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Abstract

The SH3 and multiple ankyrin repeat domains 3 (SHANK3) gene encodes core scaffolds in neuronal excitatory
postsynapses. SHANK3 duplications have been identified in patients with hyperkinetic disorders and early-onset
generalized tonic-clonic seizures. Consistently, Shank3 transgenic (TG) mice, which mildly overexpress Shank3
proteins exhibit hyperkinetic behavior and spontaneous seizures. However, the seizure phenotype of Shank3 TG
mice has only been investigated in adults of the seizure-sensitive strain FVB/N. Therefore, it remains unknown if
spontaneous seizures occur in Shank3 TG mice from the early postnatal stages onward, or even in seizure-resistant
strains. Clinically, generalized tonic-clonic seizures are the critical risk factor for epilepsy-associated mortality.
However, the potential association between Shank3 overexpression and mortality, at least in mice, has not been
investigated in detail. In the present study, we backcrossed Shank3 TG mice in seizure-resistant C57BL/6 J strain and
monitored their home-cage activities at 3 weeks of age. Of the 15 Shank3 TG mice monitored, two exhibited spontaneous
tonic-clonic seizures, and one died immediately after the seizure event. Based on this observation, we determined the
survival rate of the Shank3 TG mice from 3 to 12 weeks of age. We found that approximately 40-45% of the Shank3 TG
mice, both males and females, died before reaching 12 weeks of age. Notably, 53% and 70% of the total deaths in male
and female Shank3 TG mice, respectively, occurred in the juvenile stages. These results suggest spontaneous seizure and
partial lethality of juvenile Shank3 TG mice in seizure-resistant background, further supporting the validity of this model.
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Main text

Deletions, duplications, and various point mutations of the
SH3 and multiple ankyrin repeat domains 3 (SHANK3)
gene, which encodes excitatory postsynaptic core scaffold-
ing proteins [1], are causally associated with numerous neu-
rodevelopmental and neuropsychiatric disorders, including
autism spectrum disorders (ASDs), bipolar disorder, intel-
lectual disability, and schizophrenia [2—4]. Specifically, we
previously identified two SHANK3 duplication patients
who presented with hyperkinetic disorders, such as atten-
tion deficit hyperactivity disorder (ADHD) and bipolar dis-
order, and early-onset generalized tonic-clonic seizures [4].
Furthermore, Shank3 transgenic (TG) mice which mildly
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overexpress Shank3 proteins (by approximately 50%), ex-
hibit mania-like hyperkinetic behavior and spontaneous sei-
zures, recapitulating the major symptoms seen in the
patients [4—6].

However, the seizure phenotype has only been investi-
gated in adult (8 to 12-week-old) Shank3 TG mice of FVB/
N background which is a strain with high seizure sensitivity
[7]. Therefore, it is unclear if spontaneous seizures occur in
Shank3 TG mice from the early postnatal stages, as in the
patients, and even in other seizure-resistant strains, such as
C57BL/6] [7, 8]. Moreover, from a clinical perspective, gen-
eralized tonic-clonic seizures are the critical risk factor for
epilepsy-associated mortality, such as sudden unexpected
death in epilepsy (SUDEP) [9]. Although the two SHANK3
duplication patients commonly showed generalized
tonic-clonic seizures, the potential association between
Shank3 overexpression and lethality, at least in Shank3 TG
mice, has not been investigated in detail.
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To address these issues, we crossed Shank3 TG mice
of FVB/N strain with wild-type (WT) C57BL/6 ] mice
for more than ten generations. To examine behavioral
seizures in the early postnatal stages, we monitored the
home-cage activities of juvenile (3-week-old) Shank3 TG
mice twice per day (at 10 am and 4 pm, for one hour
per each session) for a week. Of the 15 Shank3 TG mice
monitored, we found two mice exhibiting spontaneous
behavioral seizures. During the seizures, both mice
showed rearing, jumping, and falling with forelimb clo-
nus (Additional file 1), which is the behavioral indication
of tonic-clonic seizure (Racine’s scale 5) [10]. Notably,
one of the Shank3 TG mice died immediately after a sin-
gle seizure event during our observation. None of the
ten WT littermates showed any sign of behavioral seiz-
ure during a week of monitoring.

Based on our observation of the death of the Shank3
TG mouse after spontaneous seizure, we determined the
survival rates of the male and female Shank3 TG mice,
and those of their WT littermates, from postnatal 3 to
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12 weeks of age. Of a total of 123 male and 51 female
Shank3 TG mice, approximately 40-45% (55 males and
20 females) died before they reached 12 weeks of age
(Fig. 1a, b). Furthermore, 53% and 70% of total death in
male and female Shank3 TG mice, respectively, occurred
in juvenile stages (between 3 and 5 weeks of age), which
is consistent with our observation of the spontaneous
seizure and subsequent death of a 3-week-old Shank3
TG mouse. Two male (2.6% of 76) and one female (3.2%
of 31) WT mice died during our counting from
unknown cause.

These results suggest that Shank3 TG mice exhibit
spontaneous seizures from the early juvenile stages, and
even by seizure-resistant C57BL/6 ] strain, which,
together with their hyperkinetic behavior, further sup-
ports the face validity [11] of these mice for modeling
human SHANK3 duplications. We did not expect that
up to 40-45% of the Shank3 TG mice would die before
the age of 12 weeks. Clinically, SUDEP is the most com-
mon cause of mortality in patients with epilepsy [9].
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Fig. 1 Survival plots of male and female wild-type (WT) and Shank3 transgenic (TG) mice in C57BL/6 J background. a Survival plot of male WT
(black line) and Shank3 TG (blue line) mice from 3 to 12 weeks of age. Of the 123 Shank3 TG mice, 55 died before the age of 12 weeks, and 29
(53%) died before the age of 5 weeks. Two WT mice died during counting (Log-rank test, P < 0.0001). b Survival plot of female WT (black line)
and Shank3 TG (red line) mice. Of the 51 Shank3 TG mice, 20 died before the age of 12 weeks, and 14 (70%) died before the age of 5 weeks. One
WT mouse died during counting (Log-rank test, P < 0.0001). Numbers for the survival plots are provided in Additional file 2
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Thus far, several genetic models of SUDEP have been
established in which mostly ion channel genes are deleted
or mutated [12]. If sufficiently validated, we believe that
Shank3 TG mice may provide a unique SUDEP or
epilepsy-associated lethality model with an excitatory and
inhibitory synaptic imbalance [4, 13], rather than ion
channel dysfunction. However, further detailed investiga-
tions, including simultaneous electroencephalography
(EEG) and electrocardiogram (ECG) measurements [14],
are required to confirm the causal relationship between
seizure and lethality in Shank3 TG mice.

Additional files

Additional file 1: Spontaneous seizure of juvenile Shank3 transgenic mice
in C57BL/6J strain. This video shows spontaneous seizure from an 3-week-old
Shank3 transgenic mouse in C57BL/6J strain. (MP4 6987 kb)

Additional file 2: Supplementary materials and methods, and tables.
This file includes information about the mice used in this study, and
tables of numbers for the survival plots. (DOCX 27 kb)

Abbreviations

ADHD: Attention deficit hyperactivity disorder; ASDs: Autism spectrum
disorders; ECG: Electrocardiogram; EEG: Electroencephalography;
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