Skip to main content
. 2018 Sep 13;4(5):437–447. doi: 10.1002/osp4.297

Table 5.

Regression equations giving the best prediction of MRI VFM

Model Equation Adjusted R 2 SEE %SEE
1 MRI VFM L4–L5 = (0.229 * DXA VPFa) + (0.315 * WC) − (0.534 * age) − 6.26 0.71 3.3 22.9
2 MRI VFM sumb = (1.410 * DXA VPFa) + (1.372 * WC) − (4.796 * age) − 0.35 0.70 16.7 25.3
3 MRI VFM L4–L5 = (0.136 * DXA APFa) + (0.308 * WC) − (0.428 * age) − 10.00 0.72 3.2 22.4
4 MRI VFM sumb = (1.206 * DXA APFa) + (1.017 * WC) − (3.139 * age) − 24.62 0.74 15.6 23.6
5 MRI VFM L4–L5 = (0.215 * DXA TBPFa) + (0.280 * WC) − (0.485 * age) − 9.33 0.72 4.0 27.8
6 MRI VFM sumb = (1.670 * DXA TBPFa) + (0.927 * WC) − (3.990 * age) − 18.60 0.74 15.6 23.6

Model numbers are arbitrary.

a

DXA measures of adiposity: DXA APF, dual‐energy X‐ray absorptiometry android per cent fat; DXA TBPF, dual‐energy X‐ray absorptiometry total body per cent fat; DXA VPF, dual‐energy X‐ray absorptiometry visceral per cent fat. DXA android fat variables were measured using automatic ROI for android region.

b

MRI VFM sum = sum of four slices (L1 − L2 + L2 − L3 + L3 − L4 + L4 − L5).

DXA, dual‐energy X‐ray absorptiometry; MRI, magnetic resonance imaging; ROI, region of interest; SEE, standard error of the estimate; VFM, visceral fat mass; WC, waist circumference.