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Abstract

Most studies in the life sciences and other disciplines involve generating and analyzing

numerical data of some type as the foundation for scientific findings. Working with numerical

data involves multiple challenges. These include reproducible data acquisition, appropriate

data storage, computationally correct data analysis, appropriate reporting and presentation

of the results, and suitable data interpretation.

Finding and correcting mistakes when analyzing and interpreting data can be frustrating

and time-consuming. Presenting or publishing incorrect results is embarrassing but not

uncommon. Particular sources of errors are inappropriate use of statistical methods and

incorrect interpretation of data by software. To detect mistakes as early as possible, one

should frequently check intermediate and final results for plausibility. Clearly documenting

how quantities and results were obtained facilitates correcting mistakes. Properly under-

standing data is indispensable for reaching well-founded conclusions from experimental

results. Units are needed to make sense of numbers, and uncertainty should be estimated

to know how meaningful results are. Descriptive statistics and significance testing are useful

tools for interpreting numerical results if applied correctly. However, blindly trusting in com-

puted numbers can also be misleading, so it is worth thinking about how data should be

summarized quantitatively to properly answer the question at hand. Finally, a suitable form

of presentation is needed so that the data can properly support the interpretation and find-

ings. By additionally sharing the relevant data, others can access, understand, and ulti-

mately make use of the results.

These quick tips are intended to provide guidelines for correctly interpreting, efficiently

analyzing, and presenting numerical data in a useful way.

Author summary

Data expressed as numbers are ubiquitous in research in the life sciences and other fields.

The typical scientific workflow using such numerical data consists of analyzing the raw

data to obtain numerical results, followed by interpreting the results and presenting

derived findings.
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In this article, we present some tips and tricks for working with numerical data. We

discuss how data can be checked effectively for plausibility—and that this should be done

frequently to spot potential mistakes early. Keeping clear records of the way raw numbers

and intermediate or final results were obtained helps correct mistakes efficiently. To facili-

tate correct interpretation of data, we suggest paying attention to correct units of values

and to understandable formulas. Appropriate statistical methods should be used for the

specific question at hand. To avoid an over-interpretation of numbers, uncertainty of

numbers should be respected, and one should be aware of cases in which bare numbers

are actually misleading. Finally, we provide some recommendations for presenting data in

a way useful for supporting interpretation and findings, ideally so that follow-up work can

make use of the data.

Introduction

Background

In many studies in the life sciences and other fields, findings are derived from some type of

experiment via the analysis of numerical data in one form or another. The typical workflow, cf.

Fig 1, involves multiple steps where good scientific practice needs to be followed so that sound

results are obtained.

Experiments (regardless of whether they are in vivo, in vitro, or in silico) need to be

designed and documented so that data of interest can be acquired reproducibly [1]. Data need

to be stored in a reliable way that allows efficient finding and proper use [2]. Data processing

and analysis need to be correct and reproducible in order to obtain meaningful results [3]. In

particular, statistical analyses need to be done correctly [4]. Data need to be presented in an

understandable form to show results and to support the conclusions drawn from it, which is

typically achieved by presenting data in graphical form [5]. There are, however, many pitfalls

when working with numerical data in these steps.

Mistakes when analyzing numerical data lead to incorrect results and incorrect interpreta-

tions. Correcting such mistakes can be time-consuming, depending on how much follow-up

effort you or others have already spent, and realizing that one has wasted effort is usually frus-

trating. Not realizing mistakes yourself and presenting incorrect results to others can be rather

embarrassing, in particular when the false results have already been published. Sources of

errors in publications include but are not limited to applying inappropriate statistical methods

Fig 1. Typical steps in scientific work involving data analysis.

https://doi.org/10.1371/journal.pcbi.1006141.g001
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[6] and incorrect interpretation of data by software [7]. Unfortunately, there is no way to

completely avoid mistakes when working with data. (If you do know one, please let us know!)

However, knowing about potential pitfalls, one can at least reduce the number of mistakes.

Properly understanding the data you are working with is probably the most important

aspect when trying to avoid mistakes. Frequently asking yourself, “Does this make sense?”

helps you spot mistakes early and avoids realizing at some later point, “Why didn’t I see this

stupid mistake earlier?!” Understanding the data at hand is also necessary to distinguish rele-

vant effects in observed data from meaningless effects so that you can focus research and anal-

ysis efforts on interesting investigations to obtain valuable results.

Motivation

The purpose of this article is to provide some guidelines for working with numerical data for

researchers such as biologists, wet-lab experimentalists, computational scientists, and data sci-

entists. We present a number of tips on how to make understanding numerical data easier,

how to correctly work with it, and how to present results in a useful way to others. “Others” in

this context might be a wide range of persons whom you might prefer not to annoy, e.g., a

reader or reviewer of your research paper, your advisor grading your thesis, or your favorite

colleague who will build on your work. This "other" person might also be yourself following up

on previous work a few months from now.

The examples we chose for illustrating these guidelines range from rather generic applica-

tions to specific biological questions. Clearly, the effects we mean to point out by such exam-

ples may also occur more generally in various other contexts.

Outline

The article is structured in tips about how to keep data correct (Tips 1 to 3), how to correctly

interpret it (Tips 4 to 8), and how to present it in a useful and nonambiguous form (Tips 9 and

10).

Keep your data correct

Tip 1: Check your data for plausibility

Frequent plausibility checking is probably the most useful approach to quickly spot mistakes—

when acquiring data, in computations, and when interpreting results. Whenever you realize a

mistake and you get the feeling you could have found it already much earlier, this can be a sign

of too infrequent plausibility checking. Several techniques can help with plausibility checking.

Searching for surprising patterns. A simple yet effective technique is to look for unex-

pected patterns in data and to think about whether there is a plausible explanation after all or

whether you need to go back one or more steps and correct some mistake. For instance, if two

out of every seven values in the weight recordings of your lab animals are zero, this might indi-

cate daily measurements not performed on weekends and erroneously interpreted as zero.

Another pattern to beware of is numbers or their differences being equal or surprisingly

round. For instance, when counting colony-forming units of Escherichia coli on agar plates,

obtaining 15, 46, 28, 46, 52, and 46 colonies contains suspiciously many repeated values, indi-

cating that numbers might have been mixed up. Or, suppose your data contains time points of

t1 = 16421.392 s and t2 = 20021.392 s; there may be a perfectly valid explanation for this offset

of 3,600 seconds (you are measuring something exactly every hour). However, this might also

indicate that t2 was not measured properly but accidentally computed from t1 with a fixed

increment. Besides assessing the data all by yourself, it can also be useful to look at the data
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together with a colleague and discuss the meaning of observed values and patterns. Another

person might notice issues you missed before.

Guesstimation. Another very useful technique is to combine guesstimation and back-of-

the-envelope calculations, i.e., to make simplified assumptions and estimates (e.g., guesses

about orders of magnitude) and use approximate and short calculations (see, e.g., [8]). This

can also be useful in everyday life: If you want to fly from Toronto, Ontario (Canada) to

Sydney, New South Wales (Australia) and you are offered a flight taking 2.5 hours, estimating

the distance (other side of the planet, i.e., more than 10,000 km) and the speed of airplanes

(below 1,000 km/h, i.e., the flight should take at least 10 hours) can prevent you from ending

up in Sydney, Nova Scotia (Canada). For further (rather amusing) guesstimates, we refer to

[9].

Guesstimation can generally be applied in two ways—retrospectively (checking results you

have already obtained) and prospectively (estimating results that are not available yet). Retro-

spective guesstimation is useful to check for plausibility (unfortunately not to prove correct-

ness, though). Prospective guesstimation can be applied to estimate costs and efforts of

planned experiments or to give an idea in which order of magnitude to expect results you have

not obtained yet. However, this should be done and communicated with care to avoid observ-

ers being biased by "expected" results.

As an example for checking plausibility by guesstimation, suppose you read a study about

the growth of newborn Humboldt penguins (Spheniscus humboldti), reporting that they grew

1/4 inch per day on average during one year. Is this plausible? One week has about 8 days (i.e.,

2 inches per week), one year has about 50 weeks (i.e., 100 inches in one year), one inch is about

2.5 cm (i.e., 250 cm in one year), and one-year-old penguins are nowhere near 2.5 meters tall.

So this is not plausible.

As an example for prospective guesstimation, suppose you want to assess the functionality

of the nonstructural protein 3 (NS3) from Zika virus by protein crystallization, which requires

a yield of 20 mg of protein. You need to express NS3 in bacteria, without reaching cytotoxic

protein concentrations in the bacterial culture, and purify it afterwards. Is the incubator in

your lab big enough for this experiment? From your colleague’s experience with the NS3 pro-

tein from hepatitis C virus, which shares protein function and viral family, you estimate that a

yield of 2 mg per liter bacterial culture is possible without cytotoxic effects. Therefore, you

need at least 20/2 = 10 liters of bacterial culture.

Tip 2: Track your sources

Numerical results are typically based on literature data or on data acquired from your own

experiments. In any scientific work, it is crucial to document in sufficient detail how these data

were acquired and which calculations were performed so that the reported results can be

reproduced. Below, we will discuss working with literature data and making calculations

reproducible. For recommendations on how to document data acquisition in wet lab and in

silico experiments, we refer to [10] and [1], respectively.

Literature data. When using data from the literature, it is useful to immediately write

down a unique identifier of the source. For this purpose, the DOI of the manuscript, a full ref-

erence, or the identifier used in your literature management are better suited than something

unspecific like "the snail paper by Smith," which might not be clear to you anymore in a few

weeks. Besides writing down where a number comes from, it is helpful to separate any conver-

sion you used from the exact number in the source, e.g., noting that your constant vmean = 1.27

millimeters per second was written as Vaverage = 3 inches per minute in the source so that you

can easily search for it again.
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Automated data analysis. Analysis of raw numerical data typically requires one or more

steps of computation before reaching some conclusion, cf. Fig 1. It is very useful to be able to

run these computations in an automated and reproducible way, ideally in a one-step procedure

(one click, a single script, or a similar technique). Performing the computations once is usually

not sufficient. There will typically be additional measurements at some point, mistakes in the

analysis workflow to be fixed, or requests (e.g., by reviewers or your advisor) to add similar

and closely related analyses. This is "like a version of Murphy’s Law: Everything you do, you

will probably have to do over again" [11]. It makes sense to also include visualization and/or

plotting in this one-step procedure, as you will probably have to repeatedly redo graphics with

slight changes before you (and maybe your co-authors, advisor, or reviewers) are satisfied with

the result. Besides offering the chance of easily adapting analysis and visualization, this also

precisely documents how results and figures were obtained without you needing to remember

technical details (“How thick was this line again? 0.8 or 1 points?” or “How did I make the axis

labels appear rotated?” etc.).

Separation of data and formulas. For automated data analysis, it is preferable to separate

data from formulas via scripting (R, Python, or your favorite language), rather than to keep

data and formulas in spreadsheets. (We chose Python for the data analysis provided in the sup-

porting information. For an introductory overview for other choices of programming lan-

guages for computational biology, we refer to [12].) This simplifies testing computations by

checking output for simple input data and by checking whether varying input data has the

expected or at least plausible impact on final results. Moreover, it reduces the risk of mistakes

when updating data: for instance, suppose your spreadsheet computes mean and standard

deviation of 284 values, but the data need to be updated. Pasting new data with only 273 values

might not overwrite all old data; pasting new data with 298 values means that cell ranges in the

formulas computing mean and standard deviation need to be updated. Both are easy to miss

and likely to go unnoticed.

Moreover, applying basic techniques from software development to the data analysis can be

useful. All evaluation methods should be tested, ideally by writing the test before implementing

the computation (using so-called test-driven development [13]). Implementation of the data

analysis should be well structured, documented and kept under revision control. This addi-

tionally facilitates cooperation between multiple contributors (or one person working at differ-

ent computers). Revison control ensures that there is a clearly identified authoritative latest

version of data, evaluation, and results and easily provides backups of previous versions of

your evaluation. Also for manuscripts, revision control is useful. For further recommendations

for scientific computing, we refer to [14, 15]. Besides testing individual steps of the data analy-

sis for correctness, intermediate and final results from the entire workflow should be checked

for plausibility (cf. Tip 1).

Tip 3: Beware of computational pitfalls

In order to get the implementation of data analysis right, it is necessary to know capabilities,

limitations, and pitfalls of whatever tools you are using. Calculators require manual data input,

which is error-prone and not automatic; software tools (Excel, R, Python, etc.) have their own

peculiarities and possibly surprising behavior, e.g., in case of missing data or user input. In this

tip, we discuss a few generic pitfalls without focusing on specific software.

Using copy and paste. Copying and pasting intermediate results in a calculation work-

flow is generally a bad idea because this will not automatically update if input data changes.

Also, copying values might introduce unnecessary premature rounding of numbers, in partic-

ular, if the values are read and typed rather than copied and pasted.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006141 October 11, 2018 5 / 21

https://doi.org/10.1371/journal.pcbi.1006141


Integer division. Division of numbers may, in some cases, be interpreted as integer divi-

sion with remainder. As an example, one of the authors (LOS) recently tried computing a suc-

cess percentage by dividing the number of acceptable cases by the number of all cases, which

results, e.g., in 84/96 = 0. This was detected only aft. . ., erm, without any delay, of course, by

thorough testing and immediate plausibility checking.

Unavailable data points. In structured measurements and data sets, not all data points

are necessarily available (e.g., certain time points of periodic measurements may be missing).

Such unavailable data need to be treated correctly. Silently interpreting it as zero or counting

data points regardless of whether they are available may lead to wrong results. Even worse,

these results may still look plausible if only few data points are unavailable.

Floating-point numbers and nonfinite values. When computing noninteger results,

most software uses floating-point numbers (floats) [16]. Even though this may seem like an

internal detail, it is worth knowing that this may result in artifacts and surprising results.

On the one hand, rounding effects may occur because floats only have finite precision

and cannot represent every fractional number exactly (not even a simple 0.1). On the other

hand, floats can deal with division 0.0/0.0 or other illegal mathematical calculations result-

ing in NaN (not a number, printed as “nan” in Python) values. This value may also be used

to indicate unavailable data. Computations to analyze such data may (but are not guaran-

teed to) propagate the NaN value to the final result where it is easy to spot. In particular,

comparisons (<, >, =, 6¼) involving NaN always evaluate to false, so operations that involve

sorting data (e.g., computing minimum, maximum, or median) may fail and may silently

produce incorrect results. An example is given in Table 1, produced by the code provided as

Supporting Information S1 Data.

Incorrect data interpretation by computer programs

The two previous pitfalls can be seen as instances of the problem that computer programs

interpret data incorrectly. Another pitfall is spreadsheet software inadvertently interpreting

input data as dates (possibly in a foreign language date format) or floating-point numbers in

scientific notation. For example [7], the supporting information of publications containing

gene names or identifiers in spreadsheets (e.g., Excel) is prone to errors like "SEPT2" (Septin 2)

becoming "2-Sep" or "2006/09/02.” This and the two pitfalls above are cases of inappropriate

data processed by functions that are correct and useful for appropriate input. In addition,

there is always the possibility of incorrect function, i.e., bugs, in any software [17].

This type of problem can sometimes be detected by plausibility checking. To avoid these

types of errors, using different functions or different software can help, or you may need to

Table 1. Artifacts in data analysis using floating-point numbers. Using the Python script and data provided in Supporting Information S1 Data, we loaded the input

data x and y in the top two rows (where one unavailable data point is interpreted as nan, floating-point "not a number"). Computing the ratio x/y, division by zero resulted

in two further nonfinite values. Sorting the data (in ascending order, using Python’s standard sorting algorithm) silently yielded an incorrect result. Computing the maxi-

mum based on successive comparisons failed as well, but this is not immediately obvious just from the value. Only the mean value is an obvious indication that something

went wrong.

Input data

x 0.0 8.0 0.0 8.0 4.0 1.0 4.0 0.4 4.5

y 1.0 1.6 0.0 2.0 0.0 — 1.6 0.4 1.5

Analysis results (intermediate and final)

Values x/y 0.0 5.0 nan 4.0 inf nan 2.5 1.0 3.0

Sorted values 0.0 1.0 3.0 5.0 nan 4.0 inf nan 2.5

Maximum 3.0

Mean NaN

https://doi.org/10.1371/journal.pcbi.1006141.t001
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clean up the input data. In case of seemingly plausible but actually incorrect results (e.g., the

maximum reported in Table 1), only a very detailed look at the data can help reveal the prob-

lem. In this case, one should be glad about every error message or program crash.

Correctly interpret your data

Tip 4: Treat units with respect

Unless numbers are clearly dimensionless (e.g., relations between the same type of measure-

ments, counts), they are meaningless without knowing the unit. For instance, what does a tem-

perature "in the 30s" mean? A warm summer day at 30˚C in Paris and you have a problem if

the fridge in your lab is broken? Should you expect snow at 30˚F in Seattle, and you could just

store your specimens (or the lunch you brought) outside? Are you experimenting with super-

conductors at 30 K in a physics lab and need protective gloves? Besides single numbers, equa-

tions also only become meaningful if their units are clear: "A [mathematical] model without

units is not a model" (Matthias König).

SI units in computations. Inconsistent units in computations are a typical source of

error, in particular, if units from different sources are combined. Such errors can easily be

spotted and corrected if they are merely a factor of 1,000, which typically leads to largely

implausible results (e.g., using kilograms instead of grams). Implausibility can still be noted if

the factor is different (e.g., 60 when using minutes instead of seconds), but the error is typically

harder to find and correct in this case. Smaller errors bear the danger of going unnoticed,

which can be the cause of serious problems: using pound seconds instead of Newton seconds

as the unit of impulse led to the loss of the Mars Climate Orbiter probe [18], failing a multimil-

lion dollar space mission.

An easy way to obtain consistent units is to use SI units everywhere in your calculation.

Non-SI units should then be converted before starting the actual computations, and results

can possibly be converted to intuitively understandable units at the end.

Intuitive units in presentation. For plausibility checking and presenting results, SI units

with a suitable prefix may be intuitively understandable (like 7 μm instead of 0.000007 m when

describing the diameter of red blood cells). In other cases, non-SI units might be more useful.

For instance, a fuel consumption of 8 liters per 100 kilometers (or fuel efficiency of 29.4 miles

per gallon) is easy to understand and seems plausible for a standard car. Converting this to SI

units results in a fuel consumption of 8 × 10−8 m2, which is hard to interpret. Similarly, human

water consumption of 2.6 liters per day is intuitively plausible. In contrast, 3 × 10−8 m3/s is

hard to grasp and even confusing because it suggests continuous water uptake rather than

drinking at irregular intervals.

Unit prefixes. Not only can units be a source of confusion but also SI prefixes of units and

very large or small numbers. For instance, mistaking nano for 10−12 is wrong by three orders

of magnitude, so this can possibly be detected by plausibility checking. However, plausibility

checking is challenging for very small and very large numbers because they are hard to under-

stand intuitively. For instance, it is not immediately obvious that one microcentury (about 53

minutes) is a useful upper limit for the length of presentations. The difficulty of intuitively

grasping large or small numbers also applies to expressions such as parts per billion (ppb; 1 in

109), which has the additional danger of confusion due to "billion" (or similarly spelled) mean-

ing 1012 in some languages, e.g., French, German, and Spanish. Furthermore, confusion

should be avoided between how units are used colloquially and scientifically. For instance, the

trail mix that of one of the authors (LOS) was eating while writing this sentence has 523 kcal

per 100 g, which would be grossly underestimated by saying "it has 523 calories."
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Units in formulas. Considering the units used in formulas can help in two ways: when

checking your own formulas and when trying to understand other people’s formulas.

When checking plausibility of your own formulas, one aspect is to check whether all units

match. Incorrect units can flag forgotten constants and indicate what unit or constant would

be needed so that units match. Similarly, when discussing a certain quantity, agreeing on the

unit of said quantity is one way of making sure that everyone has the same understanding of

what is being discussed. Quantities of different units cannot be added or subtracted (how

much should two seconds plus half a meter be?). Multiplication and division of units is per-

fectly valid, provided that the overall unit of the formula makes sense. Differentiation, i.e.,

computing derivatives, corresponds to the division by the respective unit (typically time or

length), e.g., velocity in the units meters per second is the temporal gradient (one over sec-

onds) of position (meters). Conversely, integration corresponds to multiplication by the

respective unit.

When dealing with formulas from literature, tracking units throughout the formula can

help you understand the meaning of the formula and its constants. As an example, suppose

you are studying the influence of cytochrome P450 enzymes on the metabolism of theobro-

mine (e.g., [19])—the principle alkaloid in cacao. In the context of such enzyme kinetics, con-

centrations typically change according to Michaelis–Menten kinetics [20], a nonlinear change

of a concentration c according to

dcðtÞ
dt
¼ _cðtÞ ¼ �

V � cðtÞ
Km þ cðtÞ

: ð1Þ

(Readers familiar with Michaelis–Menten relations might know V denoted as Vmax. This is not

consistent throughout the literature, we follow the standard from [21] here.) The left-hand

side of Eq 1 consists of the time derivative (one over seconds) of a concentration c (concentra-

tion units, i.e., either mass or molar amount per volume). On the right-hand side, addition in

the denominator implies that Km is a constant also in units of concentration. As there is a fac-

tor c (concentration) in the numerator, V needs to be expressed in units of concentration per

time, i.e., V is a rate of concentration change.

Separating unit conversions from functional relationships. It is useful to separate unit

conversion (if needed) from the subsequent computation to avoid obscuring the the actual

logic behind formulas and constants. Assume you would like to express theobromine concen-

trations from the example above in moles per liter and use the time unit seconds for the rates.

If you are lucky, constants ~V and ~K m are given as mass change per minute in Eq 1; if you are

less lucky, you will find constants for other compounds in "international units," a frequent

source of frustration for one of the authors (SR). As the average molar mass of theobromine is

180.164 g/mol [22, 23], you would end up with

_cðtÞ ¼ �
1min�1mol� ~V
60s�180:164g � cðtÞ

1min�1mol�~K m
60s�180:164g þ cðtÞ

; ð2Þ

which is clearly unnecessarily hard to read and understand.

Tip 5: Verify your formulas

Relations derived from numerical data (e.g., descriptive models) are typically written as formu-

las. Formulas by other authors found in the literature may be more or less cryptic at first glance

and need to be understood correctly before making use of them. Besides tracing units in for-

mulas (cf. Tip 4), further techniques can be employed to check formulas for plausibility or to
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interpret them correctly. This involves both the dependency on variables and constants in the

formulas.

Asymptotic behavior. It is useful to check the limits of the mathematical expressions for

extreme or critical values, i.e., to check what results are obtained for very large or very small

values (positive and negative infinity, if applicable), for zero, or for differences being zero. If

only finite ranges of values make sense (e.g., a percentage between 0% and 100%), the bound-

aries of these ranges should be considered. In particular, it is worth checking whether it is plau-

sible that some limit is reached asymptotically (e.g., trees growing until they reach a maximal

size) or whether a periodic pattern is expected (e.g., circadian foraging rhythms of animals).

Individual constants and variables. As an example, let us again consider the Michaelis–

Menten kinetics from Eq 1, with time dependency omitted here for simplicity,

_c ¼ �
V � c

Km þ c
; ð3Þ

where the constants V and Km are positive. Clearly, only concentrations between zero and

some maximal concentration (maximum soluble amount or pure substance only) make sense,

so we only need to check this range. For positive c, the right-hand side is negative. For c = 0,

the numerator is zero (with finite denominator), so the overall rate is zero. These two observa-

tions make perfect sense if Eq 3 describes a decay: concentration decreases if some substance is

present to start with; otherwise, nothing happens. The larger the constant V, the larger the

decay if all other values stay the same. More precisely, the decay rate is proportional to this

constant. For large c, we can divide both denominator and numerator by c and obtain V as the

hypothetical limit. The other constant, Km, is a bit more difficult to interpret: c = Km is the con-

centration at which half the maximal rate, Vc=ðcþ cÞ ¼ V=2, is attained.

Scaling. Besides considering asymptotic behavior of formulas, it is also useful to think

about the asymptotic scaling of entire mathematical expressions when changing a single vari-

able. For instance, suppose you want to study signaling pathways leading to proliferation of

cancer cells; more precisely, you are interested in interactions between pairs of inhibitors. At

your institution, this involves a complicated bureaucratic documentation of the purchases in

addition to the actual experimental work. There is one purchase report per inhibitor (linear

scaling), whereas the number of combinations of two inhibitors (i.e., the number of individual

experiments) scales quadratically with the number of inhibitors, n(n − 1)/2 = (n2 − n)/2 if n is

the number of inhibitors. The latter will eventually dominate the overall effort for larger num-

bers of inhibitors.

Monotonicity. Monotonicity (i.e., consistently decreasing or increasing function output

for decreasing or increasing input) should also be considered if the data analysis or interpreta-

tion involves the definition of custom quantities measuring the extent of certain effects. For

example, suppose you want to quantitatively assess soil contamination based on the presence

of metallophytes—plants that tolerate high levels of specific heavy metals [24]. Such a measure

should not be termed "soil quality measure" but rather "soil pollution measure" because a larger

presence of metallophytes indicates larger pollution.

Tip 6: Know thy statistical methods

Descriptive statistics and statistical tests are frequently used when reporting numerical data

and also represent a frequent cause of confusion. It is important to check the requirements for

a given method or test, e.g., whether data are normally distributed when performing paramet-

ric tests that require normality. This already applies when reporting means and standard devia-

tions, which has the implicit assumption that data are normally distributed. Otherwise,
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medians and inter-quartile ranges (or, graphically, box plots) might be more useful descrip-

tions of the ranges of typical values. In this tip, we describe four further frequent causes of con-

fusion when using statistical methods.

Reversed effects in data subsets. Even though percentages are rather simple descriptive

statistical quantities, they may lead to confusion when evaluated on subsets of data. This effect

is known as Simpson’s paradox; see, e.g., [25] for some real-life examples. A simplified hypo-

thetical example is given in Table 2: two treatments (A and B, e.g., two different drugs) were

applied in two groups of patients (groups 1 and 2, e.g., adolescent and adult patients). Treat-

ment A was consistently more successful in both groups viewed separately. However, evaluated

for the combined group of patients, treatment B appears to be more successful. This paradoxi-

cal situation indicates that someone could have selected subgroups just to make treatment A

look better. More likely, there is an additional confounding variable behind the data as well as

some mechanism that should be understood to explain why it makes sense to consider the two

groups separately. We refer to [26] for a more detailed discussion of how to deal with Simp-

son’s paradox.

Correlation and concordance. One typical use for statistical methods is analyzing whether

two different data sets xi and ~xi are correlated, e.g., different quantities measured in related obser-

vations or the comparison of a new or simpler measurement technique compared to an accepted

gold standard. There are different forms of relation between xi and ~xi one may be interested in,

from a generic relationship to the question of whether two measurement techniques yield the

same results. Typically, a quantification by a correlation coefficient (CC) is desired.

The standard and frequently used Pearson CC [27] is applicable only in some cases because

it measures whether there is an affine-linear relationship between the two data sets (i.e.,

whether ~xi differs from xi by scaling a and an offset b, ~xi ¼ axi þ b, where a transforms units

of x to ~x and b is in units of ~x) but nothing more or less. This relation could, e.g., be observed

when measuring temperature in degrees Celsius and Fahrenheit. On the one hand, Pearson

CC cannot capture more general relationships. If the relationship is not monotonic (e.g.,

periodic), it needs to be guessed or known to allow a comparison; e.g., volume should be pro-

portional to diameter cubed. Correlation for general monotonic relationships can be quanti-

fied by the Spearman CC [28], e.g., if concentration and its change rate in enzyme kinetics

according to Eq 1 were measured somehow. On the other hand, when checking xi and ~xi for

equivalence (e.g., when comparing measurement techniques), Pearson CC is too generic.

Equivalence requires scaling by a = 1 and an offset of b = 0. For quantifying correlation in this

case, the concordance CC [29, 30] is more suitable.

Examples of generic, linear, and identical dependence between three different data series

are shown in Fig 2, along with the corresponding CCs (Table 3). The code for this example is

provided as Supporting Information S2 Data.

Correlation does not imply causation. If data series measuring two different effects are

found to be correlated, this should be interpreted with care. Correlation may mean that one

Table 2. Simpson’s paradox (synthetic data). Two treatments (A and B) were applied in two groups (1 and 2) of patients. Treatment A seems to be more successful in

each of the groups viewed separately (100> 87.5 and 66.7> 50). However, evaluated for the combined group of patients, treatment B appears to be more successful

(75< 80).

Treatment A Treatment B

Success Total Percentage Success Total Percentage

Group 1 15 15 100% 105 120 87.5%

Group 2 30 45 66.7% 15 30 50%

Combined 45 60 75% 120 150 80%

https://doi.org/10.1371/journal.pcbi.1006141.t002
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effect most likely causes the other (e.g., the frequency of smoking and the risk of lung cancer)

or that there is an underlying cause for both effects (e.g., increasing sales of ice cream and

increasing number of swimming accidents, both due to the summer holiday season). Corre-

lated effects, however, may also be entirely unrelated (such as the decreasing number of pirates

and global warming [31, p. 34], or the number of people drowning after falling into a pool and

the number of films Nicolas Cage appeared in per year [32]).

Misconceptions about statistical significance. Statistical significance, usually quantified

by p-value, should not be over-interpreted. It is a topic of ongoing debate to what extent statis-

tical testing is being abused (see [33] and references 21–74 therein) and to a dispute to what

extent false findings based on statistical testing have been published [34–36]. This has led some

scientific journals to discourage reporting statistical significance [33].

Statistical significance at a given level in typical applications means that two series of mea-

surements are likely to be different (i.e., the null hypothesis "they are the same" can be rejected

with a certain level of confidence). The typically chosen threshold, p< 0.05, is arbitrary [37]; it

is only used commonly because it is used commonly. It is important to keep in mind that

• A small p-value does not prove that there is a meaningful difference;

• A small p-value ("statistically significant") does not imply that the difference is big or relevant

("biologically significant");

• A smaller p-value does not imply a bigger difference; and

• A large p-value does not prove the absence of a relevant difference.

Fig 2. Data sets with different type of correlation. The data points in the five plots show different types of correlation between values on the horizontal and vertical

axes: no correlation at all (panel A), a slightly noisy non-monotonic relationship (panel B), a nonlinear monotonic relationship (panel C), a linear relationship (panel

D), and high agreement (panel E). The corresponding Spearman, Pearson, and concordance CCs are shown in Table 3. The solid line indicates the affine-linear fit;

the dotted line is the identity (y = x).

https://doi.org/10.1371/journal.pcbi.1006141.g002

Table 3. CCs for the data sets shown in Fig 2. Uncorrelated data (A) and slightly noisy data following a clear nonmonotonic relationship (B) show poor CCs in all cases.

A nonlinear but monotonic relationship (C) is captured by the Spearman CC but yields low Pearson CC. A linear relationship is characterized by high Pearson CC (D, E),

but only a good agreement between the two data series (E) yields a high concordance CC.

Data Series Spearman CC Pearson CC Concordance CC

A: Pure noise 0.108 0.128 0.120

B: Nonmonotonic 0.019 0.013 0.012

C: Monotonic, nonlinear 0.955� 0.639 0.280

D: Linear 0.951 0.948� 0.459

E: Identical 0.971 0.972 0.971�

�Indicates the suitable CCs for cases E to E, respectively.

Abbreviation: CC, correlation coefficient.

https://doi.org/10.1371/journal.pcbi.1006141.t003
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We refer to [33] for further misconceptions about p-values.

Data dredging. Moreover, "achieving significant findings is merely a question of looking

hard enough" [38]. The authors of [38] illustrate this by an example that being born under the

sign of Pisces significantly increased the 90-day survival among patients with severe sepsis and

in need of fluid resuscitation. This approach is called "p-value hacking" or "p-hacking" (see,

e.g., [39]), and constitutes one way of "data dredging" (see, e.g., [40]). As an additional exam-

ple, we investigated baseball players born in Canada and the United States as described in

Supporting Information S1 Text, using the Lahman Baseball Database [41] (subject to the

CC-BY-SA license [42]). We found that players born in June were more often "[c]aught [s]teal-

ing" than those born in September (median 9.0 versus 5.0, 277 versus 348 players, p = 1.32 ×
10−4) and that players who eventually died on day 9 of any given month more frequently "[s]

acrifice[d] hits" than players who eventually died on day 27 (median 19.5 versus 6, 168 versus

168 players, p = 3.02 × 10−5). Data and code to obtain these results are provided as Supporting

Information S3 Data. To emphasize that anyone can obtain such highly significant results, we

point out that the author performing this analysis (LOS) did not know what "being caught

stealing" or "sacrificing a hit" means and made no attempt to find out at the time of writing.

Tip 7: Keep track of accuracy

Besides tracking where values come from (cf. Tip 2), it is also important to keep track of how

accurate they actually are. (Keep in mind that 68.432% of all statistics pretend to be more accu-

rate than they actually are.)

Sources of errors and propagation of uncertainty. Errors need to be tracked throughout

the entire data acquisition and analysis workflow. Measurements are typically subject to mea-

surement errors whose extent strongly depends on the measurement technique employed,

leading to uncertainty in the measured values [43]. The main causes for errors and uncertainty

are systematic errors (e.g., miscalibrated measurement devices), limited resolution of measure-

ments, and random errors. Moreover, the typically limited number of measurements taken

leads to a sampling error that should be taken into account when generalizing findings. For

instance, measuring blood pressure a few times a day provides important information for

patients with hypertension but provides neither the time course for an entire day nor a detailed

pressure curve during a single heart beat. Similarly, the images in Fig 4 below only show a lim-

ited spatial sample for the flower density in the entire respective meadows.

For simplicity, we will consider only uncertainty due to random errors assumed to be nor-

mally distributed. Relative uncertainty of a single measurement (as a percentage) can then be

expressed as the coefficient of variation, i.e., standard deviation divided by mean value. Uncer-

tainties propagate through calculations [44], which may render results meaningless in the

worst case. For instance, it is a hopeless endeavor to try to quantify differences in the range of

3% in a small sample of data with uncorrelated measurement uncertainty in the range of 20%.

As an example of uncertainty propagation, suppose you are trying to estimate the (ground)

speed of a flock of flying white storks (Ciconia ciconia) without sophisticated equipment. Time

measurement using your smartphone is probably possible with an uncertainty of less than a

second. In contrast, even though global positioning system (GPS) helps you measure distances

on the ground, estimating the distance of the birds in the air is much more difficult. Assuming

you measured a flight path of one kilometer with an uncertainty of 10% and time of 100 s (i.e.,

1% accuracy), the resulting speed (distance divided by time) of 10 m/s has an uncertainty of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
102 þ 12
p

¼ 10:05% [45] (assuming small errors with normal distribution and no correlation

between the measurement uncertainties). In this example, the error in the distance measure-

ment dominates the overall error. (Following Tip 1, you will clearly notice that this example
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uses simplified and artificially round numbers. However, 10 m/s, or 36 km/h, intuitively seems

in a realistic range and agrees with literature values [46].)

Uncertainty quantification. Depending on the complexity of formulas in the data analy-

sis, the uncertainty in the final result (or sensitivity of the final result against noise in the input

data) may be hard to investigate analytically. In this case, Monte Carlo simulations for quanti-

fying uncertainty (see, e.g., [47]) may be a useful technique: First, estimate the extent of uncer-

tainty (e.g., measurement errors) to be expected for the raw data. If you have no better idea

about the distribution of errors, assume normally or uniformly distributed noise at this point.

Using this estimate, add random noise to the actual measurements to obtain synthetic input

data for the data analysis. Then, analyze different sets of such synthetic data and quantify the

variation obtained in the final result. In Supporting Information S4 Data, we implemented a

Monte Carlo simulation in Python to estimate the uncertainty in the stork flying speed exam-

ple, confirming the analytic result above.

This uncertainty quantification (UQ) serves two purposes. On the one hand, UQ indicates

to what extent conclusions can or should be drawn from the results. On the other hand, UQ

gives an idea how many digits of numerical results are significant and should be presented in

text and tables.

Tip 8: Don’t rely on numbers alone

Even when properly considering uncertainty in numbers (cf. Tip 7), quantitative descriptions

of data should not be the only thing you look at. Clearly, it is typically necessary to simplify

raw data for a useful presentation and to reach useful findings, but simplification may also lose

relevant information and conceal parts of the bigger picture. For instance, Fig 3 shows a classi-

cal example of four clearly different data series which are indistinguishable based on common

measures from descriptive statistics (mean and standard deviation in both dimensions) (see

Table 4). The code for generating these plots is provided as Supporting Information S5 Data.

Don’t miss the full picture. At least for an internal assessment, one should always try to

look at as much of the data as possible to decide what part of the contained information is pos-

sibly relevant and where simplifications are feasible. Spotting relevant patterns in graphical

representations of data is typically much easier than in numbers alone, so suitable visualization

is usually helpful before further computational assessment. For instance, in the assessment of

histological specimens, patterns in the stained markers (e.g., proliferating cells) or the localiza-

tion of such cells relative to other structures in the image provide much more information

than a mere average cell density. A related botanic example is shown in Fig 4, in which apply-

ing an (unrealistically simplified) quantification approach to inappropriate input data yields

incorrect results.

Fig 3. Anscombe’s quartet (plotted). Anscombe’s quartet [48] is a classical example of four visually qualitatively different data series that become almost

indistinguishable when computing simple summary statistics (see Table 4).

https://doi.org/10.1371/journal.pcbi.1006141.g003
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It depends strongly on the type of data which type of visualization is suitable for an internal

assessment. To get an overview of bivariate data points, a simple scatter plot may be sufficient.

To view time series, a line plot with interactive zooming to relevant ranges can be useful. Data

with spatial dependence should be visualized in a way reflecting this spatial property; other-

wise, patterns might be lost. These visualizations do not yet need to be of publication quality;

they mainly need to be useful for the author (but should, of course, be improved later if they

turn out to be useful).

Based on a visualization and other considerations, one can choose useful groupings and

simplifications of data to look at. For instance, in a study on drug efficacy based on specific

parameters measured in the blood before and after treatment, one could simply compare the

averages over the entire cohort ("20% faster recovery!"). This may, however, be misleading if

the response (comparison of the parameters before and after treatment) varies individually

("50% of the patients recovered twice as fast, the other half took even longer").

Table 4. Anscombe’s quartet (summary statistics). The data series x, y (plotted on the horizontal and vertical axis,

respectively, in Fig 3) become almost indistinguishable when computing simple summary statistics.

Series A Series B Series C Series D

Arithmetic mean �x 19.0 19.0 19.0 19.0

Variance s2
x 11.0 11.0 11.0 11.0

Arithmetic mean �y 17.5 17.5 17.5 17.5

Variance s2
y 14.127 14.128 14.122 14.123

Pearson CC ρx,y 10.816 10.816 10.816 10.817

Abbreviation: CC, correlation coefficient.

https://doi.org/10.1371/journal.pcbi.1006141.t004

Fig 4. Counting flowers gone wrong. Consider a simple algorithm counting the number of dandelions in digital images based on the number of yellow pixels in the

image and the scale indicated by the black rod (actually a flashlight). After calibration, using the two images on the left, the algorithm happily reports that there are

approximately five and ten dandelions in the middle and right image, respectively. The fact that the yellow patterns actually show different species of plants could

relatively easily be detected by visual inspection of the data. Algorithmically distinguishing the plants could also be possible but would take substantially more effort than

we spent here on simple pixel counting. The code and the original images are provided as S6 Data.

https://doi.org/10.1371/journal.pcbi.1006141.g004

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006141 October 11, 2018 14 / 21

https://doi.org/10.1371/journal.pcbi.1006141.t004
https://doi.org/10.1371/journal.pcbi.1006141.g004
https://doi.org/10.1371/journal.pcbi.1006141


Don’t overinterpret numbers. Single numerical values cannot accurately represent multi-

ple criteria at the same time, and the objectivity of numbers in general should not be over-

interpreted. Human body mass index (BMI), e.g., measures precisely one thing (body mass

divided by the square of size) but does not distinguish between bone, muscle, and fat portions

of the body mass. Even if BMI correlates more or less strongly with other health indicators,

they are by no means a meaningful surrogate of an overall "health measure." The commonly

used impact factor (IF) of scientific journals seems highly objective at first glance but is also

prone to over-interpretation. The IF is not an immediate measure of "quality" (whatever a pre-

cise definition would be), values of IFs largely differ between disciplines, and the standard IF is

easily confused with measures defined for similar purposes—serious ones [49] as well as dubi-

ous ones used in advertisements by fishy journals (see your local spam folder).

Only calculate where feasible. Values of numerical measures following on nonpropor-

tional and ordinal scales should be compared with care: just because something is a number, it

is not necessarily usable for use in calculations. For instance, a temperature of −20˚C is not

"twice as cold" as −10˚C, and a CC of ρ1 = 0.9 is not "fifty percent better" than ρ2 = 0.6. Simi-

larly unsuitable for calculations are medical scores, summarizing and simplifying diagnostic

observations, e.g., to an integer between 1 and 6, to support therapy decisions. For example, a

Gleason score for prostate carcinoma (see, e.g., the study [50] with a rather fitting title) of 4

versus a score of 2 cannot be interpreted as "double size" or "twice as dangerous."

Besides distinguishing numerical from ordinal quantities, it is also useful to distinguish

extensive and intensive quantities [51]. An extensive quantity of an object is split if the object

is split, e.g., mass or volume. An intensive quantity remains the same if an object is split, e.g.,

temperature or concentration. When combining objects, extensive quantities are added. As an

example, combining 2 liters of water at 30˚C and 1 liter of water at 60˚C results in approxi-

mately 3 liters (extensive) of water at 40˚C (intensive). In this example, a weighted average of

the intensive quantities is obtained. This is not generally true for intensive, e.g., when combin-

ing objects of different melting points. Note, moreover, that this result for water is only

approximately correct due to nonlinear thermal expansion and contraction.

Present your data in a useful way

Tip 9: Properly present data

To properly present results based on numerical data, two aspects need to be considered: what

are the best numbers to present for supporting your findings? What is the best way to present

numbers?

Values, absolute differences, and relative differences. Many studies investigate differ-

ences in one way or another. Depending on the application, absolute values, absolute differ-

ences, or relative differences can be the best way to present results. For instance, human body

temperature is typically reported as, e.g., 37.6˚C (absolute value) rather than as a difference to

"normal" body temperature; an overweight person (125 kg) will probably report losing 10 kg

(absolute difference) rather than 8%; the success of an agricultural wheat cultivation technique

is best understood by saying that it yielded, e.g., 20% more crops than prior techniques. To

understand what any difference means, "normal" values (the baseline) should be stated as well.

In the examples above, normal human body temperature (around 37˚C) and a range for nor-

mal body weight (depending on size, e.g., 75 kg) is probably known to most readers, whereas

few people are likely to know the typical amount of wheat harvested per area—about 6 metric

tons per hectare (value for Austria in 2014 [52]).

Numbers, tables, and plots. Depending on the amount of data you need to present to sus-

tain your findings, a suitable form of presentation should be chosen. Single numbers can just
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be written in the text; few numbers whose exact values are needed can be put in a table; time

courses or larger sets of data are typically best presented in plots. It can be useful to retain spa-

tial information when graphically presenting spatial data. For instance, showing infection rates

per country in a colored map might make comparison of values more difficult but can indicate

geographical patterns. It can be useful to limit the amount of detail for data presented in an

article when providing more detailed numbers and raw data as supplementary information; cf.

Tip 10.

For standard plots, logarithmic rather than standard linear axes can be useful, in particular,

if ratios between values are of interest. In this case, linear axes may be misleading because par-

allel lines (indicating the same absolute change, e.g., from 0.5 to 1 and from 3.5 to 4) can be

misinterpreted as the same relative change. When using color maps to present numerical data,

two aspects should be considered. If a central value of the data range has a specific meaning

(e.g., "unchanged expression" when visualizing up-regulation or down-regulation of genes

from microarray data), a diverging color map should be used rather than a standard sequential

one. Moreover, color maps should be chosen such that the relevant information is still con-

veyed if the figure is printed in gray scale or viewed by a person with impaired color vision. An

example for the effects of different color maps is shown in Fig 5. We refer to [53, 54] for further

details on the choice of suitable color maps.

Generally, the presentation of results—in particular plots—should be designed in a way

that does not confuse the reader, avoids ambiguity, and shows a clear message but does not

show too many things at once. Only poor-quality results deserve a poor-quality presentation,

whereas correct and well-designed figures give the impression that you thought about and you

understood what you did. Fig 6 shows an example of the same data presented in different qual-

ity. The code for generating these plots is provided as Supporting Information S7 Data. For

more details on suitable ways of plotting data, we refer to [5].

Tip 10: Share your data

Data analysis and presentation typically strongly reduces the amount of data that is finally

reported (in a presentation, on a poster, in an article or thesis). Hence, it may make sense to

also provide more of the original data (unless there are, e.g., legal restrictions or privacy con-

cerns) and intermediate results to the interested reader, for example, as supporting informa-

tion of publications, or via domain-specialized or generalist data repositories (see [55] for an

Fig 5. Different color maps used for visualizing the same pseudo-data. (A) The sequential "rainbow" color map

(panel B) is frequently used and thus easy to interpret but poorly conveys absolute values (cf. the "rays" in yellow and

cyan) and does not preserve information well if printed in gray scale (simulated by conversion to gray scale in panel E).

The sequential "viridis" color map (panel C) is a perceptually uniform color map avoiding such artifacts and translating

better to gray scale (panel F). The divergent color map from blue via white to red (panel D) is useful if the direction

and the extent of deviation from a central value is of interest and loses only the direction information when converted

to gray scale (panel G).

https://doi.org/10.1371/journal.pcbi.1006141.g005
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overview; generalist repositories include Figshare [56], Harvard dataverse [57], the Open Sci-

ence Framework [58], and Zenodo [59]). Providing data and code (e.g., scripts) used for data

evaluation increases reproducibility and credibility of your results.

Publishing data via reliable platforms also ensures long-term availability of research results,

which is a challenge otherwise [60]. Making research data, code, and results freely available

("open access" and/or "open data") is of increasing interest to funding agencies, e.g., the Euro-

pean Union [61]. Publishing research data is also encouraged to a different extent by many

journals and publishers [62], including PLOS [63].

Preparing data and code for publication certainly requires some effort, but one also benefits

from this work in different ways. Before being published, data and scripts need to be docu-

mented and prepared, e.g., in a suitable standardized format. This can help detect mistakes by

simply looking at the material again but primarily helps make data and code understandable

to other people (e.g., your immediate colleagues or even yourself a few months from now).

Moreover, published data sets and scripts are also guaranteed to be available to yourself, e.g.,

after moving to a different lab. Using open source platforms for implementing data evaluation

helps make such scripts reusable by yourself and others; cf. Tip 9 in reference [64]. Another

aspect of sharing data and code is that other researchers might actually use it. This may help

your work to get recognized and cited, fruitful new cooperations might evolve, and others

might find gems in your data you will never even start looking for.

Following this recommendation, we provide the data and code used for our analyses in the

supporting information to this article. Although we do not believe that there are further gems

hidden in our data (the baseball data is not ours), we are looking forward to being proven

wrong.

Supporting information

S1 Text. Description of the p-value hacking in Tip 6.

(PDF)

Fig 6. The same two synthetic time series Λext plotted in two different ways. Compared to the right plot, the left plot is of rather poor

design and quality. The text in the plot is inconsistent with the rest of the manuscript (symbols like Λ and μ), numbers are unnecessarily

hard to read and not in intuitively understandable units, the two curves of originally different color are indistinguishable in this simulated

printout on a black and white printer; the legend occludes part of the data, the possibly interesting oscillation is of the lower curve hard to

see and raises more questions than it answers; the range of values starts at almost (but not quite) zero; the image is rather blurred and

contains lots of artifacts due to low resolution, resampling, and (lossy) jpeg image compression. In contrast, the right plot is crisp and clear,

additionally shows the asymptotic value attained by both data series, and shows a zoom to how the damped initial oscillation of data series A

(here, we can actually tell which one is which).

https://doi.org/10.1371/journal.pcbi.1006141.g006
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S1 Data. Data and code for the floating point number example in Table 1 in Tip 3. The

results were obtained using Python 3.5.2, with Numpy 1.11.3 and Pandas 0.19.2.

(TGZ)

S2 Data. Data and code for the correlation plots in Fig 3 in Tip 6.

(TGZ)

S3 Data. Data and code for p-value hacking in Tip 6 and Supporting Information S1 Text.

This archive contains selected tables of the Lahman Baseball Database [41] (in comma-sepa-

rated values format) by Sean Lahman, licensed under a Creative Commons Attribution-

ShareAlike 3.0 Unported License [42], and our Python code implementing the calculations

described in Supporting Information S1 Text.

(TGZ)

S4 Data. Code for the Monte Carlo simulation for UQ in Tip 7. UQ, uncertainty quantifica-

tion.

(TGZ)

S5 Data. Code for the anscombe plots in Fig 4 in Tip 8.

(TGZ)

S6 Data. Data and code for the flower counting example in Tip 8. This archive contains

geo-referenced images used for the flower counting example in Fig 2 and the Python script

implementing the pixel counting described in the caption to Fig 2.

(TGZ)

S7 Data. Code for plots in Fig 4 in Tip 9.

(TGZ)
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