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Abstract

Background: In China since the first human infection of avian influenza A (H7N9) virus was identified in 2013, it has
caused serious public health concerns due to its wide spread and high mortality rate. Evidence shows that bird migration
plays an essential role in global spread of avian influenza viruses. Accordingly, in this paper, we aim to identify key bird
species and geographical hotspots that are relevant to the transmission of avian influenza A (H7N9) virus in China.

Methods: We first conducted phylogenetic analysis on 626 viral sequences of avian influenza A (H7N9) virus isolated in
chicken, which were collected from the Global Initiative on Sharing All Influenza Data (GISAID), to reveal geographical
spread and molecular evolution of the virus in China. Then, we adopted the cross correlation function (CCF) to explore the
relationship between the identified influenza A (H7N9) cases and the spatiotemporal distribution of migratory birds. Here,
the spatiotemporal distribution of bird species was generated based on bird observation data collected from China Bird
Reports, which consists of 157 272 observation records about 1145 bird species. Finally, we employed a kernel density
estimator to identify geographical hotspots of bird habitat/stopover that are relevant to the influenza A (H7N9) infections.

Results: Phylogenetic analysis reveals the evolutionary and geographical patterns of influenza A (H7N9) infections, where
cases in the same or nearby municipality/provinces are clustered together with small evolutionary differences. Moreover,
three epidemic waves in chicken along the East Asian–Australasian flyway in China are distinguished from the phylogenetic
tree. The CCF analysis identifies possible migratory bird species that are relevant to the influenza A(H7N9) infections in
Shanghai, Jiangsu, Zhejiang, Fujian, Jiangxi, and Guangdong in China, where the six municipality/provinces account for
91.2% of the total number of isolated H7N9 cases in chicken in GISAID. Based on the spatial distribution of identified bird
species, geographical hotspots are further estimated and illustrated within these typical municipality/provinces.

Conclusions: In this paper, we have identified key bird species and geographical hotspots that are relevant to the spread
of influenza A (H7N9) virus. The results and findings could provide sentinel signal and evidence for active surveillance, as
well as strategic control of influenza A (H7N9) transmission in China.
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Multilingual abstracts
Please see Additional file 1 for translations of the
abstract into the five official working languages of
the United Nations.

Background
The geographical spread of avian influenza viruses (AIVs)
has been and will continue to be a serious public health
concern in China. Since February 2013, the influenza A
(H7N9) with a high mortality rate in humans has been
spreading in the Yangtze River Delta and is still prevalent
in Eastern China till now [1–4]. Evidence shows that bird
migration plays an essential role in the global spread of
AIVs [5–7]. As one of the three major flyways for bird mi-
gration that pass by China (i.e., the Central Asian, East
Asian-Australasian and West Pacific migratory bird fly-
ways), the risk of avian influenza spreading in Eastern
China, including the Yangtze River Delta, the Pearl River
Delta, is especially high. Although great efforts have been
made to investigate the global spread of AIVs based on
intercontinental flyways of migratory birds [8–13], one of
the fundamental challenges is to investigate the roles
played by migratory birds in the regional/provincial
short-distance movement.
As a natural reservoir of AIVs, birds in wetlands and

aquatic environments, such as Anseriformes and Charadrii-
formes, harbour the major avian influenza viruses [14, 15].
Many bird species may share the same habitats or stop-
overs during their migration, while effective transmissions
are more likely to happen through the faecal-oral route via
surface waters [16]. Active surveillance of bird infections
could provide “early-warning” for the introduction of AIVs
into new regions. To combat the growing threat of bird flu,
many studies have been conducted to estimate the preva-
lence of various AIVs in different bird species and localities.
For example, Olsen et al. have reviewed the global preva-
lence of influenza A viruses in wild birds, such as ducks,
gulls, terns, and waders [17]. Pawar et al. have estimated
the prevalence of H5N1 in wild birds in India [18]. Bi et al.
have collected and isolated influenza H5N1 viruses from
sick or dead birds in the Sanmenxia Reservoir Area of
China in 2015 [19]. However, there is still a lack of system-
atic research on the influenza A (H7N9) virus with respect
to all bird species across the country.
In 2005, a global network for AIVs among wild birds

nationally and internationally was appealed to the
United States Congress to promote the worldwide sur-
veillance. Since then, many genetic sequence databases,
such as the Global Initiative on Sharing All Influenza
Data (GISAID, https://www.gisaid.org/), have been de-
signed to encourage the sharing of all influenza type
viral sequences. In doing so, phylogenetic analysis can
be implemented to uncover genomic characterization
and molecular evolution of the circulating AIVs [20–23].

Based on the coalescent theory [24, 25], the demo-
graphic history of a host population, such as the effective
population size, can further be reconstructed from a
phylogenetic tree by assuming different parametric
models on the population dynamics [26–30]. More im-
portantly, with the high throughput sequencing technol-
ogy, it would also be possible to integrate genetic
variability and evolution of AIVs with virus-host ecology
(e.g., migratory birds). Along this line, many phylogeo-
graphic studies have been conducted to analyse the rela-
tionship between global spread of AIVs and migration
flyways of migratory birds [10, 31–33]. However, because
most of the isolated viral sequences in GISAID are an-
notated without precise geographical location and spe-
cific virus-host information, such studies can only be
implemented at a coarse-grained scale.
In this paper, we aim to identify the possible bird spe-

cies and geographical hotspots that are relevant to the
spread of influenza A (H7N9) at a finer-grained scale in
China. First, we collect all gene sequences of H7N9 from
GISAID, which are isolated in chicken in China from
January 1, 2013 to December 31, 2017. Accordingly,
phylogenetic trees are constructed using the MEGA soft-
ware to explore their evolutionary relationship in terms
of geographical locations. Then, based on 157 272 obser-
vation data of 1145 bird species in China, we adopt the
cross correlation function (CCF) to investigate the rela-
tionship between the identified influenza A (H7N9)
cases in chicken and the spatiotemporal distribution of
migratory bird species. In doing so, we identify a list of
possible bird species that are relevant to the isolated in-
fluenza A (H7N9) cases in six municipality/provinces
with high incidences. Finally, we explore and visualize
geographical hotspots of those identified bird species.
Both the identified bird species and their geographical
distribution would provide sentinel signal and evidence
for the implementation of active surveillance in bird flu
intervention and control.

Methods
Data collection and pre-processing
Full- or partial- length hemagglutinin (HA) and neur-
aminidase (NA) sequences of influenza A (H7N9) virus
isolated in chicken in China were collected from the Glo-
bal Initiative on Sharing All Influenza Data (GISAID)
from January 1, 2013 to December 31, 2017. Each se-
quence was associated with an isolated ID, and annotated
with a location (i.e., municipality or province) and the date
of isolation. In this paper, we adopted HA and NA sub-
types with lengths greater than or equal to 1683 and 1398,
respectively, to construct the phylogenetic trees. After re-
moving duplicated sequences, 495 sequences remained for
further analysis. All the 495 aligned sequences were in-
cluded in Additional file 2.

Shi et al. Infectious Diseases of Poverty  (2018) 7:97 Page 2 of 11

https://www.gisaid.org


The bird observation data was collected from a citizen
science project, where thousands of bird-watching enthusi-
asts and experts share their observations through an online
forum. Totally, there are 1145 bird species observed in
China. Each record is about one bird species, which in-
cludes the scientific name, the locality (i.e., the longitude
and latitude), the date of observation, the number of ob-
served birds and the observer’s name. All observation re-
cords were checked by bird experts based on the biological
nature of each bird species, and then published in China
Bird Report annually. Since many observers may watch
birds at the same location and date, in this case, only one
record with the largest number of observed birds was
retained, and all other reduplicated records are filtered out
from the dataset. After removing duplications, there
remained 157 272 observation records during the year 2008
and 2009. Further, with the help of bird experts, we selected
150 common migratory birds from the totally 1145 bird
species for CCF analysis (see Additional file 3). All observa-
tion data were spatially aggregated by municipality/prov-
inces, and temporally aggregated by weeks in a year.

Phylogenetic analysis
The HA and NA segments of selected influenza A
(H7N9) virus were first aligned by CLUSTAL W algo-
rithm implemented in Clustal v.2.1 (http://www.clusta
l.org/download/current/) [34]. Then, the HA and NA
fragments were intercepted to be the same length in
BioEdit v.7.0.5 (http://www.mbio.ncsu.edu/bioedit/bioe
dit.html) [35], and spliced in MEGA v.6.0 (https://
www.megasoftware.net/mega.php) [36]. Phylogenetic
trees of the spliced HA and NA sequences were con-
structed using the neighbour-joining (NJ), maximum
parsimony (MP), and maximum likelihood (ML) ap-
proaches. The nucleotide substitution model was deter-
mined using Akaike Information Criterion (AIC) in
jModelTest v.2.1.10 (https://github.com/ddarriba/jmo
deltest2) [37]. With respect to our dataset, the General
Time Reversible model assuming a rate variation across
sites according to a gamma-shaped distribution with in-
variant sites was selected. For the NJ approach, the com-
posite maximum likelihood algorithms were used to
estimate the transversion/transition bias and the nucleo-
tide substitution patterns. For the ML approach, the heur-
istic searching strategy for the best topology was started
via five random BioNJ trees, and those trees were moved
by nearest-neighbour interchange. Tree reliabilities were
tested with 1000 bootstrap replicates to yield a majority
consensus tree. To clearly demonstrate the reconstructed
phylogenetic tree in this paper, branches with bootstrap
values less than 0.6 were filtered out. Then, the remaining
184 gene sequences (see Additional file 4 for detail) were
reconstructed using the NJ, MP, and ML approaches, re-
spectively. Moreover, a date-calibrated tree is also

generated to reveal the epidemic waves of influenza A
(H7N9). Finally, the NJ tree was visualized, edited and
coloured in FigTree v.1.4.3 (https://www.megasoftware.
net/mega.php) and iTOL (iTOL: http://itol.embl.de/).

Cross correlation analysis
In statistics, cross correlation was used for measuring of
the similarity between two series as a function of the dis-
placement of one relative to the other. In this paper, the
sample cross correlation function (CCF) was adopted to
identify lags of observed migratory birds that might be
useful predictors of influenza A (H7N9) incidences. A
positive Lag value represented the correlation between
the amount of observed bird species at time t and the
number of influenza A (H7N9) cases at time t + Lag.
The CCF command in R software (https://www.r-projec
t.org/) was ccf(x, y, Lag), where x and y represent time
series of H7N9 cases and migratory birds, respectively.
Specifically, the CCF analysis was implemented to ana-
lyse bird observation data collected from Shanghai and
five provinces (Jiangsu, Zhejiang, Fujian, Jiangxi, and
Guangdong) with high H7N9 infections. One reason to
select these six municipality/provinces was that they are
geographically close to each other in Eastern China, and
the number of identified H7N9 cases in these areas
accounted for 91.2% of the total number of isolated
cases in chicken in China based on the collected data
from GISAID. Therefore, it would be helpful to investi-
gate the possible bird species and hotspots in a
finer-grained scale in these areas for the implementation
of active surveillance on the potential epidemics of influ-
enza A (H7N9). The identified hotspots in specific mu-
nicipality/province were illustrated using the kernel
method in ArcGIS v10.5 (Environmental Systems Re-
search Institute, Inc., RedLands, California, USA).

Results
Figure 1 demonstrates the phylogenetic tree constructed
using the NJ approach based on 184 intercepted HA and
NA segments of influenza A (H7N9) virus in China dur-
ing January 1, 2013 to December 31, 2017. Each leaf is
labelled with the name abbreviation of a sequence,
where the first two letters stand for the isolated munici-
pality/province, and the last two numbers stand for the
year of isolation. The sequences isolated from the same
municipality/provinces are marked with the same colour.
Bootstrap values greater than 0.5 are shown at the
branches. It can be observed that most sequences iso-
lated at the same municipality/province and in the same
year are clustered together (e.g., sequences isolated in
Guangdong with brown colour in Fig. 1). Note that in
this paper, we only use the NJ tree for illustration, simi-
lar results can be obtained using MP and ML ap-
proaches (see Additional files 5 and 6).
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With respect to geographical spread of influenza A
(H7N9) virus, the phylogenetic tree in Fig. 1 (and the
date-calibrated tree in Additional file 7) reveals that
there exist three major epidemic waves in chicken in
Southeast China. The first wave happened mainly in
Zhejiang and Jiangsu (marked in green and blue at the
top-right corner in Fig. 1) in the spring of 2013. After
that, the virus gradually spread to Southern China (i.e.,
Jiangxi, Fujian, and Guangdong), and broke out in
Guangdong in 2014. While the third wave happened in
almost all provinces in Eastern China from 2014 to 2017
(see subtree at the top-left corner in Fig. 1), and poten-
tially new strain of H7N9 virus emerged. These observa-
tions are consistent with Liu et al.‘s findings about
human infections of influenza A (H7N9) virus [38].
During the three epidemic waves, the sequences of

H7N9 virus have evolved and spread across Southeast
China, where migratory birds may play an important role.
Accordingly, the CCF analysis is conducted based on 150
common migratory bird species, which are selected with

the help of bird experts, to explore their correlations and
corresponding lags with respect to the identified H7N9
cases in chicken in China. Figure 2 illustrates the results
of CCF analysis for each bird species in Shanghai, Jiangsu,
Zhejiang, Fujian, Jiangxi, and Guangdong. Time series of
bird observation records with different positive lag values
are analysed, where the lags are measured by weeks. The
values of correlation coefficients greater than or equal to
0.27 are shown in different colours, while corresponding
bird species with positive lags (i.e., Lag ≤ 10) are demon-
strated in x-axis. In doing so, a list of migratory bird
species can be identified for each municipality/province
(see Additional file 8), which may be responsible for the
introduction of influenza A (H7N9) epidemics in these
areas. It can also be observed from Figs. 2 and 3 that the
CCF results and temporal distribution of identified bird
species in Jiangxi Province are different from other muni-
cipality/provinces. The reason is that besides bird migra-
tion, poultry trading is also one of the most important
reasons for geographical spread of influenza A (H7N9)

Fig. 1 Phylogenetic tree reconstructed by neighbour joining (NJ) approach based on 184 HA and NA segments of avian influenza A
(H7N9) virus. Each leaf is labelled with the name abbreviation of a sequence, where the first two letters stand for the isolated location,
and the last two numbers stand for the isolated year. Sequences isolated from the same municipality/provinces are marked with the
same colour. Bootstrap values greater than 0.5 are marked at the branches
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virus. The result suggests that deeper investigation should
be implemented to explain such differences in the future.
The observation records of identified bird species

with positive lags (Lag ≤ 5) are integrated by weeks with
respect to the date of observation in Shanghai and
other five provinces. Figure 3 demonstrates both time
series of H7N9 cases and observation records of identi-
fied bird species, which are mapped into one year start-
ing from week 40. It can be observed that there is a
strong correlation between influenza A (H7N9) cases
and the amount of identified bird species within five
weeks. Further, the CCF analysis is conducted to

evaluate the cross correlation between time series of
H7N9 cases and identified bird species in each munici-
pality/province. Figure 4 shows the analysis results,
where the dotted blue line indicates that the threshold
value of correlation coefficient is 0.27. It can be ob-
served that in each municipality/province, there is at
least one lag within five weeks with a correlation coeffi-
cient greater than the threshold.
Geographic distribution and kernel density of the

identified bird species with positive lags (Lag ≤ 5) are il-
lustrated in Fig. 5. The size of nodes in blue represents
the number of birds, while the coloured surface

Fig. 2 The results of CCF analysis for each bird species with respect to Influenza A (H7N9) cases in Shanghai and other five provinces. The values
of correlation coefficients greater than or equal to 0.27 are shown in different colours. Bird species with positive lags Lag≤ 10 are demonstrated
in x-axis for each municipality/province, where the lags are measured by weeks
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represents the density magnitude of bird species after
smoothing. In this paper, we focus mainly on the geo-
graphical spread of influenza A (H7N9) virus in Eastern
China along the East Asian-Australasian flyway. Based
on the locality of observation, the geographical hotspots
of bird species that are relevant to the introduction of
H7N9 virus are further investigated within each munici-
pality/province. Figure 6 illustrates the potential hot-
spots of H7N9 epidemics based on the geographical
distribution of identified migratory bird species in
Shanghai, Jiangsu, Zhejiang, Fujian, Jiangxi, and Guang-
dong. It can be observed that most hotspots are located
either along the coastal areas or around large lakes. For
example, there are hotspots in Shanghai, Jiangsu,
Zhejiang, Fujian, and Guangdong that are along the east
coast of China. In Jiangsu Province, there is another hot-
spot that is around Taihu Lake and close to Wuxi City
and Suzhou City. In Jiangxi Province, the major hotspot
is located around Poyang Lake.

Discussion
In order to achieve active surveillance of AIVs in China, it
would be critical to systematically identify relevant bird spe-
cies and their geographical hotspots at a finer-grained scale.
In this case, one of the most important issues is to investi-
gate the migratory patterns of various bird species. Trad-
itionally, the bird banding method is widely used by
ornithologists to help in keeping track of the movements of
bird species and their life history. However, it is very costly
and time-consuming to recycle bird rings. Usually, only
about 0.3% rings can be recycled. With the development of
GPS technologies, the satellite tracking method has been
widely used in tracing bird migration pathways [39]. How-
ever, because the equipment and signal recovery are very
expensive, it cannot be widely applied to monitor a large
number of bird species. In recent years, based on the con-
cept of citizen science, it is possible to collect huge amounts
of bird observation data from a large-scale area with the
help of thousands of bird-watching enthusiasts through

Fig. 3 Time series of isolated cases of influenza A (H7N9) and observations of identified migratory birds with positive lags Lag≤ 5 by weeks in
Shanghai and other five provinces. Both H7N9 cases and observation data of identified migratory bird species are aggregated by weeks and
mapped into one year with respect to their dates of isolation and observation. The x-axis is started from week 40
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Fig. 5 The geographic distribution of identified bird species with positive lags Lag≤ 5 in China. The size of the nodes in blue represents the total
number of observed bird species. The coloured surface represents the density magnitude of bird species after smoothing. The map is generated
using ArcGIS v.10.5

Fig. 4 The results of CCF analysis for identified bird species with positive lags Lag≤ 5 in Shanghai and other five provinces. The dotted blue line
indicates that the value of correlation coefficient is 0.27. A positive Lag value represents the correlation between the amount of observed bird
species at time t and that of H7N9 cases at time t + Lag, where Lag is measured by weeks
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crowd-sourcing data collection platforms [40, 41]. For ex-
ample, the Cornell Lab of Ornithology launched a platform
(eBird: https://ebird.org) and several mobile applications to
collect and share bird observation data all over the world.
Similarly, in China, thousands of bird-watching enthusiasts
have spontaneously set up a China Bird Watching Network
and shared their observations through the Bird Record
Center of China (http://www.birdreport.cn/). Since 2003,
the China Ornithological Society has published several an-
nual reports, namely China Bird Report, to share complied
and vetted bird records based on birdwatchers’ observa-
tions [42]. Accordingly, it is possible for us to analyse the
spatiotemporal distribution and migration patterns of bird
species at a finer-grained scale and within a larger geo-
graphical area [43–46].
Recently, with the development of high-throughput se-

quencing technology, it is becoming easier to isolate gene
sequences of AIVs. The GISAID provides a global

platform for sharing avian influenza gene sequences,
which are annotated with some additional information,
such as the provincial location and the date of isolation.
Along this line, many phylogeographic studies have fo-
cused on investigating global footprint of influenza A virus
(e.g., H5N1) [10, 31–33]. However, because most annota-
tions of AIVs in GISAID do not provide either precise lati-
tude and longitude coordinates of isolation sites or
species-specific information (e.g., bird names) associated
with avian isolates, phylogeographic analysis can only be
implemented at a coarse-grained scale. It has been argued
that to promote more through phylogeographic study, it
would be better to provide as precise information about
avian influenza isolates as possible for GISAID. To make
up for such limitations, in this paper, we have identified
key migratory birds from 1145 bird species in China. Spe-
cifically, the spatiotemporal distribution of identified key
bird species can perform as a prior for date calibration

Fig. 6 The geographical hotspots of identified bird species with positive lags Lag≤ 5 in Shanghai and other five provinces. The size of nodes in
blue represents the total number of identified bird species in each municipality/province. The coloured surface represents the density magnitude
of bird species after smoothing. The map is generated using ArcGIS v.10.5
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and location estimation in Bayesian phylogeographic
methods [47], which can further help understand the
spread of AIVs at a finer-grained scale.
During breeding or winter seasons, many bird species

aggregate at favourable stopovers or habitats with high
population density, which are critical for transmission of
AIVs among different migratory bird species, and
between migratory and domestic fowls [17]. Infected
migratory birds can then move to other locations, caus-
ing new infections elsewhere. In view of this, such gath-
ering locations of bird species are more likely to be the
ancestral locations, where reassortment or recombin-
ation of different AIVs takes place. In this case, the
crowd-sourcing data collection platform for bird species
all over China provide a new viewpoint to predict and
monitor the spread, recombination, and reemergence of
AIVs among migratory birds. Specifically, based on the
collected 157 272 observation records of 1145 bird spe-
cies in China, we have conducted an in-depth investiga-
tion on the relationship between the spatiotemporal
distribution of migratory birds and historical epidemics
of influenza A (H7N9). A list of key bird species as well
as their geographical hotspots have been identified for
the implementation of active surveillance about influ-
enza A (H7N9) at high epidemic areas. In the future, it
is expected to integrate bird observation data in China
with more comprehensive records from eBird. With the
joint efforts of ornithologists, epidemiologists and mo-
lecular biologists, a thorough investigation about AIVs
in birds all over the world can be conducted to assess
the potential intercontinental movement of influenza A
(H7N9) virus, as well as the possible introduction path-
way of novel AIVs across continents [48].
It is important to point out that due to the data avail-

ability at this moment, there still have several limitations
in this paper. First, we only explored the relationship be-
tween the spatiotemporal distribution of migratory birds
and the spread of influenza A (H7N9) cases in chicken
in China. In the future, it would be more meaningful to
further explore the relationship between bird migration
and the spread of other AIVs (e.g., H5N1). Second, the
bird observation data is imbalanced in China. It can be
observed from Fig. 5 that there are more observation re-
cords along the East Asian–Australasian flyway (i.e., the
Eastern China), but relatively fewer observations along
the Central Asian flyway (i.e., the Western China). How-
ever, it does not indicate that the number of bird species
in Eastern China is larger than that in Western China.
One possible reason is that peoples in Eastern China
have relatively higher income such that they are more
likely to be bird-watching enthusiasts. With the help of
the citizen science project, it is expected that more bird
observation data will be collected in the future. In doing
so, the impact of the data imbalance problem should be

negligible. Third, in this paper, we only identified geo-
graphical hotspots in six municipality/provinces, which
account for 91.2% of the total number of isolated H7N9
cases in chicken in GISAID. By unifying both molecular
evolution of AIVs and spatial ecology of migratory birds,
it would be possible to carry out a systematic analysis on
different types of AIVs in China to investigate the risk of
newly emerging AIVs through recombination and/or
reassortment. To achieve this goal, we make an appeal
to colleagues in the study of AIVs that it is better to an-
notate gene sequences of avian isolates with detailed in-
formation (e.g., specific bird names and GPS locations)
when uploading to the GISAID database. Finally, it is
important to note that although we have identified key
bird species and geographical hotspots based on CCF
analysis, it does not mean that the H7N9 cases in corre-
sponding locations are introduced by migratory birds.
The reason is that poultry trading is also one of the most
important reasons for the geographical spread of influ-
enza A (H7N9) virus. In this case, it would be necessary
to involve poultry trading data into future analysis.

Conclusions
In this paper, we have systematically analysed the re-
lationship between geographical spread of influenza A
(H7N9) epidemics and spatiotemporal distribution of
bird species in China. Specifically, we have identified
key bird species and geographical hotspots that are
relevant to the introduction of H7N9 epidemics in six
major epidemic areas in China (i.e., Shanghai, Jiangsu,
Zhejiang, Fujian, Jiangxi, and Guangdong). First, we
have conducted phylogenetic analysis on both HA
and NA segments of influenza A (H7N9) virus iso-
lated in chicken in China from 2013 to 2017. The re-
constructed phylogenetic tree reveals three major
epidemic waves in chicken in Eastern China along the
East Asian-Australasian flyway of migratory birds.
Second, with the help of a citizen science project, we
have collected more than 157 272 bird observation re-
cords of 1145 bird species all over China using a
crowd-sourcing data collection platform. By imple-
menting cross correlation analysis, we have identified
the key species from 150 common migratory bird
species for each municipality/province, whose tem-
poral distribution are strongly relevant to time series
of H7N9 cases within five weeks. Accordingly, we
have finally identified potential hotspots of H7N9 epi-
demics based on the spatial distribution of identified
migratory bird species in Shanghai, Jiangsu, Zhejiang,
Fujian, Jiangxi, and Guangdong. The findings in this
paper would help public health authorities to imple-
ment active surveillance and control during the epi-
demic season of AIVs.
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