, they are only filled for a small range of SNPs.
The χ2 statistics are calculated for these SNPs. A list of top

Table 1 Binary SNP format (in bits)

CHROM POS ID REF & ALT TYPE

5 32 37 5 1

Total size is 10 bytes
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Table 2 SNP block format (in bytes)

SNP count (n) IV MAC SNP 1 ... SNP n

4 12 16 10 ... 10

Total size is 32 + 10 · n bytes

most significant SNPs is updated as a function of obtained
p-values. Afterwards this procedure is repeated for a new
range of SNPs.

The main advantage of horizontally partitioning the
treatment is that SNP maps (CTRL_CNT and CASE_CNT)
size stay small. A drawback is that input VCF files
need to be accessed several times. The fact that SNPs
are ordered (by chromosome and position) in input
VCF files allows to reduce the number of VCF files
accesses.

The block diagram of the processing application is
shown in Fig. 3. The process starts with enclave creation
and initialization (step 1). In step 2 enclave registers case
and control VCF files. It simply memorizes VCF file iden-
tifiers together with boolean flags indicating whether this
file belongs to case or control dataset. Horizontal parti-
tioning of input dataset is performed in the main loop
(label “A”) of the application.

During each main loop iteration a specific range of
SNPs is processed. The 4 blocks of the first VCF file
serve as reference range (step 4 in diagram). Thus, the
SNP range to treat starts at the first SNP from the first
block and ends at the last SNP of the fourth block. In
the inner loop (label “B”), the SNPs belonging to the
reference range from each VCF file are used to update
SNP presence maps: CTRL_CNT for control files and
CASE_CNT for case files. Last treated block index for
each VCF file is memorized so that the next time (next
main loop iteration) the application knows which block to
start with.

Once all VCF files have been treated χ2 statistic
p-value is computed for each SNP in mapsCTRL_CNT and
CASE_CNT. The global list of top K most important SNPs
is adequately updated as a function of newly obtained SNP
p-values (step 7 in diagram). Main loop is executed till all
SNPs have been treated.

Implementation language and tools
Rust programming language was used to implement
these applications. Instead of the C/C++ framework pro-
vided by Intel, a Rust framework for programming SGX
based applications is used.

Fig. 3 Processing algorithm block diagram
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Rust programming language
Rust is a new system programming language supported by
Mozilla research. The aim of Rust is to be a language for
highly concurrent and safe systems. Unlike C/C++, Rust
has been designed with safety in mind from ground up.
Mozilla describe Rust as a “safe, concurrent and practical
language”. The performance of idiomatic Rust programs is
comparable to ones written in C/C++. The most impor-
tant strengths of Rust as a programming language are:

• zero-cost abstraction,
• type safety,
• guaranteed memory safety,
• threads without data races.

Rust is influenced by safe functional programming lan-
guages like Haskell and OCaml, and its syntax is very close
to the ML family languages.

Rust-SGX SDK
Intel provides a Software Development Kit (SDK) for
implementing SGX application. This SDK is a set of
libraries and tools that allow developers to write and
debug SGX applications using C/C++ language. As previ-
ously said C/C++ are unsafe languages. Developers should
be very careful when implementing SGX applications in
C/C++ in order to prevent memory bugs (buffer overflow,
use-after-free, phantom references, etc.), which could lead
to vulnerabilities and thus compromise enclave applica-
tion security. Using Rust it is possible to circumvent this
pitfall without sacrificing execution performance.

Rust-SGX SDK [31] is a framework that allows to
implement SGX applications in Rust. This framework is
developed by Baidu-X lab and is available at [32]. The
framework provides a preconfigured docker image which
easies its use.

Discussion
In this section we describe in more details the applications
we have implemented and the obtained execution results
on a sample genomic dataset. The sample dataset has 1000
case and 1000 control VCF files. The size of dataset is
approximatively 27 GB. It was provided by contest orga-
nizers for testing purposes. Final evaluation datasets were
similar to this one.

All the applications have been executed on a 5-th gener-
ation Intel(R) Xeon(R) CPU E3-1240 (3.50GHz) processor
with 16 GB of RAM memory and an SSD disk.

Compress & encrypt
The first implemented application builds a compressed
and encrypted version of each VCF file given as input. It
starts by parsing a given number (i.e. block size) of VCF
data lines, encoding them in binary format and encrypt-
ing them using AES. We recall that each data line is an

SNP variation. In our study, we have chosen to encode
2080 SNPs per block, 2080 being a common multiple of
binary format SNP size (10 bytes) and AES block size
(16 bytes). A block of SNPs has a size of approximatively
20 KB. OpenSSL library [33] is used to perform AES
encryptions.

The compress and encrypt application uses 4 threads.
Each thread treats an input VCF file. Newly obtained
encrypted VCF files are written to disk. Disk input/output
bandwidth is the bottleneck of this application, which has
to read 27 GB and write 5.5 GB. When an SSD disk is used
to store output files the execution time is approximatively
65 s. We have also tested to output files to a RAM disk. In
this case execution time dropped to 50 s, representing a
23% gain.

Processing
The processing application has two binary modules, one
(the main application) is executed in the public domain
and other (enclave application) in the protected domain.
Enclave binary module is signed, which ensures that only
authenticated modules are executed by the SGX exten-
sion. As said earlier, we ignored the key-exchange phase
and the multi-party computation flavor of the studied use-
case. A single AES decryption key is hard-coded into the
enclave application. Communication between main appli-
cation and enclave is done through a light interface (ecall
functions in SGX terms)

• encl_init loads and initializes enclave binary
module,

• encl_register registers a given list of VCF files
labeled with control and case,

• encl_begin starts treatment of new SNP range
(main loop iteration start in Fig. 3),

• encl_run treats a SNP range for a VCF file (inner
loop labeled “B”),

• encl_end ends main loop iteration.

Enclave application is executed on 8 threads. Each
thread treats a SNP range from a file (i.e. inner loop in
the block diagram). A custom thread-safe hash map is
used for counting SNP variations. The hash map is cleared
when treatment of a new SNP range begins (in ecall func-
tion encl_begin). After SNP variations from all VCF
files have been added to the hash map (ecall encl_run)
the output list of most important SNPs is updated (ecall
encl_end). χ2 statistics are computed for each SNP vari-
ation using a leakage free numerical integration algorithm
(described in following subsection). Finally, using these
statistics values the global list of top K most significant
SNPs is updated.

The execution time of the processing application is less
than 7 sec! The main part of the execution time is due to
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VCF file reading. No significant differences were observed
when either SSD or RAM disk was used as input medium.

Hereafter, we describe two important building blocks
used in the processing application. In particular, a
lock-free hash-map we have implemented to count
SNP variations (CTRL_CNT and CASE_CNT) and the
computation of χ2 statistic using numeric integra-
tion. Both building blocks were designed to leak as
little information as possible about encrypted data
(hide SNP position and contents).

Thread-safe hash table
SNP variations are counted and stored in associative
maps CTRL_CNT and CASE_CNT. The key of these
maps is built from SNP fields: chromosome number,
variation position, reference and alternate base. These
fields uniquely identify a SNP variation. Hash maps
(in the text we use hash table term also) are used as
implementations for SNP variations counters. A sim-
ple Fibonacci hashing method is used to map a SNP
identifier to the hash table space. Hashes are XOR-ed
with a random value, generated at enclave application
start, in order to minimize information leakage from
memory access patterns of sequel enclave application
executions.

Rust standard library hash table implementation
(std::collections::HashMap) is not thread safe.
A synchronization mechanism (e.g. mutex) is needed for
write accesses. One can synchronize write accesses at the
global hash map level. The issue of this solution is that
the whole hash map is blocked during a write operation
and thus a single thread only will be able to use it. In our
solution, we have implemented a hash map from scratch
where synchronization is done at element level. With this
implementation each thread is able to write/update the
hash map in parallel.

In our implementation the hash map is an array of N
elements indexed by the hash of SNP identifier. N is cho-
sen such that the hash map size is lower than processor
L3 cache size (8MB in our case). In our application hash
map can store up to N = 282914 SNPs (approximatively
6630KB). This size was empirically chosen in order to
minimize hash map memory reallocations (in performed
tests no reallocation is needed) and to have a reasonable
fill ratio (≈ 50 − 60%). Each hash map element contains 3
fields:

• state of the current element,
• element key (SNP identifier),
• element value (SNP variation count).

An element can be in one of the following states (given
by field state):

• empty – element is empty and available for new entry,

• update – ongoing entry element creation or value
update,

• wait – entry is initialized and can be updated.

At the beginning of the execution all hash table ele-
ments are in empty state. When a new SNP entry is
added or an existing SNP is updated, update state is
used to synchronize concurrent threads trying to access
this element. State wait means that element is free to be
updated.

Leakage free χ2 statistic computation
The χ2 statistic p-value computation is performed in two
steps:

• statistic value is computed from observed and
expected SNP frequencies,

• χ2 distribution survival function is evaluated to
obtain the p-value.

The survival function is a strictly decreasing function.
Finding SNPs with highest p-values (i.e. top most impor-
tant ones) is equivalent to finding SNPs which have the
lowest χ2 statistic values. In our implementation the top
most important SNPs list is updated (step 7 in block dia-
gram from Fig. 3) according to SNP χ2 statistic value. The
p-values are computed when algorithm terminates only
for the resulting SNPs.

The χ2 statistic value expression can be computed
directly without leaking information on input values. On
the contrary, survival function does not have a closed-
form expression and must be evaluated by integrating
χ2 probability density function. We have implemented a
numerical integration algorithm (trapezoidal rule) for this
task. In order to accelerate this computation, we store an
array of precomputed survival function values and per-
form the numerical integration for small ranges only. Our
numerical integration algorithm implementation has no
information leakage and the array of precomputed values
is obliviously accessed.

Conclusions
In this paper we have discussed the solution submitted
to the second track of the 2017 iDASH competition.
The goal of this track was to develop an application
for searching the top most important SNPs in a
genomic dataset. It was requested to use Intel SGX in
order to ensure the privacy and the confidentiality of
genomic data.

Our discourse begins with an introduction of a global
view of the solution: a typical use-case and the block
diagram. Afterwards we describe some implementation
details and execution results on a sample dataset. Shared
memory parallelism (i.e. threads) was heavily used to
increase execution performance. Aggregated execution
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time of compression & encryption and processing applica-
tions is about 1 min. The compression & encryption step
is the heaviest part, needing approximatively 50 s (mainly
due to I/O bandwidth bottleneck). In the typical use-case
we have discussed about, this execution time is evenly dis-
tributed over implied parties (i.e. each party encrypts its
own VCF files). Data space size of our processing appli-
cation was smaller than processor’s L3 cache size which
contributed a lot to minimizing the number of costly page
evictions.

Intel SGX enclave mechanism is not the “holy grail” for
privacy preserving computations. Several works from the
literature describe side-channel attacks on SGX enclave
applications, all these attacks being possible because
of code vulnerability. Even if it was outside of con-
test’s goal, we have given a particular attention to lower
information leakage from application execution in SGX
enclave. We have implemented our enclave applica-
tion and in particular two software blocks, hash table
and χ2 statistics computation, with small information
leakage.

In perspective, we think that our compression step
can be further optimized. That is to say, a larger com-
pression ratio can be obtained without limiting the
functionality of the performed computation. This will
allow to further optimize communication size and the
performance of the processing application. Also, we
think that a more formal analysis of the information
which our enclave application leaks is needed in order
to better understand the challenge of the outsourced
computation.
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