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Abstract

Researchers in many disciplines have previously used a variety of mathematical techniques

for analyzing group interactions. Here we use a new metric for this purpose, called “inte-

grated information” or “phi.” Phi was originally developed by neuroscientists as a measure of

consciousness in brains, but it captures, in a single mathematical quantity, two properties

that are important in many other kinds of groups as well: differentiated information and inte-

gration. Here we apply this metric to the activity of three types of groups that involve people

and computers. First, we find that 4-person work groups with higher measured phi perform a

wide range of tasks more effectively, as measured by their collective intelligence. Next, we

find that groups of Wikipedia editors with higher measured phi create higher quality articles.

Last, we find that the measured phi of the collection of people and computers communicat-

ing on the Internet increased over a recent six-year period. Together, these results suggest

that integrated information can be a useful way of characterizing a certain kind of interac-

tional complexity that, at least sometimes, predicts group performance. In this sense, phi

can be viewed as a potential metric of effective group collaboration.

Introduction

A vast number of phenomena in the world arise out of the interactions of individuals in

groups, from the emotional tone of a family [1,2] to the productivity of an economy [3] to the

spread of disease in a community [4], and researchers in a variety of disciplines have used

many different mathematical tools to analyze these phenomena. For instance, psychologists

have used Markov models to analyze the sequences of actions in small groups of people [5–7],

economists have used general equilibrium theory to analyze the interactions among buyers

and sellers in a market [8], and sociologists have used graph theory to analyze various kinds of

social networks [4,9].

In this paper, we examine another mathematical technique that has not previously been

used for analyzing group interactions. This technique, based on information theory, is intrigu-

ing because it was developed as a physical measure that would quantify the level of conscious-

ness of a brain [10–14]. We will see, however, that the metric is general enough to apply to
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many other kinds of systems, and we focus here on using it to analyze groups of people and

computers.

What is integrated information?

The metric we use is called “integrated information” or “phi” and was proposed by Tononi

and colleagues [10–14]. There have been several successively refined versions of phi (summa-

rized in [12]), but all the versions aim to quantify the integrated information in a system.

Loosely speaking, this means the amount of information generated by the system as a whole

that is more than just the sum of its parts. The phi metric does this by splitting the system into

subsystems and then calculating how much information can be explained by looking at the

system as a whole but not by looking at the subsystems separately.

In other words, for a system to have a high value of phi, it must, first of all, generate a large

amount of information. Information can be defined as the reduction of uncertainty produced

when one event occurs out of many possible events that might have occurred [15]. Thus, a sys-

tem can produce more information when it can produce more possible events. This, in turn, is

possible when it has more different parts that can be in more different combinations of states.

In other words, a system needs a certain kind of differentiated complexity in its structure in

order to generate a large amount of information.

But phi requires more than just information; it also requires the information to be inte-
grated at the level of the system as a whole. A system with many different parts could produce

a great deal of information, but if the different parts were completely independent of each

other, then the information would not be integrated at all, and the value of phi would be 0. For

a system to be integrated, the events in some parts of the system need to depend on events in

other parts of the system. And the stronger and more widespread these interdependencies are,

the greater the degree of integration.

For instance, a single photodiode that senses whether a scene is light or dark does not gen-

erate much information because it can only be in two possible states. But even a digital camera

with a million photodiodes, which can discriminate among 21,000,000 possible states, would not

produce any integrated information because each photodiode is independently responding to

a different tiny segment of the scene. Since there are no interdependencies among the different

photodiodes, there is no integrated information [13].

Tononi and colleagues argue that these two properties—differentiated information and

integration—are both essential to the subjective experience of consciousness. For example, the

conscious perception of a red triangle is an integrated subjective experience that is more than

the sum of perceiving “a triangle but no red, plus a red patch but no triangle” [12]. The infor-

mation is integrated in the sense that we cannot consciously perceive the triangle’s shape inde-

pendently from its color, nor can we perceive the left visual hemisphere independently from

the right. Said differently, integrated information in conscious experience results from func-

tionally specialized subsystems that interact significantly with each other [16].

Even though there is some empirical evidence that the mathematical behavior of phi is con-

sistent with empirical observations of human consciousness (e.g., [10,17–21]), there is still

considerable debate among researchers about whether phi actually measures consciousness

(e.g., [22]). The most recent version of integrated information theory [12] also specifies addi-

tional requirements for a system to be conscious, such as the “exclusion” postulate which says

that in nested systems, only the system at the level with the maximum value of phi can be

conscious.
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It is also important to note that in order to apply the theoretical definitions of phi, a com-

plete model of the rules governing state transitions in the system is needed. Since such models

are rarely available for observational data, however, we used here two alternative versions of

phi suggested by Barrett and Seth [23]. These measures estimate conditional probabilities for

state transitions from the actual observed data (see Methods). Later work has pointed out limi-

tations of (and possible corrections for) these versions of phi as estimates of the original theo-

retical definitions of phi [24, 25]. But these definitions of phi still measure the two properties

used in the original definitions of phi—differentiated information and integration.

And, interestingly, these two properties are similar to properties that are also important in

many other kinds of systems. For example, Adam Smith [26] observed that economic systems

are often more productive when (a) division of labor leads different people to specialize in dif-

ferent kinds of work and (b) the “invisible hand” of the market integrates their diverse efforts.

Lawrence and Lorsch [27] discussed the importance of differentiation and integration in large,

hierarchical human organizations: (a) dividing the organization into specialized subunits and

(b) integrating these units to achieve the goals of the overall organization. And in many fields

of engineering and other kinds of design, effective problem solving often involves (a) dividing

a problem into subparts and (b) integrating solutions for the subparts into a solution for the

whole problem [28–30].

In other words, the mathematical concept of integrated information provides a quantitative

way of measuring a combination of two properties that are important across a wide range of

different types of systems. And whether phi is measuring consciousness or not, it is clearly

measuring something that is of potential interest to many different disciplines.

A mathematical formulation of integrated information

The concept of integrated information, or phi, can be represented mathematically as follows

[23]:

; ¼
Pr

k¼1
HðMk

0
jMk

1
Þ � HðX0jX1Þ; ð1Þ

where H(X|Y) is the entropy of variable X given knowledge of variable Y, X0 and X1 are the

states of the whole system at time t0 and t1, respectively, and<inline> and<inline> are sub-

sets of X that completely partition the parts of X at these times. For example, <inline> quanti-

fies how much of the uncertainty of subsystem k at time t0 cannot be explained by knowledge

of the state of the subsystem at time t1.

Summing over all subsystems (the first term in Eq (1)) gives us the amount of entropy that

cannot be explained by the subsystems themselves. The second term in Eq (1) quantifies the

conditional entropy of the whole system. Thus phi is high if there is a large amount of entropy

that cannot be explained by looking at the subsystems separately but that is explained by look-

ing at the system as a whole.

The value calculated by Eq (1) is the phi as defined by Tononi and colleagues if and only if

the partitioning is chosen as the minimum information bipartition (MIB), that is, the decom-

position into two parts that are most independent. More thorough descriptions of phi can be

found in [11–14,20,31].

Interpreting differentiation and integration as integrated information

This mathematical formulation of phi is broadly consistent with the concepts of differentiation

and integration described above. To see how, consider a simple example involving different

ways of organizing the production of automobiles. In the early years of the 20th century, there

were hundreds of small automobile companies, each of which produced a few handmade cars
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[32]. Using the notation above, we can represent the state of one of these companies k at time t
as Mk

t , with each element of Mk
t representing whether a given part of the company (such as a

person) is active at time t. (A more detailed representation could include a separate element

for each type of activity the person could do at time t).
When there are more companies that contain more different elements, then system X can

potentially generate more information. The amount of information the system actually gener-

ates, however, will depend on how differentiated the activities of the companies are. For

instance, if many of the companies depend on the same suppliers for the same parts, then

shortages of those parts will affect all the companies in a similar way. But if the companies use

different parts and different suppliers, then more combinations of their states are possible, and

the system as a whole generates more information.

Regardless of how differentiated the companies are, if the companies are not integrated,

that is, if they operate relatively independently of each other, then almost all the entropy in the

system can be explained by looking at each company separately. In this case, then, there would

be very little integrated information at the level of the whole group of companies.

But if, instead of being organized as separate companies, all the participants in the whole

system X were part of a single large company, then we might represent the state of each differ-

ent part of the company as a different Mk
t . For instance, if we assume that the company is orga-

nized with different high-level functions (such as engineering, manufacturing, and sales), then

we could consider each of these functions as a separate part.

In this case, the different parts of the company would be differentiated because they would

be doing different kinds of activities. They would also be integrated because all of these func-

tions have to be coordinated to produce even a single car. That means there would be substan-

tial interdependencies among all the different parts of the company. For instance, a major

delay in the engineering design for a new car could significantly delay the manufacturing and

sales activities for that car. Thus, there would be substantial amounts of entropy that could be

explained only by looking at the whole company, not by looking at each of the parts separately.

And, thus, there would be substantial integrated information in this system.

Of course, increasing the differentiation and integration in a system does not always

increase the system’s performance. But as we saw above, these two features figure prominently

in a number of theories of group performance in human groups, so it is at least reasonable to

hypothesize that they are correlated with performance. And there are also several simulation

studies that suggest a relationship between performance and the combination of differentia-

tion and integration that is measured by integrated information [31,33,34].

Applying the phi metric

Since phi provides a quantitative measure that combines differentiation and integration, we

first test whether it is, in fact, correlated with performance in two different kinds of groups: (a)

small groups of experimental subjects working together on shared laboratory tasks, and (b)

groups of Wikipedia contributors improving Wikipedia articles over time. As a further test of

the applicability of phi, we also examine whether it detects what we might assume would be

the increasingly differentiated and integrated complexity of the Internet over time. We evalu-

ate this by applying the phi metric to data about all the computers (and people) communicat-

ing over a specific Internet backbone during a six-year period.

In order to apply the versions of phi we used [23], we needed to determine: (a) a characteri-

zation of the state of the system at different times, and (b) a time delay with respect to which

phi will be calculated [10].

Integrated information as a metric for group interaction
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Results

Study 1: Small work groups

In Study 1, we applied the phi metric to interaction data we gathered from a previous study of

groups performing a series of tasks designed to measure their collective intelligence [35]. Col-

lective intelligence (CI) is a statistical factor for a group that predicts the group’s performance

on a wide range of tasks, just as individual intelligence does for individuals [36]. Following

[36], we measured collective intelligence by analyzing the performance of small work groups

performing a range of diverse tasks (see Methods).

In order to apply the phi metric, we characterized the state of the group in terms of which

group member was communicating at which point in time (see Methods). To determine the

time delay with respect to which phi should be calculated for face-to-face groups, we plotted

average phi for different time delays (Fig 1). There is a clear peak at around 2 seconds, an intui-

tively plausible value, so we used this value.

When we calculated phi, it was significantly correlated with the measured collective intelli-

gence of the groups (r = 0.370, p = 0.003; see Methods, Fig 2).

Study 2: Groups of Wikipedia editors

In Study 2, we analyzed the edit history of Wikipedia articles classified by the Wikipedia com-

munity into the following classes, in order of decreasing quality: FA (Featured Article), A, GA

(Good Article), B and C [37]. All editors who edited an article were considered members of

the “group” for that article, and they were considered “active” when they made an edit.

We found that, in general, groups of editors who produce higher quality articles also have

higher phi (Fig 3 and S1 Fig). To test the significance of this effect, we created a regression

Fig 1. Average phi for face-to-face groups computed with different time delays.

https://doi.org/10.1371/journal.pone.0205335.g001
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model that predicted phi for each article from the number of editors, the number of edits per

editor and four variables encoding the quality of the article (see S6 Table). Then we assessed

the effect of the newly attained quality level in the presence of covariates by a likelihood ratio

test between the model without quality as a variable and the full model. This showed that the

article quality was significantly correlated with phi, when controlling for the other factors

(F = 3.6847, p = 0.0053).

More specifically, pairwise Wilcoxon ranksum tests show that the groups editing FA and A

articles have significantly higher phi values than GA and B articles which, in turn, are signifi-

cantly higher than C (Wilcoxon z-Statistics = 5.6024 p< 0.00001 between C and B and z-statis-

tic = 3.5132, p = 0.0004 between GA and A).

Study 3: Groups of computers and people on the internet

In Study 3, we applied the phi metric to a sample of the Internet traffic that passed through one

Internet backbone over a six-year period [38] (see Methods). We encoded the state of the system in

terms of whether a given machine was active (i.e., sent a data packet) at a given time. We picked a

time delay of 1 time step and chose the time step size that maximized phi averaged over all years in

Fig 2. Relationship between phi and collective intelligence. Values shown for both variables are z-scores.

https://doi.org/10.1371/journal.pone.0205335.g002
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the dataset (see Fig 4, Methods). In this case, the maximum is at 100 ms which is reassuring since it

coincides well with average response times observed over the Internet (see Methods).

When computing phi, there appears to be a steady upward trend over time. For example,

Fig 5 shows one example of a highly significant relationship between the date and phi (β =

1.779, p<0.0001). Similar results were obtained for numerous other sampling methods and

parameters (see Methods, S2–S4 Figs). It is important to note that the results do not arise sim-

ply from an increasing number of machines in the Internet over time, since the number of

machines in the samples analyzed is constant in each case (see Methods).

Discussion

Together, these results suggest that the concept of integrated information, as formalized by the

specific phi metric [23], can be usefully applied to group interactions. To begin with, the time

delays at which this measure is maximized are intuitively plausible for a measure of interac-

tion: 2 seconds for face-to-face human groups and 100 ms for machines on the Internet.

Predicting group performance

More importantly, phi is correlated with various measures of group performance. In 4-person

work groups, it is correlated with the groups’ collective intelligence. Previous work has shown

that collective intelligence, in turn, predicts a group’s performance on a wide range of other

tasks [35,36,40]. Furthermore, in groups of Wikipedia editors, phi is correlated with the quality

of the articles the groups edited.

Fig 3. Average phi for groups editing Wikipedia articles of different quality levels in the 60-day period before the

articles were promoted to their current quality level. Quality levels are arranged in order of increasing quality. Error

bars show standard error.

https://doi.org/10.1371/journal.pone.0205335.g003
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Fig 4. Average phi for Internet traffic computed with different time step sizes.

https://doi.org/10.1371/journal.pone.0205335.g004

Fig 5. Average phi computed on Internet traffic data over a span of 6 years. Node sampling = random walk, node

sample size = 100, time step size = 100 ms. A change in hardware at the recording site between 2011 and 2012 caused a

drop in subsequent recorded traffic [39]. The actual traffic in subsequent years is indicated by a horizontal black line

and light red bars. The red bars and the red line show values adjusted to compensate for this change. (See details in

Methods).

https://doi.org/10.1371/journal.pone.0205335.g005
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Since phi can be calculated from a relatively small sample of group interactions, this sug-

gests that it might be possible to predict many kinds of group performance, long before a

group’s output is complete, merely by measuring phi. This possible use of phi seems plausible

because we could interpret phi as a measure of group collaboration, and it seems likely that the

degree of collaboration in a group could be a good predictor of the group’s performance in

many situations.

This use of phi would be analogous to the use of intelligence tests for individuals [41] or

groups [36] to predict performance on future tasks. But these intelligence tests are interven-
tional measures; they require people to do specific testing activities they would not otherwise

have done in order to predict their performance on another task. The versions of phi used here

[23], on the other hand, are observational measures; as we have seen, they can be calculated

merely by observing what people are doing anyway. In this sense, then, phi could provide a rel-

atively easy way of measuring how well a group is working together and using that to predict

how well the group will perform on other tasks in the future.

Of course, it is certainly possible that other metrics would have predictive power similar to

that of phi and be simpler to compute. Therefore, we believe an important task for future

research is to investigate the predictive power of various other metrics. For instance, it is possi-

ble that some of the information theoretic or correlational quantities used to compute phi

would, themselves, predict performance as well as phi does. Or, perhaps, other measures of

complexity (e.g., [42–45]) would be better predictors. And it will certainly be important to

compare the predictive power of phi (or its components) with other potential explanatory vari-

ables such as (a) the relative participation of different group members [36], (b) the amount of

effort and ability members devote to the group’s tasks [46] and (c) different measures of the

network topology of the group’s interactions [4].

Measuring the complexity of group interaction

Unlike the groups in Studies 1 and 2, we don’t have a clear performance measure for the Inter-

net as a whole. However, it is interesting to observe that the same measure of integrated infor-

mation that predicted performance in the first two studies is increasing over time in the

Internet. In other words, we see an increase over time in the particular kind of interaction

complexity that phi measures—involving both differentiation and integration among parts.

More generally, it is very intriguing to observe that the same kinds of informational com-

plexity that neuroscientists have postulated are necessary (but not sufficient) for consciousness

also appear to be present in well-performing groups.

Conclusion

In this paper, we have seen how the mathematical concept of integrated information formal-

izes observations about the importance of differentiation and integration that have arisen,

more or less independently, in a number of different disciplines. We have also seen how apply-

ing this metric to empirically analyze group interactions can lead to potentially useful predic-

tions of group performance and measurements of interaction complexity.

Much work remains to be done, but, perhaps, applying the concept of integrated informa-

tion to large groups will be especially useful in understanding the complex kinds of hybrid

human-computer systems that are becoming increasingly important in our modern world.

Methods

The research was approved by Massachusetts Institute of Technology’s Institutional Review

Board (IRB). Information about subject recruitment for Study 1 is given below. Studies 2 and 3

Integrated information as a metric for group interaction
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involved the analysis of publicly available data which MIT’s IRB confirmed was not subject to

their review.

Study 1: Small work groups

Measuring the collective intelligence of small work groups. The data about collective

intelligence were collected during a previous study that tested the impact of mode of communica-

tion on general group performance [35]. In this study, 68 groups of four people each worked

together on a set of diverse online tasks. The tasks included both verbal and nonverbal activities of

the following types: generating, choosing, remembering, sensing, and taking physical actions. For

instance, tasks included brainstorming uses for a brick, solving Raven’s Matrices problems from a

standardized intelligence test, remembering features of complex videos and images, and copying

complex text passages into a shared online editor. Detailed task descriptions and descriptive statis-

tics are included in [35], and summary task descriptions are in S1 and S2 Tables. The subjects

were recruited via Internet advertisements in the Boston area during 2012, and consent was

obtained in writing. Subjects were required to be at least 18 years old and to have vision that was

normal or corrected to normal. The participants ranged in age from 18 to over 65.

All group members used individual laptop computers to work on the shared online tasks.

In one condition, the group members were seated near each other and were able to communi-

cate face-to-face while solving the tasks. In the other condition, the group members were

seated far apart and were only able to communicate via the text chat functionality built into

the online system.

To determine the collective intelligence scores for the different groups, we performed a fac-

tor analysis of the groups’ scores on the different tasks. As with previous work [36], the first

factor in these analyses explained around 40% of the variance in the groups’ performance on

all the tasks. We treated each group’s score on this first factor as the group’s collective intelli-

gence. This collective intelligence score, therefore, is a weighted average of the group’s scores

on all the tasks with the weights chosen to maximize the predictive power for performance on

all the tasks. In this sense, the collective intelligence score for a group is exactly analogous to

individual intelligence test scores for individuals [36,41].

Calculating phi for small work groups. S3 Table summarizes the methods used in all

three studies. For analyzing the data from Study 1, we used the phi metric that Barrett and Seth

[23] call FE (“empirical phi”). This metric is based upon the theoretical definition of phi by

Balduzzi and Tononi [13] and assumes that the system being analyzed is stationary. It can be

written as:

FE½X; t� ¼ IðXt� t;XtÞ �
P2

k¼1
I ðMk

t� t;M
k
t Þ ð2Þ

where X is a stochastic system, τ is the time delay with respect to which phi is measured, Xt is

the state of the system at time t, and M1 and M2 are subsets of X chosen such that they consti-

tute a minimum information bipartition (MIB) of X (see [23] for details of how to obtain the

MIB).

I (X,Y) is the mutual information between X and Y which is defined as the reduction in

uncertainty (entropy), about X, knowing the outcome of Y:

I ðX;YÞ ¼ H ðXÞ � H ðXjYÞ: ð3Þ

Thus FE is another way of calculating the information generated by the system as a whole

that is more than just the sum of its parts.

To use this metric, we recorded communication in different ways for the two conditions.

For the face-to-face condition, each group member had an individual microphone. This
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resulted in four time-aligned audio tracks. We first used software to split the audio tracks into

time steps of 200 ms each. The software then determined for each time step, who, if anyone,

was speaking. To do this, the software analyzed which group members’ audio volumes were

above a threshold level. This level was optimized based on “ground truth” data obtained from

human observer ratings of who was speaking for a limited subset of the data. The next step

suppressed the audio tracks that picked up muted versions of someone else’s speech. The final

step merged speaking turns of a single speaker that were 400ms or less apart (e.g. someone

making a brief pause during a speaking turn).

This procedure thus yielded, for each team, a state vector that encoded everyone who was

speaking at a specific time step with a 1 and everyone else with a 0. We then applied the phi

metric to this state vector.

For the online condition, we used software to analyze the chat transcripts. We encoded

each line of chat as one time step. During this time step, the group member who chatted is

encoded as 1 (for active) and all other group members are encoded as 0 (for inactive). This

encoding leads to a situation (unlike with the face-to-face groups) where only one person can

be active at any given time. We then computed the phi metric on this state dataset.

We also needed to determine the time delay with respect to which phi would be calculated.

For the online condition, we expect to see an influence of what is said in one comment on the

next comment, so we set the time delay to one “timestep,” that is, the time from one textual

comment to the next one.

For the face-to-face groups, we don’t expect the actions of one group member to immedi-

ately influence the actions of another one. Instead, we would expect time delays on the order

of a few seconds, the approximate time it takes for a person to hear and respond to what some-

one else says. To determine the exact time delay, we plotted average phi for different time

delays. As described in the main text and shown in Fig 1, there was a clear peak at around 2

seconds, so we used this value.

Since phi was computed in very different ways in the two conditions, we normalized the

phi scores by condition. Then when we performed a hierarchical regression analysis of the

effects on collective intelligence of phi and condition (face-to-face vs. online), we found a sig-

nificant effect of phi alone but no significant effects of adding condition or the interaction

between phi and condition (S4 Table). We also obtained similar results when the collective

intelligence scores were normalized by condition. Therefore, we pooled data from the two con-

ditions and found an overall correlation of r = 0.370 (p = .003) between collective intelligence

and phi (see scatterplot in Fig 2).

We also investigated the two potential outliers shown in the upper right and lower left cor-

ners of the scatterplot. Using the outlier labeling method with the value of k = 2.2 recom-

mended by [47], we found that the upper right point is not an outlier and the lower left point

is on the border. The lower left point would be considered an outlier for a value of k = 2.2, but

not for a value of k = 2.23 which is within the rounding error of the recommended value, and

the point would definitely not be an outlier with the value of k = 3.0 which is sometimes used

[47]. Even if the lower left point is eliminated from the analysis, the correlation of phi and col-

lective intelligence is still significant (r = .290, p = .025).

Note that, in this study and the other two, we assume, but do not test for, stationarity of the

time series of state vectors that are used to calculate phi. We believe that the results reported

above about correlations between phi and other variables are of interest, in any case, even if

they are caused, in part, by factors that led to non-stationarity in the systems. However, as

noted in the Discussion above, we also believe that an important focus for future work would

be to examine many alternative factors that might explain our results, including any that might

have involved non-stationarity in the systems.
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Study 2: Groups of Wikipedia editors

Measuring quality of Wikipedia articles. In this study, we analyzed the edit histories of

the articles in Wikipedia’s Vital Articles list [48]. At the time of downloading, this included

1000 articles spanning a wide range of rated quality levels, topics, and popularity. We dis-

carded the Wikipedia front-page article since it had an order of magnitude more edits than

any other article in the list and thus was as a clear outlier. This left 999 articles that we

analyzed.

From the edit histories of these articles, we parsed the quality level of the articles for each

edit step giving us the points in time when changes in quality occurred. We then analyzed the

30-, 60-, and 90-day periods before each quality change, discarding the entire article for peri-

ods in which only one or two editors were active (see descriptive statistics in S5 Table).

Calculating phi for groups of Wikipedia editors. We computed phi for each article in

the 30-, 60-, and 90-day periods before each quality change. As with the chat transcripts in

Study 1, we encoded each edit as a single time step. An editor was considered to be active if he

or she edited the Wikipedia article in question at that time step and inactive otherwise.

However, we could not compute phi for Study 2 using the FE metric used in Study 1 for

two reasons. First, as the number of nodes in the network grows, it becomes increasingly diffi-

cult to obtain enough data to accurately estimate all the relevant entropies using FE [23]. To

deal with this problem, we used the phi metric that Barrett and Seth call FAR (“auto-regressive

phi”). This metric provides reasonable estimates for both Gaussian and non-Gaussian systems

with smaller amounts of data [23] and can be written as:

φAR X; t; fM1;M2g½ � ¼
1

2
log

det
P
ðXÞ

det
P
ðEXÞ

� �

�
P2

k¼1

1

2
log

det
P
ðMkÞ

det
P
ðEMk
Þ

� �

ð4Þ

where M1 and M2 are a bipartition of the data, detS(X) is the determinant of the covariance

matrix of X, and EMk and EX are residuals in regression equations that estimate states of the

system at one time based on knowledge of the system state at another time. To compute this

version of phi, we used a MATLAB toolbox provided by Adam Barrett [23].

The second problem that arises with large systems is that determining the minimum infor-

mation bipartition (MIB) requires enumerating all possible bipartitions of the dataset. Since

the number of these bipartitions grows exponentially with the size of the network, this method

quickly becomes computationally infeasible. To avoid these problems, we used “atomic” parti-

tions in determining phi as recommended by [31,33]. With this approach, each node is consid-

ered as its own partition Mk and the summation in the second term is done over all these.

We verified the validity of this atomic measure on our dataset by computing the normal phi

and the atomic phi for all edit histories from the Wikipedia dataset with 14 editors or less, 14

being the largest number where enumerating all bipartitions is still computationally feasible

for all articles. The values of the atomic phi are higher but the correlation between the original

phi and the atomic phi was highly significant (r = 0.83, p<0.001).

In some cases in our data, the FAR algorithm became numerically unstable and was unable

to return a value at all. In other cases, the algorithm returned extreme values (below 0 or

greater than the number of nodes) that would have been theoretically impossible in the origi-

nal definitions of phi, which FAR is intended to estimate. Specifically, FAR is known to some-

times produce values less than 0, even though this cannot happen in the original definition of

phi [24, 25]. And for binary values like those we used, atomic phi cannot be greater than the

number of nodes (since, in the original definition of atomic phi, the conditional entropy

added by each node cannot be greater than 1 bit). These problems usually occurred in cases

where many nodes had (little or) no variance in their activities (e.g., the nodes were almost
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always on or almost always off). In these cases, the state vector matrices often became rank

deficient, and the algorithm was unable to compute a valid value for phi.

Since nodes with (little or) no variance have (little or) no entropy, they also have (little or)

no effect on phi. Therefore, in cases where the algorithm returned no value (or an extreme

value) for phi, we simply dropped the 5% of nodes with the least variance and reran the com-

putation, repeating this procedure until the algorithm did return a valid, non-extreme value.

In Study 2, these problems occurred in 19.5% of the cases, and when they occurred, we had to

repeat the procedure 2.27 times on average. In other words, we corrected for numerical insta-

bilities and extreme values in the calculation of phi by removing a small number of low-vari-

ance nodes that would have had little effect on phi in any case. This insured that all the data

analyzed was for groups of nodes for which valid, non-extreme values of phi could be

computed.

Study 3: Groups of computers and people on the internet

To analyze Internet traffic, we used a database compiled by the Cooperative Association for

Internet Data Analysis (CAIDA) [38]. This database includes records of the data logged by two

high-speed monitors on a commercial backbone link on the Internet. The monitors are in Chi-

cago and San Jose, and we chose the one in San Jose since it provides a longer undisrupted his-

tory (from 2008 to the present). We analyzed datasets separated by approximately 6-month

intervals during the period (usually every March and September).

Since the volume of Internet backbone traffic is huge, the database includes only one hour

of data for each month, and we limited our analysis to one minute of this data for the months

we analyzed. We picked the fourth minute of each hour to avoid any unusual activities in the

first minute of the hour (such as special programs that operate automatically at the beginning

of each hour).

The database contains a trace of each packet of information sent, including an anonymized

version of the Internet Protocol (IP) address for the origin and destination node of each

packet. Each node (or “host”) is a different computer, such as an end user’s laptop, a mail

server, or a web server for Google, Amazon, and other web service providers. The IP addresses

for these nodes are anonymized in such a way that each real IP address always matches to the

same anonymized counterpart.

Descriptive statistics for the dataset, after unpacking and parsing (including, for example,

removing IPv6 and unreadable packets) are shown in S7 Table.

Calculating phi. We calculated phi for Study 3 using the same phi metric used for Study

2. To do this, we characterized the state of the system in terms of which nodes were active (in

the sense of sending an information packet) at a given time. We also determined a time delay

with respect to which to calculate phi. In order to do these things, several other steps were also

needed.

Sampling nodes. As shown in S7 Table, the number of nodes sending packets in the

months we analyzed ranged from about 200,000 to 1.6 million. We know of no method for cal-

culating phi that is computationally feasible and numerically stable for systems with anything

remotely approaching this number of nodes, so, before calculating phi, we needed to subsam-

ple the nodes to be analyzed. Ideally, these sampling methods should select subsets of nodes

whose activity relationships are representative of those in the whole sample. Therefore, the

first two methods we used were the two methods for sampling from large graphs that were

found by Leskovec and Faloutsos [47] to best retain the network properties of the graphs.

In describing these methods, we denote by S the set of all nodes in a sample of information

packets, and by A� S the subsample of nodes to be analyzed. Bold lower case letters indicate
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single nodes. D(a) refers to the set of all destination nodes to which node a sent a packet in the

sampled period and D(A) is the set of all destinations for any node in A. We do not allow

duplicate nodes in A.

The two methods we used were:

a. Random walk. We first pick a random node x 2 S, add it to A, and make it the active node.

We then randomly pick a new active node y 2D(x) and add it to A. At each step, we con-

tinue by doing one of two things. With probability 0.85, we pick a new active node from the

destinations of the current active node. And with probability 0.15, we return to x and start a

new path from there. If we run out of new nodes to visit (e.g. in the case of a small isolated

subset) we pick a new starting node x. This method is repeated until we have reached the

sampling goal. As stated by [47] the return probability of 0.15 is the standard value picked

in literature.

b. Forest fire. We first pick a random starting node x 2 S, add it to A, and make it the active

node. Next we pick a random number n from a geometric distribution with mean 2.3 (the

value suggested by [47]), randomly pick n nodes from D(x), and add these nodes to A. The

procedure continues by selecting new active nodes from A and repeating the process until

the required number of nodes is reached. If at any point, there are no nodes left in D(A) that

are not already in A, then a new random starting node x 2 S is selected and added to A.

For comparison, we also used two other simple sampling methods:

c. Breadth first. We randomly pick x 2 S as our starting node and add it to A. We then itera-

tively add to A all nodes to which nodes in A sent packets (i.e. D(A)) until we reach our

sampling goal. If there are no more nodes in D(A) that are not already in A, we pick a new

starting node x 2 S and continue from there.

d. Random nodes. We randomly pick x 2 S and add it to A until we reach our sampling goal.

Note that this method selects a small number of nodes (e.g., 100) completely randomly

from a much larger set (e.g., several hundred thousand nodes). Therefore, even if there are

substantial interactions among nodes of the type phi measures, this node sampling method

may not detect them very well. However, we still include it for comparison purposes.

For each date and each node sampling method, we created 100 different random subsam-

ples of nodes. We then computed phi on the resulting state vectors and averaged the results

across all 100 different random subsamples.

Determining time step size and time delay. To characterize the state of the system, we

needed to determine the size δ of the time steps into which activity data will be grouped (i.e.

for which we assume all the data packets are sent at the same time). We also needed to pick a

time delay τ with respect to which phi will be calculated. These two factors depend on each

other logically. For instance, if there are true interactions at a timescale of 100 ms, we could

detect them with phi by, for example, setting δ = 100 ms and τ = 1 time step or by setting δ =

50 ms and τ = 2 time steps.

To make the search space of possibilities more manageable, we fixed the time delay τ = 1

and selected the time step size δ that maximized phi when averaged across all the dates in our

analysis. In calculating phi for this purpose, we made the following assumptions: (a) node sam-

pling was done using the random walk method, and (b) the other corrections described below

were made. This resulted in a time step size δ of 100 ms (see Fig 4). We also obtained similar

results for other combinations of parameters.

This corresponds very well with typical response times observed on the Internet. As noted

by [49], the typical “round trip” time for data on the Internet to travel from point A to point B
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and back is about 200 ms. If we make the reasonable assumption that the processing time on

the remote machine is minimal, then the delay is almost entirely due to time spent travelling

back and forth on the network, so each one-way trip would be about 100 ms. The time delay

relevant for calculating phi is the delay for one-way travel plus the time for the remote machine

to respond, so these numbers correspond very well.

Determining node sample size. Based on preliminary experiments with our data, we

found that the computations for phi often became numerically unstable and very computa-

tionally expensive at around 200 nodes. To avoid these problems we picked a standard node

sample size of 100 nodes. As noted below, however, the results were also similar with samples

of 150 and 200 nodes.

Correcting for numerical instabilities. We used the same method to correct for numeri-

cal instabilities as used in Study 2. In Study 3, invalid values occurred initially in 67.14% of the

cases, but they disappeared after repeating an average of 2.12 times the procedure of dropping

low variance nodes.

Correcting for hardware change at the recording site. The hardware at the recording

site was upgraded in the time period between September 2011 and March 2012, which led to a

noticeable drop in the phi values. To correct for this, we added an indicator variable to our lin-

ear model that indicates if the date is before or after March 2012. This allowed us to extrapolate

the corrected phi according to the model. For readability reasons, the graphs in Fig 5 and S2–

S4 Figs show the extrapolated values in red, the uncorrected values in light red, the regression

line for the corrected values as a red line and the regression line for the uncorrected values as a

black line.

Results. Using the procedures just described, we calculated the value of phi over time for

four node sampling methods (random walk, forest fire, breadth first, and random nodes). The

resulting graphs are shown in Fig 5 and S2 Fig. In all cases except random node sampling, the

relation between phi and year is positive and very significant (see Table 1). As noted above, we

did not expect the random node sampling method to be very effective at detecting interactions

of the sort phi measures, so it is not surprising that the results were not significant in this case.

Robustness check for time step size. As noted above, the main results were calculated

with a time step size δ = 100 ms which maximized the value of phi. However, S3 Fig shows that

using time step sizes of 50 ms or 150 ms also yields similar results.

Robustness check for node sample size. As noted above, the main results were calculated

with a node sample size of 100 nodes. However, S4 Fig shows that using sample sizes of 150 or

200 also yield similar results.

Robustness check for number of packets sampled. As shown in S7 Table, the number of

packets sent in the minutes we studied is not constant over the dates we studied. To investigate

whether the variable number of packets could have affected the results, we also investigated a

different method for sampling packets. With this alternate method, we analyzed only the first

10,000,000 packets in each minute, since this is the maximum (round) number of packets pres-

ent for all dates. S8 Table shows the regression coefficients for this sampling method. We see

again that date is a significant predictor of phi in this case for all four sampling methods.

Table 1. Regression coefficients for predicting phi from date with four different node sampling methods.

Node sampling method

Random Walk Forest Fire Breadth First Random Nodes

Regression coefficient 1.675��� 1.676��� 1.715��� -0.26

��� = p < 10−8

https://doi.org/10.1371/journal.pone.0205335.t001
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