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Abstract

Accurate subject-specific vascular network reconstruction is a critical task for the hemodynamic 

analysis of cerebroarterial circulation. Vascular skeletonization and computational mesh 

generation for large sections of cerebrovascular trees from magnetic resonance angiography 

(MRA) is an error-prone, operator-dependent, and very time-consuming task. Validation of 

reconstructed computational models is essential to ascertain their accuracy and precision, which 

directly relates to the confidence of CFD computations performed on these meshes. The aim of 

this study is to generate an imaging segmentation pipeline to validate and quantify the spatial 

accuracy of computational models of subject-specific cerebral arterial trees. We used a recently 

introduced parametric structured mesh (PSM) generation method to automatically reconstruct six 

subject-specific cerebral arterial trees containing 1364 vessels and 571 bifurcations. By 

automatically extracting sampling frames for all vascular segments and bifurcations, we quantify 

the spatial accuracy of PSM against the original MRA images. Our comprehensive study correlates 

lumen area, pixel-based statistical analysis, area overlap and centerline accuracy measurements. In 

addition, we propose a new metric, the pointwise offset surface distance metric (PSD), to quantify 

the spatial alignment between dimensions of reconstructed arteries and bifurcations with in-vivo 

data with the ability to quantify the over- and under-approximation of the reconstructed models. 

Accurate reconstruction of vascular trees can a practical process tool for morphological analysis of 

large patient data banks, such as medical record files in hospitals, or subject-specific 

hemodynamic simulations of the cerebral arterial circulation.
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1. Introduction:

Thanks to advances in medical imaging technologies in the past decade, the use of subject-

specific models is becoming more practical for diagnosis and treatment planning. Moreover, 

researchers and physicians have begun to perform cerebral hemodynamic simulations to 

acquire more insights into the cause of cerebrovascular diseases (CVDs). Especially, wall 

shear stress (WSS) components were implicated as critical hemodynamic factors for 

predicting endovascular lesions such as cerebral aneurysm1–3, plaque formation4,5, and 

atherosclerosis6. Even small changes in vascular network configuration or geometry can 

substantially alter WSS in arteries7. Therefore, surgical interventions inducing geometrical 

changes may inadvertently induce undesired wall shear stress, which can lead tofurther 

lesions both local and distal to the site of intervention8–11
. Hence, accurate reconstruction of 

large-scale cerebral arterial trees topology can be of significance to anticipate the 

endovascular lesion-prone sites.

Many image reconstruction and mesh generation tools (VMTK12,13, Mimics14, ITK-

SNAP15.) are available for surface reconstruction of blood vessels, which needs to be 

performed by a skilled technician. Antiga et al. also presented a conceptual network analysis 

methodology for reconstructing dense microvascular networks16. Often these processes 

require hands-on repair of surface discontinuities, holes and overlapping surfaces17 which 

are highly operator-dependent, tedious, time-consuming, and difficult to reproduce; making 

manual operations impractical for large-scale cerebral arterial tree reconstruction. Thus, 

there is a need to generate fully-automatic high-quality vascular tree meshes from 

angiographic images.

We have recently presented an anatomic image processing and computational fluid dynamics 

(CFD) analysis pipeline based on parametric structured meshing (PSM)18–20. In this paper, 
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we perform comprehensive statistical analysis of the spatial fidelity of the subject-specific 

PSM reconstruction. Specifically, we will use crisp statistical image metrics to assess the 

accuracy of the centerline, diameters, and connectivity of the reconstructed vascular 

networks. For this purpose, we will compare raw MRA data as a reference with the 

automatically reconstructed computational meshes using the Walk-In Brain virtual reality 

software21. Due to the size of the datasets, we have automated the image validation protocol 

to effectively generate similarity measures between the MRA voxel data and the 3D 

reconstructed vectorized data.

Validation segmentation and surface reconstruction are a critical step in medical image 

analysis. It requires two elements: (i) ground truth or gold standard against which the 

reconstructed surfaces can be compared and (ii) a suitable metrics for quantifying spatial 

agreement. In previous studies, vessel phantoms22,23, manually segmented reference24,25, or 

postmortem vessel network26 serves as ground truth. Here, we chose in vivo angiographic 

data as a reference.

To quantify the area alignment between two graphical objects, pixel-based statistical 

similarity measures, such as Dice or Jaccard index or modified version25, 27–30 have been 

used. Oeltze et al used the similarity index to validate a vascular tree rendering with 

isosurface visualization of liver vessel tree31. Auricchio et al32 implemented a surface 

distance for validating mesh reconstructions of coronary bifurcations which their method is 

limited to planar bifurcations.

The Hausdorff distance (HD) is a suitable measure of boundary similarity between two 

objects. The Hausdorff distance has been commonly used for video sequences matching33, 

trajectory comparison34, and facial recognition35 and for evaluating the performance of 

medical segmentation and image registration36–39. HD suffers from the so-called panhandle 
problem which occurs when one objects exhibiting a sudden local shape deviation causes an 

unrealistically large HD value. HD also cannot distinguish between under or over-estimation 

in the spatial overlap between two objects, which is critical in diameter estimation. To 

address these shortcomings, we will introduce the pointwise surface distance (PSD) index 

based on a modified Hausdorff distance metric. The paper is organized as follow. First, in-

vivo data from MRA image acquisition, segmentation, and registration of six human subjects 

are presented. The automatic capture of sampling frames from important topological regions 

of the vascular trees is introduced. We quantify the accuracy of centerline approximation 

using the original MR angiography images as reference. We also perform pixel-based 

statistical analysis and calculate the similarity indices between PSM and MRA images. 

Moreover, we deploy a pointwise surface distance (PSD) index to quantify the fidelity of 

diameter reconstruction. Finally, two applications demonstrated the use of reconstructed 

PSM meshes for morphological and CFD hemodynamic analysis.

2. Methods

A stepwise procedure for vascular mesh reconstruction validation techniques for cerebral 

arterial trees is summarized in Figure 1. The details for each step are introduced next.
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2.1. Image acquisition and segmentation (Step 1a)

Six healthy human subjects with no known cerebrovascular diseases were recruited and 

underwent MR imaging on a General Electric 3T Discovery MR750 scanner using a 32-

channel phased-array coil (Nova Medical, Inc., Wilmington, MA, USA) under Institute 
Review Board approval at the University of Illinois at Chicago. MRA images were acquired 

using a three-dimensional (3D) time of flight (TOF) pulse sequence to capture major 

cerebral arterial tree branches. No motion artifacts affecting the scan were observed in any 

of the six cases. The key data acquisition parameters were: repetition time (TR)=26 ms, echo 

time (TE)=3.4 ms, flip angle=18°, matrix size=512×512×408, voxel size=0.39×0.39×0.3 

mm3, acceleration factor=2, number of slab=4, magnetization transfer=on, and scan time= 

30 min.

To reconstruct even small branches of the cerebral arterial tree, we enhanced the vessel 

contrast with our in-house multi-scale vesselness filter40,41. Filtered images were processed 

to create logically connected networks and morphological descriptors of the cerebral arterial 

tree. A fast marching algorithm with the cutoff intensity of 0.01 was used to generate a 

binary mask of the connected arterial tree41,42.

On the MR imaging scanner where the MRA was performed, a rigorous quality assurance 

process was in place, which routinely checks the magnetic field homogeneity within a 

spherical volume that is relevant to the brain. The typical field inhomogeneity is about 5 

times smaller than the manufacturer’s specification, which ensures that the image distortion 

is well within a voxel dimension. In addition, a minimal TE of 3.4 ms was employed in the 

MRA sequence, which further reduces geometric distortion arising from B0 magnetic field 

inhomogeneity and bulk magnetic susceptibility differences. Therefore, additional post-

acquisition distortion correction was not necessary and thus not applied to our data.

2.2. Skeletonization and mesh generation (Step 1b)

We extract morphological descriptors for the vascular network using the Vascular Modelling 

Toolkit (VMTK)12,13. It first deploys the marching cubes algorithm to retrieve the surface 

envelope of the vessel walls43. Then, the centerline trajectory as well as corresponding 

vessel diameter are acquired by the maximal inscribed sphere method12,13,44. VMTK 

outputs point coordinates and connectivity of the centreline as well as corresponding vessel 

radius for the entire vascular network. We then encoded these data using special matrices. 

The point coordinate matrix contains the location of the nodes on the vessel centerline as 

well as associated diameter information. Logical connections between two points were 

encoded via a connectivity matrix. Centerline points with connectivity of more than two 

edges were labeled as a bifurcation. Terminals are characterized by a single connected edge. 

Using point coordinate and connectivity matrices, the network was partitioned into segments 
and stored in a persistent network file (*.nwk file). The spatial extent of vascular segments 
was encoded with cubic Bezier splines. To eliminate the nonphysiological noisy variation of 

the diameter information, raw diameter data were smoothed with a conventional moving 

average filter. Noisy diameter information occurred predominatly in vessels with high 

tortuosity, such as the internal carotid artery. Similar filtering methods have been 
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implemented to smooth the local diameter along the longitudinal direction of the vessels to 

eliminate artificial narrowing/dilating in healthy vessels31,45.

We used a full-hexahedral parametric structured mesh (PSM) generation method described 

previously17,20,40. In brief, hexahedral meshes were parametrized along the vessels (Bezier 

splines) in radial, cross-sectional and longitudinal directions to build an anisotropic mesh. 

For each branch, the number of longitudinal subdivisions was chosen based on the local 

curvature and vessel diameter. PSM meshes enjoy geometric continuity over the entire 

surface.

2.3. Virtual exploration of superimposed MRA and PSM (Step 2a)

Both the MRA image and the reconstructed vascular tree were registered in the Walk-in 
Brain virtual-reality software21. Figure 2 depicts a 3D rendering of the separated different 

anatomical compartment in the virtual immersive environment of Walk-in Brain. This 

software supports superimposition of the MRA and PRM in corresponding physical 

coordinate space, provides choices for surface transparency and volume rendering to enable 

simultaneous 3D exploration of raw DICOM images and 3D meshes. Semi-transparent 

visualization of the MRA images and the reconstructed 3D PSM meshes for all six subjects 

are depicted in Figure 3. In addition, it has tools to recolor substructures using various RGB 

color palettes. Immersive viewing in full 3D volume rendering mode is critical for visual 

inspection of the raw MRI data, and surpasses conventional views that offer only slice-by-

slice viewing or maximum intensity projections. Moreover, the 3D spatial operations in 

Walk-in Brain were essential for sample frame acquition needed for automating image 
analysis by sample frame acquisition.

Automatic sample framing acquisition (Step 2b)—We implemented a procedure to 

automatically capture 2D image snapshots to assess vascular cross-sections (CRSs) and 

bifurcations (BIFs) that were captured in a body fitted coordinate system which was aligned 

with the anatomical centreline orientation. This physiological reference coordinates enables 

statistical image analysis that is more accurate than image reconstruction based on 

horizontal image stacks, whose orientation depends on the random position of the human 

subject inside the imaging scanner. Examples for a cross-section (CRS) and a bifurcation 

(BIF) are shown in Figure 4A. For CRS, multiple two-dimensional snapshots were generated 

along the centreline perpendicular to the velocity of the Bezier spline representation of a 

segment as shown in Figure 4B. Typically between 10 to 120 snapshots were taken 

depending on the length of the Bezier spline.

For bifurcations, we first established the separation region. The separation region is defined 

by the bifurcation point B, three separation points, S, and two control points, C. The three 

branches of each bifurcation were indexed as a, b, and c (Figure 4B). Bifurcation sampling 

frames were generated as 2D snapshots of the separation planes spanned by the separation 

points. Separation points, Sab, Sbc, Sac, were calculated between the branches of a-b, b-c, 

and a-c, for establishing the separation planes, using Eqs. (1–2). To complete the separation 
region geometry, the normal vector of the separation plane, n , was extended by a magnitude 

equal to the mean radius tofind control points, C1 and C2 using Eqs. (3–5), as shown in 
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Figure 4B. Bifurcation sampling frames were then capture on above and below the 

separation planes.

Kab =
Raevb

+ Rbeva

∥ Raevb
+ Rbeva

∥
(1)

Sab =
B + Kab ⋅

Ra

sin tan−1 Ra
Rb

′
α ≤ 90°

B + Kab ⋅ Ra + Rb /2, α < 90°

(2)

n = Sac − Sab × Sbc − Sab (3)

C1 = B + n ⋅ Ra + Rb + Rc /3 (4)

C2 = B − n ⋅ Ra + Rb + Rc /3 (5)

Where eva
,evb

,evc
 are the unit tangent vectors at the bifurcation point are equal to the 

derivative of the Bezier curve at t = 0 on a, b, c branches, respectively. ∥.∥ denotes the 

Euclidean norm. α is the angle between two unit vectors of eva
 and evb

. Ra, Rb, and Rc are 

the radii corresponding to the branches of a, b, and c, respectively. C1; and C2 are control 

points located on the above and below of the separation plane.

By scanning the entire vascular networks on average 19,956 CRSs for the vascular segments, 

and 95 BIFs snapshots were created for each subject as listed in Table 1. We used MATLAB 

R2017a (MathWorks Inc.) for all image filtration and statistical analysis using a PC with a 

single-core 2.4 GHz Xenon CPU processor.

Vessel geometry in MRA angiograms was distinguished from the reconstructed meshes and 

segmentation using RGB (red-green-blue) channel separation. Then, a binary mask 

(silhouette) of the filtered images was generated. A Canny edge-detection algorithm was 

applied on all sequentially acquired images to extract the border of the vascular cross-

section and bifurcations for statistical analysis, as shown in Figure 4C.
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2.4. Statistical metrics for PSM evaluation (Step 3)

We performed pixel-by-pixel analysis to compare the reconstructed PSM to the MRA 

images by calculating the true positive (TP), false positive (FP), true negative (TN), and false 

negative (FN) as summarized in the confusion matrix of Table 2. Here, TP is the total number 

of vessel pixels inside the vascular lumen in the MRA as well as in the reconstructed PSM, 

while TN counts the number of pixels that lie outside the vascular lumen in the MRA 

(=background pixel) as well as in the PSM. False positives FP sums background pixels in the 

MRA, which are erroneously allocated inside the PSM. Finally, FN is the total number of the 

pixels of the vascular lumen in the MRA, which were considered background in the PSM.

In addition, several statistical metrics including sensitivity (SE), specificity (SP), positive/

negative predictive value, PPV, NPV, total accuracy, ACC, and Dice similarity coefficient, 

DSC, were computed using Eqs. (6–11) to quantify the PRM vascular reconstruction quality.

The sensitivity, SE, represents the ratio of the correctly meshed pixels in all the vessel pixels. 

Specificity, SP, is the ratio of correctly not meshed pixels in all the background pixels. PPV 

and NPV are the probability that a pixel in the PRM reconstruction is truly inside the vessel 

lumen in the raw image and a pixel outside the vessel lumen in PRM is a background pixel 

outside the vessel lumen, respectively. ACC is a global validation metric providing the ratio 

of correctly assigned pixels to the total pixels. Finally, DSC is a similarity metric to evaluate 

area spatial overlap.

SE =
TP

TP + FN
(6)

SP =
TN

TN + FP
(7)

PPV =
TP

TP + FP
(8)

NPV =
TN

TN + FN
(9)

ACC =
TN + TP

TP + TN + FP + FN
(10)
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DSC =
2TP

2TP + FP + FN
(11)

We also evaluate sensitivity and specificity of mesh reconstructions using the receiver 
operating characteristic (ROC) curves. ROC curve shows the tradeoff between the sensitivity 

and specificity, since any increase in sensitivity may result in a decrease in the specificity 

across all different sample frames. The area under the ROC curve is another measure of test 

performance to show how well negative and positive pixels are distinguished and separated. 

All results of the pixel-based comparison are summarized in Figure 5.

These pixel-based statistical parameters are suitable for overall assessment. However, they 

do not supply a metric for the reconstruction error, such as under- or over-approximation of 

the enclosed vessel surfaces (vascular lumen).

2.5. Pointwise surface distance (Step 3)

We propose a new pointwise surface distance (PSD) index to assess the quality of boundary 

reconstruction. The binary mask of “A” is defined as non-zero intensity pixels of the MRA 

reference image, shown as the white convex region in Figure 4C. Equally, the binary mask 

of “B” stands for pixels that delineate the vascular lumen in the PSM reconstruction. The 

boundary (edge) is defined as the subset, S (A) = {a1,a2,…,an} that embodies pixels on the 

border of the binary mask A. Similarly, S(B) = {b1,b2,…,bm} delineates the set of m pixels 

on the boundary of B. The mathematical notations are summarized in Table 3.

The one-sided Hausdorff distance, h (S (A), S (B)), is defined as the maximum of all 

distances from points a ∈ S (A) to their nearest points in b ∈ S(B), Eq. (12). Similarly, h (S 
(B), S (A)) is another one-sided Hausdorff distance from S(B) to S(A) as shown in Eq. (13). 

Finally, the two-sided Hausdorff distance,H (S (A), S (B)), is the maximum of the two one-

sided Hausdorff distances, Eq. (14).

h S A , S B = max
∀a ∈ S A

min
∀b ∈ S B

∥ a, S B ∥ (12)

h S B , S A = max
∀b ∈ S B

min
∀a ∈ S A

∥ b, S A ∥ (13)

H S A , S B = max h S A , S B , h S B , S A (14)

where ∥.∥ is the Euclidean distance operator. Note that the one-sided HD is an asymmetric 

function, h (S (A), S (B)) ≠ h (S (B), S (A)). Since the Hausdorff distances only detect for 
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extreme deviations, which could be caused by a single noisy point, it is not a robust metric 

for tracking entire boundaries.

Therefore, we propose a new metric, which we call the pointwise surface distance (PSD). It 

uses the traditional HD for all surface point to obtain a compact measurement for the degree 

of alignment of the entire boundary. We first calculate a modified H ausdorff distance from 

the point a ∈ S(A) to the closest point of S (B) as shown in Eq. (15). Then, we multiply the 

modified HD with the scalar parameter, “αi, which is either 1 or −1 depending on the 

position of the select point with respect to other binary mask. For example, if the point a ∈ 
S(A) lies inside a ∈ B, then parameter is set to unity, α=1, which indicates that the PSM 

reconstruction overestimates the dimensions. Conversely, if the point a is outside the PSM 

binary mask (a ∉ B), then α = −1 indicates that PSM reconstruction underestimates as 

shown in Figure 6A. The one-sided pointwise surface distance, g(S(A),S(B)) was calculated 

using Eqs. (16–17).

We also defined g(S(B),S(A))), the one-sided PDS from S(B) to S(A), as in Eqs. (18–20). 

Similarly, when a point b ∈ S(B) lies inside the MRA binary mask (b ∈ A), then PSM 

underestimates dimensions as shown in Figure 6A.

d a, S B = min
∀b ∈ S B

∥ a, S B ∥ (15)

g S A , S B = 1
n ∑

i = 1

n
αi . d ai, S B , ∀a ∈S A (16)

αi =
1 i f ai ∈ B

−1 i f ai ∉ B
(17)

d a, S A = min
∀a ∈ S A

∥ b, S A ∥ (18)

g S B , S A = 1
m ∑

i = 1

m
βi . d bi, S A , ∀b ∈S B (19)

βi =
−1 i f bi ∈ A

1 i f bi ∉ A
(20)
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Finally, we defined PSD(S (A), S (B)), the two-sided pointwise surface distance (PSD) 

between S (A), and S(B), as the average of the two one-sided PSD as in Eq. (21). The 

pseudo-code to calculate PSD is given in Table 4.

PSD S A , S B = 1
2 g S A , S B + g S B , S A (21)

Figure 6B shows three vascular segments: the first overestimates the cross-sectional 

diameter, the second underestimates, the third example correctly approximate the diameter. 

The reconstructed PSM meshes were evaluated as acceptable, over- or underestimated based 

on the PSD index, where, if PSD is positive, there are more positive pointwise surface 
distance than negative ones so the PSM reconstructed was globally overestimated. PSD 

value close to zero indicates perfectly aligned diameter overlap.

Despite these qualitative differences, all three examples of Figure 6B have identical two-

sided HD, which shows the limitation of the HD metrics to assess over and underestimation 

analysis. Fortunately, the PSD, correctly detect the global geometric trends as desired. 

Therefore, the jagged-edged MRA images and smooth PSM meshes were analyzed 

according to PSD criteria.

3. Results

Figure 1 illustrates the information flow diagram for the statistical analysis of reconstructed 

cerebrovascular trees. To detect gross errors in the tree connectivity, we first visualized 

MRA and PSM by global superposition in virtual reality environment of Walk-in Brain. For 

all six subjects, a total of 1364 vascular segments were automatically scanned and 119,738 

CRS and 571 BIF sampling frames were captured for quantitative analysis.

3.1. Centerline accuracy

We first performed statistical analysis to evaluate the spatial accuracy of the centerline 

extraction for the vascular segments. Cross-sectional sampling frames were taken 

perpendicular to the centerlines of the vessel segments. The comparison of the intensity-
weighted centroid of the RGB (red-green-blue) of the MRA against the PSM showed a mean 

deviation of 145.1±111.5 μm for the vascular CRSs (Figure 5A). Thus, the vascular 

centerline accuracy reached a sub-pixel size precision (< 400 μm) for the arterial trees in this 

study.

3.2. Pixel-based statistical analysis

The binary mask areas covered by the MRA and PSM were compared by performing linear 

regression and Bland Altman analysis showing a good agreement in terms of lumen area and 

bifurcation topology (R2 =0.95) as shown in Figure 5B. We also quantified the pixel-based 

relative area overlap using the Dice similarity coefficient. Using the Dice coefficient is 

computed for all sampling frames with a mean of DscCRS =0.70±0.09 and DscBIF = 0.88 

± 0.11. Total pixel-based reconstruction accuracy, AccCRS =0.91±0.08 for AccBIFs=0.83 
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± 0.09. Sensitivity and specificity of mesh reconstruction was evaluated by assessing the 

AUC for all vascular networks (0.96 ± 0.01 and 0.88± 0.01 for CRSs and BIFs, respectively) 

as shown in Figure 5C. Table 5–6 summarize the pixel-based statistical analysis for all 

vascular CRSs and BIFs, respectively.

3.3. Point-based surface offset calculation

The pointwise surface distance method was deployed to quantify the difference between the 

jagged edges of the MRA images and the smooth surface edge of PSM. A schematic of the 

proposed one-sided pointwise surface distance is shown in Figure 6A. Figure 6B shows the 

ability of the PSD index to differentiate between three different illustrative CRSs with the 

same Hausdorff distances. The computed HD was the same for these three cross-sections, 

while PSD could correctly categorize them into overestimated, underestimated and 

acceptable mesh reconstructions. Therefore, the PSD is a suitable metric to quantify the 

diameter approximation for vascular CRSs. Table 7 summarizes the computed HD and PSD 

for CRSs and BIFs of the six human subjects.

We also introduced the diameter estimation index (DEI) which is a unitless parameter 

defined as the two-sided PSD divided by the segment diameter, D. Figure 7 deployed the 

DEI for vascular CRSs of the six cerebral arterial trees to assess the percentage of the over/

underestimation of the diameters in vascular cross-sections. Vessel diameter between 0.8 to 

3.2 mm exhibited an accuracy of DEI=2.5%. The PSM index showed a tendency of diameter 

underestimation for the vessels less than D<1.7 mm, as well as overestimation for the 

vessels over D>2.5 mm.

3.4. Morphological and CFD analysis

Morphological analysis.—A comprehensive morphological analysis and territorial 

distributions of the cerebral arterial tree with a comparison between age and genders have 

been previously studied46,47. We performed a preliminary study on morphological and CFD 

analysis to show potentially future applications of the PSM vascular reconstruction. 

Morphological matrices such as curvature, tortuosity, and torsion are measured for all 

vascular networks as shown in Figure 8. Tortuosity is the ratio between the actual arc-length 

over the straight-line distance. Curvature and torsion characterize bending and twisting of 

the centerline in 3D-space. Appendix 1 lists the mathematical formulae used to calculate the 

cerebrovascular biometrics. Using the probability density function (PDF), we found that the 

vascular segments have the diameters of 1.63±0.75 mm, tortuosity 0.2±0.4, curvature 

0.33±0.63 mm−1, and torsion 0.33±0.57 mm−1.

Large-scale CFD analysis.—The image-derived reconstruction of vascular tree can be 

used for computational CFD analysis to quantify hemodynamic risk factors such as relative 

residence time (RRT). For example, the occurrence of atherosclerosis-prone regions strongly 

correlates with prolonged RRT48,49. Hemodynamic analysis with the elevated RRT region in 

the basilar artery is shown in Figure 9. Detailed hemodynamic risk factor analysis in large-

scale human arterial trees is discussed elsewhere19.

Ghaffari et al. Page 11

Comput Biol Med. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Automatic mesh generation and vascular reconstruction are particularly suitable for 

computer analysis of large datasets such as patient’s medical records database in hospitals. 

The rigorous and unbiased analysis of imaging data may become a useful enabling 

technology to better differentiate critical pathological factors for subject-specific variations.

4. Discussion

The aim of this study is to validate the spatial accuracy of a recently proposed automatic 

mesh generation method for reconstruction of large-scale cerebral arterial trees. Intensity-

based centerline evaluation, pixel-based statistical analysis, and pointwise surface distance 

were used to quantify the shape similarity between the reconstructed PSM meshes and the 

MRA images of arterial trees for six subjects. With the proposed framework, we quantified 

the degree of over/underestimation of the anatomically reconstructed PRM for the 

cerebroarterial trees. Prior work pointed out the difficulties in validating bifurcation 

geometries due to the discontinuity nature of the segmentation50. Our study successfully 

validated mesh surface quality also at bifurcating forks. The mean of Dsc=0.88 and PSD=1.7 

μm for 571 bifurcations underscore the ability of the reconstructed PSM tofaithfully preserve 

endovascular bifurcation topology in human arterial trees.

In this work, vascular trees spanning different length-scale ranging the diameter from 5 mm 

to 400 μm were reconstructed. Although, Dice similarity coefficient above 0.7 is typically 

taken as “excellent” agreement51, this assessment does not allow direct comparison over 

different length-scales30
. In other words, the same DSc value for a large diameter artery does 

not represent the same level of accuracy as in a small pial artery. Moreover, pixel-based 

statistical parameters do not characterize shape fidelity of the reconstructed objects. Our 

proposed PSD distance metric precisely quantifies changes in topology (under- or over-

approximation of the enclosed vessel surfaces). The combination of pixel-based statistical 

and pointwise surface distance analysis enabled the precise evaluation of morphological 

attributes such as branch length, vessel diameter and bifurcation topology, and lumen area of 

vascular network over multiple length-scales needed in arterial tree analysis.

Morphometric analysis of vascular networks like the vessel curvature or tortuosity42–43 can 

be used for diagnostics and therapeutic monitoring of endovascular diseases52. Subject-

specific abnormalities in the cerebroarterial vasculature such as an increased tortuosity might 

provide an indication of pathologies such as diabetes55, vasculopathies56, tumours57 or 

dementia58,59. These abnormalities affect blood circulation and may lead to stroke, 

hemorrhage or hypoxia.

The validated centerline and diameter data allows us to study morphological data of the 

large portion of cerebrovascular trees. In this study, the Bezier splining of the vascular 

skeleton facilitates computation and visualization of tortuosity, torsion, and curvature 

(Figure 8). Automatic biometrics extraction would enable morphological analysis on a large 

healthy population and patients with intracranial diseases before and after endovascular 

treatments.
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The sampling frame acquisition required about 65 min for each subject using a single-core 

2.4 GHz Xenon CPU processor. It takes about 16 min to compute pointwise surface 

distances for all 2D sampling frames of all BIFs and CRSs (~20,050 snapshots) for each 

subject (Table 1). The current implementation of the PSD algorithm analyzes every single 

edge point of MRA and PRM in 2D sampling frames. Future extension of PSD algorithm 

should perform a direct surface comparison with more efficient 3D surface point sampling 

techniques39,60.

In this manuscript, PSD was demonstrated for mesh validation, however, it may also be 

applicable for crisp evaluation of the registration61, segmentation62, morphological data 

acquision63 and motion detection. The PSD parameter could also be used to quantify and 

track important medical segmentations over time such as a tumor, prostate, brachial plexus, 

and brain cortex. The PSD index can also be extended to optimize current smoothing 

algorithm by evaluating the surface mesh in each iteration to avoid deformation and 

shrinkage of noisy mesh surfaces.

The present automatic segmentation and validation was geared towards a complete analysis 

for the healthy arterial tree with no need for operator intervention. In the normal vessels, the 

circular shape assumption of cross sections limits the application of parametric meshing on 

lesion sections such as aneurysms. To address aneurysms, the hybrid meshing method is 

recommended to combine automatic parametric meshes for healthy vessel with manual 

surface extraction for lesion sections. For pathological cases in cerebrovascular disease, the 

proposed metrics (PSD) are applicable, however the circular shape assumption of DEI index 

is not suitable and would need to be generalized such as described in shape-based network 

generation64.

Another possible direction concerns the application to different imaging modalities to 

evaluate venous trees. Another application pertains to assessment of arterial wall 

biomechanics65,66 by using high-resolution MRI vessel wall imaging.

Conclusion

We deployed image-based processing workflow to evaluate the spatial fidelity of large-scale 

automatic subject-specific cerebroarterial trees using PSM meshing. Such detailed and 

automatic evaluation is important for computational modeling to ensure the faithful 

reconstruction of the anatomical structure which in turn dictates the accuracy of CFD 

simulations and hemodynamic risk-factor analysis. To achieve this long-term goal, the 

automatic image segmentation17,41 and structured parametric mesh generation18,20 may 

serve as an intermediate stepping stone to assess high fidelity cerebrovascular disease-

related risk-factors analysis in future research.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Ghaffari et al. Page 13

Comput Biol Med. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Acknowledgments

The authors would like to gratefully acknowledge partial support of this project by NIH NINDS 1R21NS099896–
01A1 and NSF grant of CBET-1301198.

6. Reference

1. Dolan JM, Kolega J & Meng H High wall shear stress and spatial gradients in vascular pathology: a 
review. Ann. Biomed. Eng 41, 1411–1427 (2013). [PubMed: 23229281] 

2. Cebral JR, Mut F, Weir J & Putman C Quantitative Characterization of the Hemodynamic 
Environment in Ruptured and Unruptured Brain Aneurysms. Am. J. Neuroradiol 32, 145–151 
(2011). [PubMed: 21127144] 

3. Omodaka S et al. Local hemodynamics at the rupture point of cerebral aneurysms determined by 
computational fluid dynamics analysis. Cerebrovasc. Dis. BaselSwitz 34, 121–129 (2012).

4. Ku DN, Giddens DP, Zarins CK & Glagov S Pulsatile flow and atherosclerosis in the human carotid 
bifurcation. Positive correlation between plaque location and low oscillating shear stress. 
Arterioscler. Dallas Tex 5, 293–302 (1985).

5. Rikhtegar F et al. Choosing the optimal wall shear parameter for the prediction of plaque location-A 
patient-specific computational study in human left coronary arteries. Atherosclerosis 221, 432–437 
(2012). [PubMed: 22317967] 

6. Arzani A & Shadden SC Characterizations and Correlations of Wall Shear Stress in Aneurysmal 
Flow. J. Biomech. Eng 138, 014503/1–014503/10 (2015).

7. Peiffer V, Sherwin SJ & Weinberg PD Does low and oscillatory wall shear stress correlate spatially 
with early atherosclerosis? A systematic review. Cardiovasc. Res 99, 242–250 (2013). [PubMed: 
23459102] 

8. Cruz JP et al. Delayed Ipsilateral Parenchymal Hemorrhage Following Flow Diversion for the 
Treatment of Anterior Circulation Aneurysms. Am. J. Neuroradiol 33, 603–608 (2012). [PubMed: 
22403783] 

9. Wermer MJH, Greebe P, Algra A & Rinkel GJE Incidence of Recurrent Subarachnoid Hemorrhage 
After Clipping for Ruptured Intracranial Aneurysms. Stroke 36, 2394–2399 (2005). [PubMed: 
16210556] 

10. Amini A, Osborn AG, McCall TD & Couldwell WT Remote Cerebellar Hemorrhage. Am. J. 
Neuroradiol 27, 387–390 (2006). [PubMed: 16484416] 

11. Mitha AP et al. Can the windkessel hypothesis explain delayed intraparenchymal haemorrhage 
after flow diversion? A case report and model-based analysis of possible mechanisms. Heart Lung 
Circ 24, 824–830 (2015). [PubMed: 25804624] 

12. Antiga L et al. An image-based modeling framework for patient-specific computational 
hemodynamics. Med. Biol. Eng. Comput 46, 1097–1112 (2008). [PubMed: 19002516] 

13. Antiga L, Ene-iordache B & Remuzzi A Centerline Computation and Geometric Analysis of 
Branching Tubular Surfaces with Application to Blood Vessel Modeling in 11–18 (2003).

14. Materialize Mimics software. Belgium Available at: www.materialise.com/en/medical/software/
mimics. (Accessed: 11th February 2018)

15. Yushkevich PA et al. User-guided 3D active contour segmentation of anatomical structures: 
significantly improved efficiency and reliability. NeuroImage 31, 1116–1128 (2006). [PubMed: 
16545965] 

16. Antiga L, Ene-Iordache B, Remuzzi G & Remuzzi A Automatic generation of glomerular capillary 
topological organization. Microvasc. Res 62, 346–354 (2001). [PubMed: 11678637] 

17. Hsu C-Y et al. Gap-free segmentation of vascular networks with automatic image processing 
pipeline. Comput. Biol. Med 82, 29–39 (2017). [PubMed: 28135646] 

18. Ghaffari M et al. Large-scale subject-specific cerebral arterial tree modeling using automated 
parametric mesh generation for blood flow simulation. Comput. Biol. Med 91, 353–365 (2017). 
[PubMed: 29126049] 

Ghaffari et al. Page 14

Comput Biol Med. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.materialise.com/en/medical/software/mimics
http://www.materialise.com/en/medical/software/mimics


19. Ghaffari M, Alaraj A, Du X, Charbel FT & Linninger AA Quantification of near-wall 
hemodynamic risk factors in large-scale cerebral arterial tree. Int. J. Numer. Methods Biomed. Eng 
(Under Review) (2018).

20. Ghaffari M, Hsu C-Y & Linninger AA Automatic reconstruction and generation of structured 
hexahedral mesh for non-planar bifurcations in vascular network. Comput Aided Chem Eng 
(2015).

21. Hartung G, Alaraj A & Linninger A Walk-In Brain: Virtual Reality Environment for Immersive 
Exploration and Simulation of Brain Metabolism and Function. Comput. Aided Chem. Eng 39, 
649–658 (2017).

22. Luan K, Ohya T, Liao H & Sakuma I High-Quality Intra-operative Ultrasound Reconstruction 
Based on Catheter Path in Computer Aided Surgery (eds. Dohi T & Liao H) 113–124 (Springer 
Japan, 2012).

23. Goubergrits L et al. Coronary Artery WSS Profiling Using a Geometry Reconstruction Based on 
Biplane Angiography. Ann. Biomed. Eng 37, 682–691 (2009). [PubMed: 19229618] 

24. Chiu B, Ukwatta E, Shavakh S & Fenster A Quantification and visualization of carotid 
segmentation accuracy and precision using a 2D standardized carotid map. Phys. Med. Biol 58, 
3671–3703 (2013). [PubMed: 23656804] 

25. Zou KH et al. Statistical Validation of Image Segmentation Quality Based on a Spatial Overlap 
Index. Acad. Radiol 11, 178–189 (2004). [PubMed: 14974593] 

26. Grabner G et al. Post Mortem Validation of MRI-Identified Veins on the Surface of the Cerebral 
Cortex as Potential Landmarks for Neurosurgery. Front. Neurosci 11, (2017).

27. Sampat MP, Wang Z, Gupta S, Bovik AC & Markey MK Complex Wavelet Structural Similarity: A 
New Image Similarity Index. IEEE Trans. Image Process 18, 2385–2401 (2009). [PubMed: 
19556195] 

28. Franchi D, Gallo P, Marsili L & Placidi G A shape-based segmentation algorithm for X-ray digital 
subtraction angiography images. Comput. Methods Programs Biomed 94, 267–278 (2009). 
[PubMed: 19264373] 

29. Babin D, Pizurica A, De Vylder J, Vansteenkiste E & Philips W Brain blood vessel segmentation 
using line-shaped profiles. Phys. Med. Biol 58, 8041–8061 (2013). [PubMed: 24168875] 

30. Crum WR, Camara O & Hill DLG Generalized overlap measures for evaluation and validation in 
medical image analysis. IEEE Trans. Med. Imaging 25, 1451–1461 (2006). [PubMed: 17117774] 

31. Oeltze S & Preim B Visualization of vasculature with convolution surfaces: method, validation and 
evaluation. IEEE Trans. Med. Imaging 24, 540–548 (2005). [PubMed: 15822811] 

32. Auricchio F, Conti M, Ferrazzano C & Sgueglia GA A simple framework to generate 3D patient-
specific model of coronary artery bifurcation from single-plane angiographic images. Comput. 
Biol. Med 44, 97–109 (2014). [PubMed: 24377693] 

33. Kim SH & Park R-H An efficient algorithm for video sequence matching using the modified 
Hausdorff distance and the directed divergence. IEEE Trans. Circuits Syst. Video Technol 12, 592–
596 (2002).

34. Shao F, Cai S & Gu J A modified Hausdorff distance based algorithm for 2-dimensional spatial 
trajectory matching in 2010 5th International Conference on Computer Science Education 166–
172 (2010). doi:10.1109/ICCSE.2010.5593666

35. Gao Y Efficiently comparing face images using a modified Hausdorff distance. IEE Proc. - Vis. 
Image Signal Process 150, 346–350 (2003).

36. Morain-Nicolier F, Lebonvallet S, Baudrier E & Ruan S Hausdorff Distance based 3D 
Quantification of Brain Tumor Evolution from MRI Images in 2007 29th Annual International 
Conference of the IEEE Engineering in Medicine and Biology Society 5597–5600 (2007). doi:
10.1109/IEMBS.2007.4353615

37. Khotanlou H, Colliot O, Atif J & Bloch I 3D brain tumor segmentation in MRI using fuzzy 
classification, symmetry analysis and spatially constrained deformable models. Fuzzy Sets Syst 
160, 1457–1473 (2009).

38. Babalola KO et al. Comparison and Evaluation of Segmentation Techniques for Subcortical 
Structures in Brain MRI in Medical Image Computing and Computer-Assisted Intervention - 
MICCAI 2008 409–416 (Springer, Berlin, Heidelberg, 2008). doi:10.1007/978-3-540-85988-8_49

Ghaffari et al. Page 15

Comput Biol Med. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



39. Tang M, Lee M & Kim YJ Interactive Hausdorff Distance Computation for General Polygonal 
Models in ACMSIGGRAPH2009 Papers 74:1–74:9 (ACM, 2009). doi:10.1145/1576246.1531380

40. Hsu C-Y, Schneller B, Ghaffari M, Alaraj A & Linninger A Medical Image Processing for Fully 
Integrated Subject Specific Whole Brain Mesh Generation. Technologies 3, 126–141 (2015).

41. Hsu C-Y et al. Automatic recognition of subject-specific cerebrovascular trees. Magn. Reson. Med 
77, 398–410 (2017). [PubMed: 26778056] 

42. Sethian JA A fast marching level set method for monotonically advancing fronts. Proc. Natl. Acad. 
Sci 93, 1591–1595 (1996). [PubMed: 11607632] 

43. Lorensen WE & Cline HE Marching cubes: A high resolution 3D surface construction algorithm. 
Comput. Graph 21, 163–169 (1987).

44. Antiga L & Steinman DA Robust and objective decomposition and mapping of bifurcating vessels. 
IEEE Trans. Med. Imaging 23, 704–713 (2004). [PubMed: 15191145] 

45. Postnov DD, Tuchin VV & Sosnovtseva O Estimation of vessel diameter and blood flow dynamics 
from laser speckle images. Biomed. Opt. Express 7, 2759–2768 (2016). [PubMed: 27446704] 

46. Wright SN et al. Digital reconstruction and morphometric analysis of human brain arterial 
vasculature from magnetic resonance angiography. NeuroImage 82, 170–181 (2013). [PubMed: 
23727319] 

47. Mut F, Wright S, Ascoli GA & Cebral JR Morphometric, geographic, and territorial 
characterization of brain arterial trees. Int. J. Numer. Methods Biomed. Eng 30, 755–766 (2014).

48. Buchanan JR, Kleinstreuer C, Hyun S & Truskey GA Hemodynamics simulation and identification 
of susceptible sites of atherosclerotic lesion formation in a model abdominal aorta. J. Biomech 36, 
1185–1196 (2003). [PubMed: 12831745] 

49. Buchanan JR, Kleinstreuer C, Truskey GA & Lei M Relation between non-uniform hemodynamics 
and sites of altered permeability and lesion growth at the rabbit aorto-celiac junction. 
Atherosclerosis 143, 27–40 (1999). [PubMed: 10208478] 

50. Suinesiaputra A, de Koning PJH, Zudilova-Seinstra E, Reiber JHC & van der Geest RJ Automated 
quantification of carotid artery stenosis on contrast-enhanced MRA data using a deformable 
vascular tube model. Int. J. Cardiovasc. Imaging 28, 1513–1524 (2012). [PubMed: 22160666] 

51. Zijdenbos AP, Dawant BM, Margolin RA & Palmer AC Morphometric analysis of white matter 
lesions in MR images: method and validation. IEEE Trans. Med. Imaging 13, 716–724 (1994). 
[PubMed: 18218550] 

52. Bullitt E, Gerig G, Pizer SM, Lin W & Aylward SR Measuring tortuosity of the intracerebral 
vasculature from MRA images. IEEE Trans. Med. Imaging 22, 1163–1171 (2003). [PubMed: 
12956271] 

53. Onkaew D, Turior R, Uyyanonvara B, Akinori N & Sinthanayothin C Automatic retinal vessel 
tortuosity measurement using curvature of improved chain code in International Conference on 
Electrical, Control and Computer Engineering 2011 (InECCE) 183–186 (2011). doi:10.1109/
INECCE.2011.5953872

54. Hart WE, Goldbaum M, Cote B, Kube P & Nelson MR Automated measurement of retinal 
vascular tortuosity. Proc. AMIA Annu. Fall Symp 459–463 (1997). [PubMed: 9357668] 

55. Sasongko MB et al. Retinal Vessel Tortuosity and Its Relation to Traditional and Novel Vascular 
Risk Markers in Persons with Diabetes. Curr. Eye Res 41, 551–557 (2016). [PubMed: 26086266] 

56. Kim BJ et al. Vascular tortuosity may be related to intracranial artery atherosclerosis. Int. J. Stroke 
Off. J. Int. Stroke Soc 10, 1081–1086 (2015).

57. Jain RK Normalization of Tumor Vasculature: An Emerging Concept in Antiangiogenic Therapy. 
Science 307, 58–62 (2005). [PubMed: 15637262] 

58. Gorelick PB et al. Vascular Contributions to Cognitive Impairment and Dementia. Stroke J. Cereb. 
Circ 42, 2672–2713 (2011).

59. Nicolakakis N & Hamel E Neurovascular function in Alzheimer’s disease patients and 
experimental models. J. Cereb. Blood Flow Metab 31, 1354–1370 (2011). [PubMed: 21468088] 

60. Guthe M, Borodin P & Klein R Fast and accurate Hausdorff distance calculation between meshes. 
J. WSCG 13, 41–48 (2005).

Ghaffari et al. Page 16

Comput Biol Med. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



61. Chui H & Rangarajan A A new point matching algorithm for non-rigid registration. Comput. Vis. 
Image Underst 89, 114–141 (2003).

62. Popovic A, de la Fuente M, Engelhardt M & Radermacher K Statistical validation metric for 
accuracy assessment in medical image segmentation. Int. J. Comput. Assist. Radiol. Surg 2, 169–
181 (2007).

63. Luo T, Wischgoll T, Kwon Koo B, Huo Y & Kassab GS IVUS Validation of Patient Coronary 
Artery Lumen Area Obtained from CT Images. PLoS ONE 9, (2014).

64. A Novel Similarity Measure using a Normalized Hausdorff Distance for Trademarks Retrieval 
Based on Genetic Algorithm - Semantic Scholar Available at: /paper/A-Novel-Similarity-Measure-
using-a-Normalized-for-Umugwaneza/93ea1710733d51bfe26e128accb071106ef0148f. (Accessed: 
24th June 2018)

65. Kontzialis M & Wasserman BA Intracranial vessel wall imaging: current applications and clinical 
implications. Neurovascular Imaging 2, 4 (2016).

66. Alexander MD et al. High-resolution intracranial vessel wall imaging: imaging beyond the lumen. 
J Neurol Neurosurg Psychiatry 87, 589–597 (2016). [PubMed: 26746187] 

Ghaffari et al. Page 17

Comput Biol Med. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://paper/A-Novel-Similarity-Measure-using-a-Normalized-for-Umugwaneza/93ea1710733d51bfe26e128accb071106ef0148f
http://paper/A-Novel-Similarity-Measure-using-a-Normalized-for-Umugwaneza/93ea1710733d51bfe26e128accb071106ef0148f


Highlights.

• We reconstructed large-scale arterial trees from magnetic resonance 

angiography data using a parametric structured meshing technique and 

validate the centerline and diameter accuracy of the reconstructed meshes 

against raw images in six human subjects.

• Automatic parametric mesh generation method has been validated using 

statistical analysis and modified Hausdorff distance.

• Accurate and validated mesh reconstruction of cerebral arterial trees is 

essential for high-fidelity CFD simulation, hemodynamic risk analysis, as 

well as morphological analysis.
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Figure 1. 
Information flow for the spatial validation of the parametric structured meshes (PSM) 

against original MRA images as a reference. (Step 1) Cerebrovascular trees are 

reconstructed from MRA using PSM method. (Step 2) MRA and PSM reconstruction are 

superimposed in a virtual reality environment Walk-in Brain. Vascular segments and 

bifurcations are scanned and 2D sampling frames are automatically acquired. (Step 3) 

Spatial accuracy evaluation between PSM with original MRA images by correlating lumen 

area, pixel-based statistical analysis, area overlap measurements and centerline accuracy 

measurements. (Step 4) Applications of PSM meshes; examples include cerebrovascular 

morphometric analysis of image databases of patients and subject-specific hemodynamic 

simulation of the entire arterial circulation.
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Figure 2. 
Virtual reality rendering of the raw data as well as the reconstructed meshes in Walk-in 
Brain. Back row shows 3D rendering of the raw data (voxel matrices) for CSF spaces 

(purple), cortical surface (red), and the arterial tree (light red). The labelled voxel point 

clouds were shown as an explosion diagram for better visibility. Front row depicts the 

reconstructed volumetric meshes: CSF surface mesh (gray), cortical surface (light gray), 

arterial tress (red). The comparison of raw data (discrete point clouds) and meshes 

(vectorized data) in virtual reality space coordinates forms the basis of the statistical analysis 

for validation of the reconstructed arterial trees.
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Figure 3. 
Global superposition of six cerebral arterial trees in virtual reality space. The first column 

shows the original gray-scale MRA images. The second column is the reconstructed vascular 

skeleton (red) of the arterial tree which includes diameter, centerline, and network 

connectivity information. Three-dimensional parametric structured meshes (blue) are shown 

in the third column. The last column is the global superposition with MRA (white), vascular 

skeleton (red) and parametric mesh (blue).
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Figure 4. 
Sampling frame analysis of the vascular cross-sections (CRSs) and bifurcations (BIFs) for 

cerebral vascular tree reconstruction. (A) Superposition. Two-dimensional snapshots 

containing information of MRA and the reconstructed mesh were captured. (B) Sampling 

frame acquisition. The software automatically positions the 2D snapshots (gray planes) so 

that their normals, n , are collinear to the centerline velocity vector of a vascular segment. In 

BIF, the snapshot belongs to the separation plane spanned by separation points Sab, Sbc, Sac 

of the branches of a-b, b-c, and a-c, respectively. The detailed schematic of the separation 

region also depicts the control points of C1 and C2, as well as the bifurcation points, B. In 

total, 119,738 vascular CRSs and 571 BIFs snapshots were automatically created for 

validation of vascular tree reconstruction. (C) Binary masks and boundary edges of vascular 

CRSs and BIFs were processed for further statistical analysis.
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Figure 5. 
Pixel-based statistical analysis of the PSM reconstructed vascular models. (A) The accuracy 

of centerline reconstruction based on intensity-weighted centroids of PSM and reference 

images of MRA image for the six subjects. The vascular centerline accuracy reached sub-

resolution precision (~400 μm) for vascular cross-sections (CRSs) and bifurcations (BIFs) 

(B) Linear regression (left) and Bland Altman plot (right) were used to assess the agreement 

between the MRA and PSM in vascular CRSs and BIFs sampling frames. The regression 

plot shows the correlation with R2 = 0.9489. The red line in Bland Altman plot is the mean 

of the difference and the two black lines are the upper and lower 95% limit of agreement. 

(C) Receiver Operating Characteristic curves (ROC) of CRSs and BIFs for six subjects. 
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Using MRA images as the ground truth, the area under the curve (AUC) was 0.96 for CRSs, 

and 0.88 for BIFs.
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Figure 6. 
Pointwise surface distance (PSD) analysis.

(A) Schematic of the one-sided PSD analysis. S(A), and S (B) are the boundaries of MRA 

and reconstructed parametric structured mesh (PSM) regions, respectively. The top panel 

represents the one-sided PSD from S(A) to S(B). The green and red points indicate under 

and overestimation of PSM at each point, respectively. The modified Hausdorff distance 
(HD) from {a1, a2, a3} to their nearest point in S(B) are visualized in solid blue lines. Points 

{a1,a3} ∉ B indicates underestimated of PSM diameter for those specific points. In the lower 

panel, we calculated the one-sided PSD from S(B) to S(A) as the minimum distance from 

{b1,b2,…,bm} ∈ S(B) to their nearest neighbor in S(A).

(B) A schematic of the difference between HD and PSD computations. Three different 

cross-sectional vessel samples gives exactly the same HD are shown in red-dotted lines (H1 

= H2 = H3), which is an unsatisfactory result. In contrast, the PSD index enables correct 
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quantification of diameter estimation error for assessing PSM reconstruction against the 

MRA images as the gold standard. Positive PSD index indicates overestimation, PSD > 0, 

shown on the top. Dimensions are underestimated when it is negative, PSD < 0, as depicted 

in the middle row. In the lower panel an example of accurate diameter approximation PSD ≅ 
0, is shown.
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Figure 7. 
Diameter estimation index (DEI) of vascular cross-sections (CRSs) in six cerebral arterial 

trees. The DEI percentage was calculated for more than 119,000 CRSs. Positive DEI 

represents over-estimation of PSM diameter and negative DEI shows the under-estimated 

reconstructed diameters. Vessel diameters in the range of 0.8–3.2 mm have diameter 

accuracy of DEI ≤ ±2.5%. The PSM method exhibited a tendency of diameter 

underestimation for the vessels less than 1.7 mm, as well as overestimation for the vessels 

over 3.5 mm.
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Figure 8. 
Morphological and computational analysis of six reconstructed subject-specific 

cerebroarterial trees. Probability density functions (PDF) and contour maps visualize the 

distribution of the vascular biometrics including diameter, curvature, torsion and tortuosity 

for six human subjects.
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Figure 9. 
Preliminary 3D computational analysis. Validated reconstructed cerebral arterial trees were 

used for hemodynamic analysis. (A) Distribution of wall shear stress for a small portion of 

right middle cerebral arteries, MCA. (B) Elevated relative residence time (RRT) in the 

basilar artery. (C) Blood flow streamlines in the M 1 branch of left MCA. (D) Development 

of secondary flow in the high-tortuous right internal carotid artery. Vorticity and normalized 

helicity are shown in select planes. Cross-sectional views in sample location 1, 3, 6 and 10 

are scaled to the same diameter for better visualization. In the vessels with high curvature, 

blood circulates from the inner wall towards the outer wall forming recirculation zones.
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Table 1.

Statistics of the sampling frames for each reconstructed cerebral arterial tree and CPU time for pre- and post-

processing. The pre-processing includes sampling frame acquisition and image filtration. Post-processing 

includes pixel-based, pointwise surface-based analysis.

Subjects #CRS #BIF #Vessels Pre-processing Time
(min)

Post-processing Time
(min)

I 15685 68 133 50 13.4

II 22540 100 294 73 18.8

III 17425 89 175 58 13.3

IV 24465 122 309 81 19.4

V 20439 99 247 66 17.8

VI 19184 93 206 63 16.6

Total 119738 571 1364 391 99.3
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Table 2.

Confusion matrix for statistical analysis

MRA (Ground Truth)

True False

PSM
True TP FP

False FN TN
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Table 3.

The mathematical notation for pointwise surface distance calculation.

Notation Definition

A All pixels that have non-zero intensity on the MRA image.

B All pixels that have non-zero intensity on the PSM reconstruction.

S(A) Set of all pixels on the boundary of the binary mask A.

S(B) Set of all pixels on the boundary of the binary mask B.

||a, S(B)|| Set of Euclidian distances for a point from a a ∈ S(A), to all the points of S(B).

d(a, S(B)) Minimum distance from a a ∈ S(A) to the closest point of S(B).

h(S(A), S(B)) One-sided Hausdorff distance from S(A) to S(B).

H(S(A), S(B)) Two-sided Hausdorff distance between S(A) and S(B).

g(S(A), S(B)) One-sided pointwise surface distance from S(A) to S(B).

G(S(A), S(B)) Two-sided pointwise surface distance (PSD) between S(A) and S(B)

Comput Biol Med. Author manuscript; available in PMC 2019 September 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ghaffari et al. Page 33

Table 4.

Algorithm of two-sided pointwise surface distance (PSD) calculation

Input: Binary mask dataset of A, B.

Output: PSD(S(A), S(B))

1 S(A) = {a1, a2, …, an} ← Edge extraction of A;

2 S(B) = {b1, b2, …, bm} ← Edge extraction of B;

3 Compute one-sided PSD from A to B

4  for each Point a in S (A) do

5  d(a, S(B)) ← The minimum distance from a to S(B);

6   if a ∈ B then

7    α ← +1; //Overestimation of PSM

8   else a ∉ B then

9    α ← −1; //Underestimation of PSM

10   end if

11  dg(a, S(B)) ← α ⋅ d(a, S(B));

12  end for

13 g S A , S B ∑i = 1
n dg a, S B /n;

14 Compute one-sided PSD from B to A

15  for each Point b in S(B) do

16  d(b, S(A)) ← The minimum distance from b to S(A);

17   if b ∉ A then

18    β ← +1; //Overestimation of PSM

19   else b ∈ A then

20    β ← −1; //Underestimation of PSM

21   end if

22  dg(b, S(A)) ← β ⋅ d(b, S(A));

23   end for

24 g S B , S A ∑i = 1
m dg b, S A /m;

25 Compute two-sided PSD index of A and B

26 PSD(S(A), S(B)) ← 0.5 {g(S(A), S(B)) + (S(B), S(A))}

27 Return PSD(S(A), S(B));

Comput Biol Med. Author manuscript; available in PMC 2019 September 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ghaffari et al. Page 34

Table 5.

Pixel-based statistical analysis of the vascular cross-sections.

Subjects I II III IV V VI Mean±SD

Se 0.80 0.79 0.78 0.81 0.80 0.79 0.80±0.12

Sp 0.93 0.94 0.93 0.90 0.91 0.92 0.92±0.10

Ppv 0.93 0.76 0.76 0.66 0.75 0.73 0.73±0.13

Npv 0.73 0.96 0.96 0.96 0.94 0.96 0.96±0.06

Acc 0.92 0.92 0.92 0.89 0.89 0.91 0.91±0.08

Dsc 0.71 0.72 0.72 0.65 0.69 0.70 0.70±0.09

AUC 0.96 0.96 0.96 0.95 0.96 0.94 0.96±0.01

Se: sensitivity; Sp: specificity; Ppv: predictive positive value; Npv: negative predictive values; Acc: accuracy; Dsc: Dice similarity coefficient; 
AUC: area under the curve.
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Table 6.

Pixel-based statistical analysis of the vascular bifurcations.

Subjects I II III IV V VI Mean±SD

Se 0.90 0.88 0.88 0.91 0.89 0.90 0.90±0.06

Sp 0.89 0.69 0.88 0.49 0.69 0.63 0.63±0.20

Ppv 0.64 0.86 0.99 0.90 0.87 0.87 0.88±0.12

Npv 0.86 0.70 0.46 0.53 0.71 0.67 0.65±0.19

Acc 0.82 0.81 0.88 0.84 0.83 0.83 0.83±0.09

Dsc 0.87 0.86 0.93 0.91 0.87 0.87 0.88 ± 0.11

AUC 0.88 0.89 0.86 0.90 0.89 0.87 0.88±0.01

Se: sensitivity; Sp: specificity; Ppv: predictive positive value; Npv: negative predictive values; Acc: accuracy; Dsc: Dice similarity coefficient; 
AUC: area under the curve.

Comput Biol Med. Author manuscript; available in PMC 2019 September 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ghaffari et al. Page 36

Table 7.

Hausdorff distances (HD) and pointwise surface distance (PSD) for cross-sections (CRSs) and bifurcation 

(BIFs) of the six human subjects.

Mean Hausdorff Distances, HD
(mm)

Mean Pointwise Surface Distance, PSD
(mm)

CRS BIF CRS BIF

Subject I 0.4513 0.8247 0.0146 0.0004

Subject II 0.4433 0.7861 0.0048 0.0018

Subject III 0.4721 1.3576 0.0045 0.0021

Subject IV 0.4715 1.2958 0.0083 0.0008

Subject V 0.5010 0.6987 0.0011 0.0021

Subject V1 0.4671 0.9190 0.0090 0.0030

Mean 0.47±0.02 0.98±0.28 0.0071±0.0047 0.0017±0.0009
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