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Summary
White mould of soya bean, caused by Sclerotinia sclerotiorum (Lib.) de Bary, is a necrotrophic

fungus capable of infecting a wide range of plants. To dissect the genetic architecture of

resistance to white mould, a high-density customized single nucleotide polymorphism (SNP)

array (52 041 SNPs) was used to genotype two soya bean diversity panels. Combined with

resistance variation data observed in the field and greenhouse environments, genome-wide

association studies (GWASs) were conducted to identify quantitative trait loci (QTL) controlling

resistance against white mould. Results showed that 16 and 11 loci were found significantly

associated with resistance in field and greenhouse, respectively. Of these, eight loci localized

to previously mapped QTL intervals and one locus had significant associations with resistance

across both environments. The expression level changes in genes located in GWAS-identified

loci were assessed between partially resistant and susceptible genotypes through a RNA-seq

analysis of the stem tissue collected at various time points after inoculation. A set of genes

with diverse biological functionalities were identified as strong candidates underlying white

mould resistance. Moreover, we found that genomic prediction models outperformed

predictions based on significant SNPs. Prediction accuracies ranged from 0.48 to 0.64 for

disease index measured in field experiments. The integrative methods, including GWAS, RNA-

seq and genomic selection (GS), applied in this study facilitated the identification of causal

variants, enhanced our understanding of mechanisms of white mould resistance and provided

valuable information regarding breeding for disease resistance through genomic selection in

soya bean.

Introduction

Sclerotinia sclerotiorum (Lib.) de Bary has a broad host range and

is documented to infect at least 408 plant species (Boland and

Hall, 1994). On soya bean, S. sclerotiorum causes the disease

Sclerotinia stem rot that also known as white mould. It causes

yield loss through the reduction of seed number and weight as

well as seed quality (Hoffman et al., 1998). The pathogen can

persist in the field through the production of sclerotia, a resting

body for the fungus. Additionally seeds can be infected and act as

a source of inoculum particularly to noninfested fields (Danielson

et al., 2004; Yang et al., 1999). In 1994, 2004 and 2009, it

ranked second to soya bean cyst nematode on total yield lost in

US soya bean production (Koenning and Wrather, 2010; Wrather

and Koenning, 2006; Wrather et al., 1997).

Fungicide management of white mould can be difficult to

achieve, and complete control is not possible, with reductions in

disease incidence ranging from 0 up to 60% (Peltier et al., 2012).

To reduce inoculum and create unfavourable conditions for fungal

and disease development, several agronomic practices such as

reduced tillage and crop rotation have been suggested (Kurle et al.,

2001; Peltier andGrau, 2008;Workneh andYang, 2000), but none

of them has been completely effective. Host plant resistance is the

most economical and environmental friendly way of controlling

soya beanwhitemould incidence to prevent yield loss. Although no

soya bean cultivars with complete resistance to white mould have

been developed through conventional breeding, soya bean plant

introductions (PIs) and varieties showing differences from suscep-

tible to partially resistance to the pathogen have been reported

(Chen and Wang, 2005; Kim et al., 1999). It is important for

breeders to understand the genetics of resistance available in soya

bean germplasm to develop varieties with greater resistance.

Quantitative trait loci (QTL) mapping in bi-parental derived

population is a method commonly used to dissect the genetics

basis of white mould resistance in soya bean. The previous

mapping studies have identified a total of 103 QTLs (http://

www.soybase.org/), which distributed on 17 chromosomes (LGs)

of soya bean. Among these QTLs, only six loci were identified

under field conditions (Huynh et al., 2010; Kim and Diers, 2000)

and the rest were identified under greenhouse or growth

chamber studies with various artificial inoculation methods

(Arahana et al., 2001; Guo et al., 2008; Vuong et al., 2008).

Unfortunately, these tests under controlled conditions produced a

poor correlation with the resistance observed in the field (Guo
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et al., 2008; Nelson et al., 1991). Moreover, such inoculation

techniques cannot be used for large-scale application in the field.

It is probably because different isolates, inoculation techniques

and resistance sources were used, most of those QTLs showed

limited reproducibility. Therefore, there is still a great need to map

and identify white mould resistance genes in soya bean.

A large-scale shotgun sequencing of Glycine max var. Williams

82 (2n=40) began in the middle of 2006 and was completed

early in 2008. Approximately 978 million base pair (Mb) is

captured in 20 chromosomes, with a small additional amount of

mostly repetitive sequence in unmapped scaffolds (Schmutz

et al., 2010). With the advent of high-throughput genotyping

technologies, such as resequencing and microarray, GWAS has

become an affordable and powerful tool for dissecting complex

traits in soya bean. To date, GWAS has been performed for the

dissection of soya bean traits, such as disease resistance (Bao

et al., 2014; Han et al., 2015; Wen et al., 2014), yield, protein

and oil content in soya bean (Hao et al., 2012a; Hwang et al.,

2014; Sonah et al., 2014; Wen et al., 2015). As for white

mould, a GWAS identified three genomic regions related to

resistance on a panel of 101 soya bean PIs screened under

controlled conditions. The strongest association was found on

Chromosome 3 (Iquira et al., 2015). With a germplasm panel of

130 breeding lines from eastern Canada, the same research

group found that the strongest association switched to Chro-

mosome 15 and that none of the QTLs identified in these two

association studies overlapped (Bastien et al., 2014). Addition-

ally, a GWAS was conducted to identify loci associated with

stem pigmentation, an indicator of resistance to white mould, in

330 diverse soya bean landraces; a major QTL on Chromosome

13 were identified as associated with stem pigmentation (Zhao

et al., 2015). Despite these results, GWAS does not necessarily

lead directly to the gene(s) at a given locus because of

insufficient marker density and linkage disequilibrium. This raises

the question of whether GWAS data sets can yield additional

insights when combined with other data modalities. Recently,

interrogating the significant SNPs identified from GWAS for

associations with gene expression data (Hao et al., 2012a,b;

Hernandez et al., 2012) has been employed to interpret GWAS

results.

With this background in mind, two diverse panels consisting of

405 soya bean PIs and 905 improved lines were evaluated for

response to white mould in greenhouse and field environments.

With employing high-density SNP genotyping data and RNA-seq

data, our study aimed (i) to identify loci associated with resistance

to white mould via GWAS, (ii) to explore candidate genes located

at GWAS-identified loci through differential expression analyses

and (iii) to assess the potential of marker-based prediction model

as a new approach in soya bean breeding. We believe that

genetic dissection in two different germplasm panels will provide

complementary information for understanding of mechanisms

underlying white mould resistance.

Results and discussion

Phenotypic characterization of the two panels

Greenhouse evaluations of the two panels of germplasm for

resistance to white mould revealed a broad range of resistance

levels (Table 1). As a mycelial inoculation method was used to

assess the resistance level of each line in a greenhouse under the

conditions facilitating disease development, severe disease symp-

toms were observed across all greenhouse trials. As can be seen

in Figure S1, the distribution of mortality data was skewed

towards susceptible. However, live node (un-infested node)

number covered a broad range (0 to 4) with normal distribution

in both panels. Resistant check AxN-1-55 showed more live nodes

than the average (1.67 and 2.0), whereas the susceptible check

Olympus developed much longer lesions with no live nodes

remaining (Figure S1).

In field tests, averaged over 2 years, a large variation in white

mould resistance was also observed across assayed soya bean

accessions in both panels. Disease severe index (DSI) had a mean

of 31.2 and 30.8 for PIs and improved lines, respectively, with

more than a 20-fold difference among the resistant and suscep-

tible lines (Table 1, Figure S2). ANOVA for the two disease indices,

field derived DSI and greenhouse derived number of live nodes,

indicated that the factors of accession, year and accession by year

had significant effects (Table 1). The broad-sense heritability of

DSI was 0.63 and 0.51 for improved lines and PIs, respectively,

suggesting that genetic variability may still play a substantial role in

white mould resistance under significant G 9 E.

A previous study demonstrated that maturity groups (MGs)

significantly affected disease incidence (Yang et al., 1999). In the

present study, we did find negative correlation between maturity

and DSI. However, the correlation was insignificant and likely was

due to limited coverage of MGs (MGI to MG III) among the tested

lines. Nevertheless, there were significant (a = 0.05) and positive

correlations between lodging and DSI in field trials for both

panels. Significant correlations were also observed for DSI

between the 2014 and 2015 field trials for both panels.

Meanwhile, DSI had a lower (r = �0.22 in 2014, r = �0.12 in

2015) but statistically significant correlation (P < 0.05) with live

node number measured in the greenhouse for improved lines

(Table S1). No statistically significant correlation was observed

between DSI and live node number for PIs (Table S1).

Polymorphic marker, patterns of linkage disequilibrium
and profile of population structure

Profiles of 52 041 SNPs were characterized in 405 soya bean

landraces and 915 improved lines with SoySNP50K BeadChip.

After quality control, a total of 31 600 and 35 708 SNPs passed

the filters and were used in linkage disequilibrium (LD) analysis

and GWAS for the improved lines and PIs, respectively. Moreover,

population structure analysis was based on 4549 SNPs with minor

allele frequency (MAF) >20% and physical distance >60 kb.

As the decay of LD and population structure of the two panels

were characterized in our previous published paper (Wen et al.,

2015), herein we conducted the corresponding analysis for the

subsets of the two panels used in field trials. Decay of LD over

increasing physical distance is illustrated in Figure 1. The LD rate,

measured by r2 declining to half its maximum value, was 240 kb

and 370 kb in the two subsets of PIs and improved lines,

respectively. These LD decay estimates are larger than previously

published values in landraces of 187 kb and in improved lines of

233 kb (Wen et al., 2015). This difference may be attributed to

curtailing of sample size in this study, as a similar phenomenon

was observed in maize (Yan et al., 2009). The estimates of LD

decay herein suggest at least 2700 (1000 Mb/370 kb) to 4200

(1000 Mb/240 kb) markers will be needed for whole genome

scanning in soya bean, as the soya bean genome is known to

extend slightly over 1000 Mb. The number of polymorphic

markers in both panels exceeds 30 000, which ensure the

coverage of most LD blocks and a reasonable power to identify
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common variants of large effect associated with white mould

resistance. Note that LD decay varies across different chromo-

somes, and particularly within heterochromatic or euchromatic

chromosome regions. Our previous study demonstrated a large

variation in extent of LD among chromosomes with a range from

100 kb to 430 kb (Wen et al., 2015). Moreover, Hwang et al.

(2014) identified that LD decay rate in heterochromatic and

euchromatic chromosome regions was 360 kb and 9600 kb,

respectively.

As population structure can result in spurious associations, it

has constrained the use of association studies in human and plant

genetics (Yu et al., 2006). Neighbour-joining (NJ) cluster analysis

was performed on the two subsets to explore the relatedness

among the sampled accessions. As for the NJ tree, no clear

grouping was observed among PIs, whereas a few genotypes

from the improved lines showed close relatedness and subtle

grouping trends (Figure 2). These results indicate a lower level of

population structure in PIs than that in improved lines. The chi-

square test was used to test whether the SNP data-based

subgroups were associated with geographic origins or MGs

(Table S2). The results showed very significant association

(P < 0.0001) between the two grouping factors. For example,

PIs from Japan were mainly (63%) clustered in Cluster 4, whereas

Cluster 1 contained 31 accessions, of which 19 were from

northern China; improved lines belonging to MG II dominated

Cluster 4, whereas Cluster 3 contained eight accessions, of which

all were from MG III (Table S2). These results show population

structures positively correlated with geographic origins, which

validated the previous analyses (Hao et al., 2012a,b; Wen et al.,

2014, 2015) and provide additional insights into the fine-scale

patterns of ancestry resulting from geographic differentiation and

regional soya bean breeding efforts. Taken together, these results

highlight the need to account for population structure when

conducting association analyses in soya bean.

GWAS for white mould resistance

GWAS was conducted using the phenotypic variation data from

greenhouse and field trials in a mixed linear model (MLM), which

accounts for both population structure (top four principal

components) and familial relatedness (K matrix). The MLM model

resulted in a good approximation to expected cumulative

distribution of P value (Figure S3). A total of 21 SNPs significantly

associated with the number of live nodes were identified (Table 2

and Figure 3) from the greenhouse evaluations. Given that some

of these SNPs showing strong LD with each other and could not

be considered as separate loci, all of these SNPs were clumped

using LD block as a criterion to define major QTL. After the

clumping of SNPs, 11 significant loci scattered across nine

chromosomes were identified (Table 2). The peak SNPs at the

identified loci explained approximately 24.6% and 22.1% of the

total phenotypic variance in the improved lines and PIs, respec-

tively. In the panel of improved lines, the locus with the largest

effect (R2 = 5.1%) comprised four SNPs covering 44.5 kb around

7.2 Mb on Chromosome 16. In the panel of PIs, the locus most

significantly associated (P value = 4.7 9 10�6) with number of

live nodes comprised six SNPs covering 270 kb at 36.7 Mb on

Chromosome 7.

We compared the positions of the significant SNPs identified in

this study with the positions of the QTL reported from previous bi-

parental and association mapping studies. Of the 11 loci we

detected in the greenhouse trials, three overlapped with QTL

previously identified frombi-parentalmapping studies (Table 2). Of

the 16 loci we detected in the field trials, four reside within large

intervals of QTL reported from previous bi-parental mapping

studies, and one (Chr. 15 at 12.3 Mb) locateswithin a small interval

(from 12.2 to 13.2 Mb delimited by 2 SNPs) identified by a previous

GWAS forwhitemould resistance in soya bean (Iquira et al., 2015).

As for the field trials data, 26 SNPs around 16 loci were

significantly associated with DSI (Table 3 and Figure S4). These

loci scattered across 12 chromosomes, and the peak SNPs at the

identified loci explained approximately 45.6% and 51.7% of the

total phenotypic variance in improved lines and PIs, respectively.

In the panel of improved lines, the locus with the largest effect

(R2 = 8.2%) comprised of two SNPs (ss715605011 and

ss715605026) covering 190 kb around 49.5 Mb on Chromo-

some 9. In the panel of PIs, the SNP showing the highest

Table 1 Descriptive statistics, ANOVA and broad-sense heritability of disease indexes in the two panels

Environment Population Min. Max. Mean Std.‡ G§ G 9 E¶ H

Field (DSI) PIs (279†) 0.0 80.7 31.2 17.7 ** ** 0.51

Improved lines (421) 3.2 77.9 30.8 15.2 ** ** 0.63

Greenhouse (No. of live node) PIs(405) 0.0 4.8 1.7 0.96 ** ns 0.52

Improved lines (915) 0.0 5.0 2.0 1.10 ** ** 0.69

ns, not significant; H, broad-sense heritability.
†No. of accessions.
‡std., standard deviation.
§G, Genotype across different environments.
¶G 9 E, Genotype 9 Year.

**Significant at P < 0.01.

Figure 1 Genome-wide average LD decay in two subsets of improved

lines and PIs. Decay of LD (measured as genotypic r2) as a function of

distance between SNPs.
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association (P value = 5.3 9 10�6) with DSI comprised of three

SNPs (ss715624027, ss715624030 and ss715624031) covering

14 kb around 29 Mb on Chromosome 16. Only one locus

(Locus #7) had a significant association with white mould

resistance across both panels. One explanation for this unex-

pected result is that the two populations had a different genetic

background and molecular mode of action underlying resis-

tance. A NJ tree showed that the panels of PIs and improved

lines formed highly differentiated populations (Wen et al.,

2015).

Characteristics of GWAS-identified genes

Given that GWAS-identified loci often fall within gene deserts or

in regions with many equally plausible causative genes, it can be

challenging to interpret GWAS signals biologically (Nica et al.,

2010). Analysis of differential gene expression has been proposed

as a promising approach to aid the interpretation (Emilsson et al.,

2008). A previous study showed that genes that were found to

have different expression patterns across varieties are most likely

to be directly or indirectly related to specific susceptibility/

resistance outcomes, while genes having differential expression

across time points are most likely general responses of the plant

to the infection, and may not lead to enhanced resistance (Calla

et al., 2009). Therefore, we sequenced transcriptomes of four

resistant and susceptible genotypes, and the following analyses

were based on different expression patterns between the two

genotypes.

Within GWAS-identified loci based on greenhouse trials, a set

of 58 genes were detected as having significant differential

expression (FDR <0.05) between resistant and susceptible geno-

types (Table S3). As for GWAS-identified loci based on field trials,

49 genes were detected as having significant differential expres-

sion (Table S3). Of those genes, about half had more abundance

in the resistant genotypes and half had more abundance in the

susceptible genotypes. Although it is hard to arrive at reasonable

conclusions about the exact mechanisms underlying white mould

resistance based on these small sets of genes, both groups should

be considered of great importance and be most likely candidates

for improving resistance level in the partially resistant genotype.

After assigning these genes to functional categories defined by

Calla et al. (2009), the sum of genes in the categories ‘Defense’,

‘Signaling’ and ‘Unknown’ accounted for more than half the

genes. Genes related to DNA/RNA processing, secondary

metabolism protein synthesis and processing and membrane

had lower percentages accounting for about 6% to 8%. Genes

related to oxidative processes, cytoskeleton and cell wall

accounted for only about 2% (Figure S5). Overall, the gene

expression profiles were similar to some extent to those of PI

194639 (partially resistant soya bean genotype) seedlings in

response to S. sclerotiorum infection (Calla et al., 2009). A

comparison between the RNA sequences of those candidates

from resistant and susceptible lines’ transcriptomes identified 32

nucleotide differences (24 single nucleotide polymorphisms

(SNPs) and eight indels). Nine of the nucleotide differences from

seven genes found result in an amino acid change in the

predicted protein sequences (Table S4). Eight indels from eight

genes create frameshift mutation.

As mentioned above, about half (58) of the differentially

expressed genes were more abundant in the resistant line’s

transcriptome compared to the susceptible line’s transcriptome.

Among these up-regulated genes, those encoding defence-

associated proteins, such as pectate lyase (Glyma.05G044000),

Figure 2 Population structures and kinship heat

map of two subsets of soya bean PIs and improved

lines. (a) NJ tree of soya bean improved lines. The

five subgroups identified from the tree are colour-

coded. (b) NJ tree of soya bean PIs. The four

subgroups identified from the NJ tree are colour-

coded. (c) A heatmap of the kinship value among

accessions of the improved lines. (d) A heatmap of

the kinship value among accessions of PIs.
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phosphatase (Glyma.09 g281900 and Glyma.14G049600) and

methyltransferase (Glyma.16 g134700), were prominent (Table 2

and Table 3). Four NB-ARC domains (Glyma.09G062100,

Glyma.16G135200, Glyma.16G135500 and Glyma.16G159200)

were also significantly higher in abundance in the resistant lines at

both time points studied. The NB-ARC domain is believed to be a

functional ATPase domain, and its nucleotide-binding state is

proposed to regulate activity of the resistance protein (van

Ooijen et al., 2008). Moreover, there were two transferase-

related genes were induced within 12 h postinoculation (hpi),

which encode acyltransferase (Glyma.04G198000) and a UDP-

glucosyltransferase (Glyma.16G158100) involved in secondary

metabolism biosynthesis. The expression of this gene implies that

a detoxification battle is being waged between host and

pathogen (Zhao et al., 2009). Previous studies found that the

secretion of oxalic acid of S. sclerotiorum can produce an

unspecific toxin (Godoy et al., 1990; Zhao et al., 2015) in host

plants. The oxalate exchanger-related gene may play a role in the

detoxification of oxalic acid. In our study, an oxalate exchanger-

related gene (Glyma.06G106100) was found located at a GWAS-

identified locus, and it was up-regulated with log2 (fold

change) = 2.8 (FDR <0.05) in the resistant line’s transcriptome

but had no significant change in susceptible line’s transcriptome

across time points. Furthermore, three additional oxalate

exchanger-related genes (Glyma.07G218800, Glyma.13G087200

and Glyma.19G159000) exhibited elevated levels of transcripts

in resistant line’s transcriptome after inoculation with

S. sclerotiorum, but did not overlap with GWAS-identified

loci. Future studies will focus on functionally validating effects

of these genes, uncovering the molecular mechanisms of complex

white mould resistance in soya bean.

Marker-assisted selection (MAS) and genomic selection
for white mould resistance

Prediction accuracies of MAS using the loci identified via GWAS

for DSI were investigated. For MAS by multiple linear regression

(MLR) method, 12 and 14 SNPs identified from improved lines

and PIs were investigated, respectively. At the same time, the

prediction accuracies estimated from an equal number of

randomly selected SNPs were used as a control. The prediction

Table 2 SNPs significantly associated with white mould resistance and a subset of candidate genes identified by RNA-seq from greenhouse trials

Panel Loci SNP Chr. Position† P Allele R2 (%) QTL‡

Subset of candidate genes§ based on RNA-seq

Name Annotation

Log2

(fold change) TP¶ (hpi)

Improved

lines

1 ss715588043 4 44059284 1.1 9 10�5 A/G 4.0 Glyma.04G184400 F-box only protein 1.5 12

2 ss715596204 7 10951353 6.1 9 10�5 A/G 3.6 1-2 Glyma.07G109600 SBP domain 1.7 12

3 ss715607404 10 44648970 6.0 9 10�5 C/A 3.2 Glyma.10G214500 Unknown 1.6 12

4 ss715616839 13 15951647 1.4 9 10�5 A/G 3.8 Glyma.13G062000 NAM protein �2.0 48

5 ss715616533 13 44344336 7.1 9 10�5 A/G 4.1 Glyma.13G355600 NAD-dependent

epimerase

1.7 12

ss715616535 13 44357080 5.9 9 10�5 T/C 4.2

6 ss715625406 16 7257702 9.1 9 10�5 T/C 4.1 Glyma.16 g071700 LOB domain

containing

2.5 12

ss715625408 16 7265131 8.1 9 10�6 C/T 5.2

ss715625410 16 7272893 3.3 9 10�5 T/G 4.5

ss715625414 16 7302240 9.7 9 10�5 A/G 4.0

PIs 7 ss715595608 6 8486465 5.6 9 10�5 T/C 4.7

ss715595609 6 8488833 1.1 9 10�5 T/G 4.6 Glyma.06G107800 Serine hydroxyl

methyltransferase

1.8 12

8 ss715597461 7 36664586 2.2 9 10�5 C/T 5.1

ss715597466 7 36679589 3.6 9 10�5 C/T 4.9

ss715597467 7 36684209 4.1 9 10�5 A/G 4.8

ss715597472 7 36740564 4.7 9 10�6 T/C 5.0 Glyma.07G199800 MAC/Perforin

domain

1.5 48

ss715597474 7 36745679 5.6 9 10�5 T/C 4.8

ss715597504 7 36936795 7.9 9 10�5 T/C 3.7

9 ss715605211 9 5948655 2.6 9 10�5 C/T 4.3 1-3 Glyma.09G062100 LRR 2.8 12

10 ss715611206 11 8151411 6.4 9 10�5 T/G 3.8 3-3 Glyma.11G107000 Amino acid

transporters

1.6 48

11 ss715612432 12 34480040 2.8 9 10�5 G/A 4.2 Glyma.12G183400 Acyl-CoA

reductase

1.6 12

†Position in base pairs for the peak SNP according to soya bean reference sequence (a2. v1) of Williams 82.
‡The position of significant SNP is located in one of the QTL intervals (defined as physical position of associated markers) as reported previously (http://www.soybase.

org/search/index.php?qtl=white mould).
§Candidate genes selected by RNA-seq analysis as having the significant changes (FDR<0.05) in abundance between partially resistant and susceptible genotypes by

comparisons of Log2 (fold change) of reads per kilobase per million (FPKM) around peak SNP.
¶TP stands for time point in hours (hours postinoculation).
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accuracies of MAS in the improved lines ranged from 0.47 to 0.51

(average of 0.50) for the 12 SNPs, which was 26% higher than

that of the random SNPs (average of 0.37) (Figure 4a). Prediction

accuracies for MAS in the PIs ranged from 0.29 to 0.36 (average

of 0.34; Figure 4a, b), which was 24% higher than those for

random SNPs (average of 0.26; Figure S6).

Based on the above analysis, it is clear that white mould

resistance in soya bean is a complex trait and controlled by

multiple genes with small effects. Our MAS model showed

relatively low prediction accuracy for DSI. Moreover, it was

recently suggested that MAS had failed to significantly improve

complex traits (Heffner et al., 2009). Therefore, it was necessary

to develop a genomic selection (GS) model for improving white

mould resistance in soya bean. The same sets of phenotypic (DSI)

and genotypic data used in the GWAS were used to assess the

genomic prediction accuracy for white mould resistance through

a fivefold cross-validation. The prediction accuracies ranged from

0.62 to 0.64 for GS in the improved lines, whereas prediction

accuracies ranged from 0.48 to 0.56 for GS in PIs (Figure 4a, b).

Although there are slight variations in prediction accuracies

among the different folds (Figure 4a, b), the GS model overall

outperforms the MAS model by ~20% in both populations. As it

is important to determine the minimum number of markers for

conducting GS in soya bean, differently sized SNP subsets were

selected and the corresponding prediction accuracies were

estimated. For both populations, there was no significant

difference in prediction accuracies for DSI when 1500

SNPs (approximately 1 SNP for every 670 kb) were used versus

when the full set of SNPs were used (Figure 4c). Note that the

prediction accuracy in the improved lines remained >0.60 till the

number of SNPs used for prediction dropped below 500.

With using a minimum of 1500 SNP markers, soya bean

breeders are likely able to improve average prediction accuracy

to 0.64, which is significantly greater than that of the

conventional MAS approach (~0.41). The Illumina SoySNP6K

iSelect BeadChip (Illumina, San Diego, CA), which consists of

5361 SNPs, has recently been developed for use specifically

within soya bean breeding/research programmes (Ping et al.,

2016; Wen et al., 2014). This BeadChip has established

advantages in soya bean, including less bioinformatics analyses,

robust and repeatable allele calling. As gBLUP was used in the

present study, the higher prediction accuracy of GS in improved

lines can be partially due to relative closer kinship among the

sampled accessions (Figure 2c). Compared with previous GS

studies in soya bean, the prediction accuracy of GS in this study

was relatively lower than that of grain yield (0.64), seed weight

(0.87) and soya bean cyst nematode (SCN) resistance (0.67)

(Bao et al., 2014; Jarqu�ın et al., 2014; Zhang et al., 2016).

The higher prediction accuracy of GS in these previous studies

could be due to higher heritabilities of the traits they

investigated.

Collectively, GWAS has been proven very successful in discov-

ering SNPs associated with complex traits, and now, it is

imperative to explore their potential functional relevance. In this

study, we successfully combined GWAS with RNA-seq

approaches to localize candidate genes underlying white mould

resistance in soya bean. The present study can serve as a good

reference for future studies on disease resistance in other plant

Figure 3 Visualization of the GWAS results in the two association panels and changes in transcript level of genes around peak SNP. (a) Manhattan plots of

the MLM for live node in PIs. The � log10 P-values from a genome-wide scan are plotted against the position on each of the 20 chromosomes. The

horizontal red line indicates the genome-wide significance threshold (FDR <0.05). (b, c) Transcript-level difference in candidate genes between SSR partially

resistant and susceptible genotypes measured by comparisons of Log2 (fold change) of FPKM around peak SNP. (d) Manhattan plots of the MLM for live

node in improved lines.
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species. Furthermore, we demonstrated that GS can be an

effective tool to increase the efficiency of breeding for disease

resistance in soya bean.

Experimental procedures

Sampling and genotyping

Two association panels were used in the present study. The first

panel consisted of 405 accessions of soya bean PIs obtained from

the USDA Germplasm Collection (hereafter named as PIs-

soybean-405, ‘PIs’ for shortened form). These accessions were

collected from multiple geographic origins including the United

States, China, Japan, Korea, Kyrgyzstan and Russia. All of those

accessions were selected to represent the variation and maintain

the diversity of the collection, based on SNPs detected by the

SoySNP50K BeadChip (Song et al., 2013) for material in maturity

groups (MG) I, II and III. The second panel consisted of 962

improved lines released from 2007 to 2012 (hereafter named as

Improved-lines-962-MSU, ‘Improved lines’ for shortened form),

which were chosen to represent a range of materials developed

for North Central production area of the United States. Further

information for each accession (selection criteria, commercial

name and origin) is given in Table S5.

DNA samples from each accession were genotyped with

SoySNP50 iSelect BeadChip (Illumina, San Diego, CA), which

consists of 52 401 SNPs. The quality of each SNP was checked

manually as previously reported by Yan et al. (2010). The SNPs

with minor allele frequency (MAF) >5% and a missing data rate

<20% were retained.

White mould resistance evaluation in greenhouse and
field trials

All soya bean accessions were grown in a greenhouse on the

campus of Michigan State University, East Lansing. The

experimental design was a randomized complete block design

with two replicates. For each accession, six plants per replicate

Table 3 SNPs significantly associated with white mould resistance and a subset of candidate genes identified by RNA-Seq from the field trials

Panel Loci SNP Chr. Position† P Allele R2(%) QTL‡

Subset of candidate genes§ based on RNA-seq

Name Annotation

Log2

(fold

change)

TP ¶

(hpi)

Improved

lines

1 ss715583735 2 6447172 3.1 9 10�5 T/C 5.3 Glyma.02G073700 Aquaporin transporter 2.5 12

2 ss715587841 4 3732457 3.4 9 10�5 C/T 5.3 Glyma.04G046600 Hypothetical protein �2.1 12

ss715587850 4 3752035 5.3 9 10�5 T/G 5.1

ss715587866 4 3797774 3.9 9 10�5 G/A 5.1

3 ss715587925 4 42372944 2.6 9 10�5 T/C 5.6 Glyma.04G184400 F-BOX 1.5 12

ss715588278 4 46104694 3.2 9 10�5 T/C 5.5

4 ss715590176 5 3924139 1.6 9 10�6 G/A 6.9 Glyma.05G044000* Pectate lyase 1.6 12

5 ss715601283 8 2789107 4.5 9 10�5 T/G 5.1 Glyma.08 g035900 Glycosyl hydrolase 1.6 12

6 ss715605011 9 49559911 3.6 9 10�5 G/A 5.3 2-18 Glyma.09G281900 O-methyltransferase 2.2 48

ss715605026 9 49749681 4.7 9 10�7 C/T 8.2

7 ss715624465 16 31915854 7.7 9 10�6 T/G 6.1 Glyma.16G158100 Glucuronosyltransferases 2.0 48

8 ss715630705 18 43030373 1.2 9 10�5 T/C 6.0 Glyma.18G177400 Laccase 2.0 12

PIs 9 ss715590828 5 33208876 5.9 9 10�5 T/C 5.2 2-1 Glyma.05G138800 Cytochrome b 1.8 12

10 ss715596286 7 10514582 4.6 9 10�5 T/G 5.3 1-2 – – – –

11 ss715607488 10 45331299 2.3 9 10�5 C/T 5.8 Glyma.10G221700 Solute carrier 1.5 12

12 ss715618590 14 3852549 6.6 9 10�5 C/T 6.8 Glyma.14G049400 Protein binding 1.7 12

ss715618599 14 3878273 3.7 9 10�5 A/G 5.9

ss715618604 14 3885274 1.5 9 10�5 T/C 6.0 8-2

13 ss715620418 15 12264951 4.0 9 10�5 T/C 5.4 G.S Glyma.15G147100 50-30 exoribonuclease 3 4.2 12

ss715620421 15 12278417 7.1 9 10�5 T/C 5.2

14 ss715624027 16 29081835 5.5 9 10�5 C/T 5.2 Glyma.16 g134000,

Glyma.16G134400

SAM dependent

carboxyl methyltransferase

1.8; 1.6 12

ss715624030 16 29090022 2.3 9 10�5 T/G 6.0

ss715624031 16 29095909 5.3 9 10�6 G/A 7.7

7 ss715624900 16 31667215 6.1 9 10�5 C/T 5.2 Glyma.16G158100 Glucuronosyltransferases 2.0 12

15 ss715636086 19 579512 6.1 9 10�5 G/A 5.2 Glyma.19G005800 Polyribonucleotide

nucleotidyltransferase

1.6 12

16 ss715634194 19 3498043 6.4 9 10�5 G/A 5.1 Glyma.19G026900 Plastocyanin-like domain 1.9 12

†Position in base pairs for the peak SNP according to soya bean reference sequence (a2.v1) of Williams 82.
‡the position of significant SNP is located in one of the QTL or GWAS (G.S) intervals (defined as physical position of associated markers) as reported previously (http://

www.soybase.org/search/index.php?qtl=white mould).
§Candidate genes selected by RNA-seq results as having the significant changes ((FDR<0.05) in abundance between partially resistant and susceptible genotypes by

comparisons of fold change (log2-transformed) of reads per kilobase per million (FPKM) around peak SNP.
¶TP stands for time point (hours postinoculation).
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were evaluated at the V3 growth stage (Fehr et al., 1971) in

pots. The S. sclerotiorum isolate 105HT provided by Dr. Glen

Hartman (soya bean Pathogen Collection Center at the United

States Department of Agriculture, Agricultural Research Service

at the University of Illinois) was used for inoculations. The

experiments were conducted in the winter of 2012 and 2013.

The drop-mycelium method developed by Chen and Wang

(2005) was adopted to evaluate white mould resistance.

Greenhouse day/night temperature was set at 24°C. Humidity

was controlled by Trion Herrmidifier (model 707, Sanford,

NC). Plants were individually rated with a scale of 0 to 4

(Figure S7) based on living node number 10 days after the

inoculation.

Two subsets of soya bean lines were selected from two

association panels, 278 PIs and 421 improved lines. To reduce

the influence of lodging to white mould in field trials, all

selected lines had lodged plants fewer than 25%. The two

panels were evaluated for white mould resistance in a naturally

infested white mould disease nursery at Montcalm, Michigan,

during the growing seasons (May–October) of 2014 and 2015.

Consistent heavy white mould disease symptoms had been

observed historically in the disease nursery. Ninety seeds were

planted in single-row plots, 6 m long with 0.58 m row spacing,

at a depth of 3.8 cm with three replications. Plots were rated for

disease severity based on the rating system developed by Kim

et al. (1999) at approximately the beginning of physiological

maturity (R7; Fehr et al., 1971). All plants in the plots were

individually rated with a scale of 0 to 3, where 0 = no

symptoms, 1 = lesions on lateral branches only, 2 = lesions on

the main stem but no effect on pod fill and 3 = lesions on main

stem resulting in plant death and poor pod fill. A disease severity

index (DSI) was calculated for each plot using the following

formula:

DSI¼
X

ðrating of each plantÞ=3� total number of plants rated
� �

�100

Therefore, DSI ranges from 0 to 100 standing for no disease

symptom to plant death. As the DSI data were collected from

multiple years; best linear unbiased predictors (BLUPs) were used

for the overall association analysis. The linear model for BLUP was

Yijk = Lk + Ei + R (E)ij + (L 9 E)ik + eijk, where Yijk is the observed

phenotype for the kth line in the jth replicate of the ith

environment; Lk is the random effect of the kth line; Ei is the

random effect of the ith year; R (E)ij is the random effect of the jth

replicate in the ith year; (E 9 L)ik is the random interaction effect

of the ith year and the kth line, and eijk is the error. The heritability

estimates were calculated using variance components obtained

by the BLUP linear model (Nyquist, 1991).

Population structure and kinship analyses

Principal component and neighbour-joining tree analysis were

applied to infer population stratification. A pairwise distance

matrix derived from a modified Euclidean distance for all

polymorphic SNPs was calculated to construct neighbour-joining

trees using TASSEL 5.0 software (Bradbury et al., 2007). Principal

component analysis was performed using TASSEL 5.0 based on

4549 SNPs with minor allele frequency (MAF) >20% and physical

distance >60 kb. Kinship matrixes were calculated using centred

IBS method (Endelman and Jannink, 2012) implemented in

TASSEL 5.0 to determine relatedness among individuals based

on the same sets of SNPs. TASSEL 5.0 was used to make all

pairwise comparisons of alleles to calculate squared correlation

coefficient (r2) of alleles between markers. The extent of LD decay

was measured as the chromosomal distance at which the average

pairwise correlation coefficient (r2) dropped to half its maximum

value.

Genome-wide association analysis

A unified mixed model was used to perform GWAS with the

control of both population structure and relative kinship. The

MLM can be expressed as y + Xa + Pb + Kl + e, respectively,

where y is the phenotypic value; a is the vector of SNP effects; b is

the vector of population structure effects; l is the vector of

Figure 4 Mean accuracies of cross-validation for prediction of DSI in two

panels of soya bean germplasm. (a) Comparison of prediction accuracy of

different fold between GS and MAS in improved lines (b) Comparison of

prediction accuracy of different fold between GS and MAS in PIs. (c)

Prediction accuracy with different number of SNP markers in GS for DSI.

The prediction accuracy was the mean of fivefold estimated from fivefold

cross-validation with 100 replications within each fold.
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kinship background effects; e is the vector of residual effects; P is

the PCA matrix relating y to b; X and K are incidence matrices of

1s and 0s relating y to a and l, respectively (Zhang et al., 2010).

The top five principal components were used to build the Pmatrix

for population structure correction. Analyses were performed

with the software TASSEL 5.0. False discovery rate (FDR) ≤0.05
was used to identify significant associations.

Characterization of candidate genes based on RNA-seq

To identify causative candidate gene around GWAS-identified

loci, the most resistant line (AG1703), the most susceptible line

(V28N8RR) and resistance (R, AxN-1-55) and susceptible (S,

Olympus) check were grown and inoculated with Sclerotinia

sclerotiorum in greenhouse with the drop-mycelium method

(Chen and Wang, 2005). For each accession, the main stem tips

(top 3 cm) were collected from two replicates at 12 and 48 h

postinoculation hpi, respectively. Control samples (noninoculated,

freshly cut stems from seedlings at 12 and 48 h hpi) were also

collected. Samples were quickly packed into foil and frozen in

liquid nitrogen within 10 s of collection.

Total RNA was isolated using the RNeasy Plant Mini Kit (Qiagen

Inc., Valencia, CA) according to the manufacturer’s instructions in

conjunction with DNase treatment. The quality of total RNA was

determined using RiboGreen� RNA Assay Kit. Libraries were

constructed and sequenced by MOGENE (Saint Louis, MO), and

their sequencing reads were analysed as described by (Goettel

et al., 2014). Tophat v2.0.1 (Trapnell et al., 2009) was run on

each of the samples using the Williams 82 a2 v1 reference

genome and transcriptome annotation from Phytozome v10 to

guide the alignments. Cufflinks v2.2.1 (Roberts et al., 2011) was

run on each sample bam to quantitate against reference

transcript annotations only. Cuffmerge v1.0.0 (https://manned.

org/cuffmerge/f06f1a10) was then used to produce the merged

transcriptome file. Cuffdiff (v2.2.1; Trapnell et al., 2010) was

used to produce normalized gene expression values in FPKMs

(fragments per kilobase of exon per million fragments mapped),

as well as an all by all differential expression analysis by combining

replications. Differentially expressed genes in the specific paired

sample comparisons were identified with the log2 fold change

between the two samples and the P-values given to the

comparison along with the FPKMs for each of the two samples

in the comparison.

Genomic prediction and marker-assisted selection model

A genomic best linear unbiased prediction (gBLUP) model was

used to predict genomic estimated breeding values (GEBVs) of

white mould resistance. The model for gBLUP is given by

y = 1nl + Zg + e, where y is a vector of phenotypes, 1n is a

vector of ones, l is the mean, Z is a design matrix allocating

records to genetic values, g is a vector of additive genetic effects

for an individual, and e is a vector of random normal deviates r2.

Analyses were performed with the software TASSEL 5.0.

As for the MAS model, MLR was employed to predict DSI

(Zhang et al., 2016). The Pearson correlation coefficient between

the observations and the cross-validated GEBVs was used to

determine the accuracy. To compute the accuracy, we used a

fivefold cross-validation. Each phenotypic data set was randomly

divided into five equal parts. The GEBVs for each fold were later

predicted by training the model on the four remaining folds.

To investigate the prediction accuracies with different number

of markers, nine subsets of SNPs that were evenly distributed

across the genome were selected. The subsets sizes were 100,

500, 1000, 1500, 2000, 2500, 3000, 3500 and 4000 corre-

sponding to interval distance of 10.0 Mb, 2.0 Mb, 1.0 Mb,

0.67 Mb, 0.5 Mb, 0.4 Mb, 0.3 Mb, 0.28 Mb and 0.25 Mb,

respectively. Each subset was then used as the genotype matrix to

perform fivefold cross-validation across both two panels.
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