Table 3.
Ranked normalized scores for each machine learning algorithm by metric (average over datasets for the validation dataset). AdaBoost (ADA); Bernoulli Naive Bayes (BNB); Random forest (RF); support vector classification (SVC); Deep Neural Networks (DNN).
| Algorithm | ACC | AUC | Cohen’s Kappa | F1-Score | MCC | Precision | Recall | Mean | Rank |
|---|---|---|---|---|---|---|---|---|---|
| RF | 0.90 | 0.84 | 0.75 | 0.58 | 0.75 | 0.59 | 0.62 | 0.72 | 1 |
| DNN 2 | 0.90 | 0.73 | 0.74 | 0.57 | 0.75 | 0.65 | 0.55 | 0.70 | 2 |
| SVC | 0.91 | 0.81 | 0.73 | 0.55 | 0.74 | 0.61 | 0.55 | 0.70 | 3 |
| DNN 5 | 0.90 | 0.73 | 0.74 | 0.57 | 0.75 | 0.65 | 0.55 | 0.70 | 4 |
| DNN 4 | 0.90 | 0.73 | 0.74 | 0.57 | 0.75 | 0.65 | 0.55 | 0.70 | 5 |
| DNN 3 | 0.90 | 0.73 | 0.74 | 0.57 | 0.75 | 0.63 | 0.55 | 0.70 | 6 |
| BNB | 0.84 | 0.80 | 0.71 | 0.54 | 0.72 | 0.51 | 0.64 | 0.68 | 7 |
| ADA | 0.90 | 0.81 | 0.71 | 0.52 | 0.72 | 0.57 | 0.51 | 0.68 | 8 |