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Abstract

The classic Aesop’s fable, Crow and the Pitcher, has inspired a major line of research in 

comparative cognition. Over the past several years, five articles (over 32 experiments) have 

examined the ability of corvids (e.g., rooks, crows, and jays) to complete lab-based analogs of this 

fable, by requiring them to drop stones and other objects into tubes of water to retrieve a floating 

worm (Bird and Emery in Curr Biol 19:1–5, 2009b; Cheke et al. in Anim Cogn 14:441–455, 2011; 

Jelbert et al. in PLoS One 3:e92895, 2014; Logan et al. in PLoS One 7:e103049, 2014; Taylor et 

al. in Gray R D 12:e26887, 2011). These researchers have stressed the unique potential of this 

paradigm for understanding causal reasoning in corvids. Ghirlanda and Lind (Anim Behav 

123:239–247, 2017) re-evaluated trial-level data from these studies and concluded that initial 

preferences for functional objects, combined with trial-and-error learning, may account for 

subjects’ performance on key variants of the paradigm. In the present paper, we use meta-analytic 

techniques to provide more precise information about the rate and mode of learning that occurs 

within and across tasks. Within tasks, subjects learned from successful (but not unsuccessful) 

actions, indicating that higher-order reasoning about phenomena such as mass, volume, and 

displacement is unlikely to be involved. Lurthermore, subjects did not transfer information learned 

in one task to subsequent tasks, suggesting that corvids do not engage with these tasks as variants 

of the same problem (i.e., how to generate water displacement to retrieve a floating worm). Our 

methodological analysis and empirical findings raise the question: Can Aesop’s fable studies 

distinguish between trial-and-error learning and/or higher-order causal reasoning? We conclude 

they cannot.
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Introduction

Ghirlanda and Lind (2017) recently re-evaluated evidence from a series of research studies 

in comparative cognition that were inspired by the Aesop’s fable, Crow and the Pitcher. The 

studies demonstrate that corvids (e.g., rooks, jays, and crows) can learn to drop stones into 

water-filled tubes to raise the water level to reach a floating worm or piece of meat (Bird and 

Emery 2009b; Cheke et al. 2011; Jelbert et al. 2014; Logan et al. 2014; Taylor et al. 2011), 

and have been used as evidence of “complex cognition” in these birds. The new analyses by 

Ghirlanda and Lind challenge this conclusion. They combined trial-level data across subjects 

within each article and conclude that the initial preferences for functional objects, combined 

with trial-and-error learning, may account for subjects’ behaviors. Lurthermore, they pointed 

out that the initial preferences for functional objects, when found, could be expected from 

stimulus generalization or other associative learning processes.

In the present paper, we report an analysis of the Aesop’s fable tasks that was independently 

inspired and allows for a more fine-grained investigation of the data. The starting point for 

our analysis is the observation that, within every experimental variant of these tasks, each 

single “trial” is, in fact, comprised of a variable number of object drops. The culmination of 

these drops results in the subject either retrieving a food reward or failing to do so. 

Traditionally, the final outcome of the trial has been assumed to be the fundamental unit of 

learning. However, we note that each instance of a subject dropping an object (within a trial) 

offers an opportunity for learning (i.e., the food reward either moves closer to the subject or 

remains stationary). This insight allows us to (among other things) precisely estimate the 

relevant rate of learning demonstrated by subjects in these studies. Specifically, in what 

follows, we: (1) unpack the rationale of these studies, (2) provide new analyses of both rate 

and mode of learning in several versions of the tasks, (3) examine whether there is transfer 

of learning between tasks, and (4) assess whether this paradigm has unique value in 

understanding corvid cognition, in particular, and/or the field of comparative cognition more 

broadly. Our work thus complements that of Ghirlanda and Lind (2017). We intend this as a 

constructive exercise to help identify general methodological and theoretical pitfalls in 

comparative research that can help to shape future research strategies.

An experimental paradigm inspired by a fable

Bird and Emery (2009b) were the first to employ the Aesop’s fable paradigm. In their first 

experiment, the researchers introduced rooks to a clear tube partially filled with water and 

baited with an out-of-reach worm. A pile of ten stones sat nearby. To solve the task, the 

rooks needed to drop between one and seven stones into the tube to raise the water level and 

reach the worm. All four rooks dropped stones until the worm was within reach and then 

retrieved the worm. In a second experiment, the rooks learned to drop large stones over 

small stones. In a third experiment, the rooks were presented with two clear tubes: one 
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partially filled with sawdust and the other with water. Each tube had a worm placed on the 

surface of the substrate. Over a number of trials, the rooks learned to drop stones into the 

water tube to retrieve the worm. In subsequent studies, other researchers have replicated 

these tasks and further manipulated the properties of the objects which the birds were given 

to drop (e.g., hollow vs. solid, sink vs. float; Cheke et al. 2011; Taylor et al. 2011; Jelbert et 

al. 2014; Logan et al. 2014). Across many (but not all) variations of the basic procedure, at 

least some birds have been successful in retrieving the food—thus, “solving” the task.

Formulations of what abilities that the Aesop’s fable paradigm measures have been 

somewhat obscure, but researchers have consistently stressed its unique potential for 

understanding animal cognition. Bird and Emery (2009b) suggest that the rapid learning and 

efficient solutions demonstrated by rooks provide evidence that rooks could solve “complex 

physical problems via causal and analogical reasoning” (p. 1410). Taylor et al. (2011) 

suggest the paradigm measures whether subjects “can process causal information” (p. 1). 

Likewise, Jelbert et al. (2014) state that the paradigm can be used to investigate whether the 

subjects understand “causal regularities” (p. 2). Such descriptions are of limited use, 

however, because phrases such as “process causal information” and “understanding causal 

regularities” do not define the underlying processes in question. Given that the history of 

comparative cognition is replete with demonstrations of animals’ understanding of causal 

regularities (e.g., rats learning to press a lever multiple times to obtain a food reward), this 

definitional ambiguity is worrisome. Indeed, as noted by the early theorists (e.g., Tolman 

1932), linking a cause/action to an effect is the bedrock of goal-directed behavior in animals 

(for a review of the evidence that animals treat causal relations differently from non-causal 

ones, see Penn and Povinelli 2007). Presumably, the Aesop’s fable researchers are not trying 

to provide yet more evidence for such a well-established phenomenon. Instead, they seem to 

pit a generic “associative learning” model against “complex cognition”. This approach fails 

to account for the rich empirical and theoretical literature aimed at addressing the causal 

aspects of animal cognition within and across species (see Cheng 1997; Penn and Povinelli 

2007, for a review).

Given the ambiguity of what the paradigm is measuring, it seems important to ask why it has 

been so strongly embraced. Some researchers have described the value of the Aesop’s fable 

paradigm as demonstrating that the subjects can learn to solve a “novel” problem “rapidly”. 

Bird and Emery (2009b) intimate that, because their birds had never dropped stones into a 

water-filled tube before the test trials (although they had participated in an earlier study in 

which they dropped stones into tubes to collapse a platform to retrieve food; Bird and Emery 

2009a), the relative contribution of prior task-related conditioning and learning can be 

screened off from “causal knowledge”. Indeed, the speed with which subjects solve the tasks 

has been noted by all research teams using the paradigm (Bird and Emery 2009b; Cheke et 

al. 2011; Jelbert et al. 2014; Logan et al. 2014; Taylor et al. 2011). We surmise that this is 

guided by the assumption that “rapid” learning is indicative of more complex causal 

reasoning, whereas “slow” learning is more indicative of association learning (see Bird and 

Emery 2009b; Jelbert et al. 2014). This is troubling for at least several reasons. First, what is 

meant by rapid vs. slow learning is currently undefined and unquantified. Second, it implies 

that “novel behaviors” cannot be produced using classical learning techniques (i.e., operant 

and instrumental learning)—a decidedly incorrect proposition. Third, it implies that if 
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subjects were familiar with the task, or were natural stone-dropping tool users, it would be 

impossible to determine whether their performance should be attributed to causal reasoning 

abilities vs. prior learned associations. This third assumption is especially problematic, 

because it fails to specify which “novel” actions (e.g., lifting an object, lifting and dropping 

an object, lifting and dropping an object through a gap, lifting and dropping an object 

through a gap into water to obtain a reward, etc.) would warrant the assumption that the task 

is novel and therefore measuring “causal knowledge”. It also fails to specify what rate of 

learning would support which specific model of causal understanding, or the unique role 

played by higher-order, role-based constructs such as mass, volume, or displacement (see 

Penn et al. 2008; Povinelli 2011).

Additional caution is needed as the ease of learning varies widely depending on the 

biological preparedness of the organism’s sensory systems to detect certain regularities, and 

their biological preparedness to respond (see Garcia and Koelling 1966; Domjan 1983; 

Shettleworth 1998; Timberlake 1993; Dunlap and Stephens 2014). Indeed, some corvid 

species have been observed using simple tools in the wild (New Caledonian crows: Taylor et 

al. 2011; Jelbert et al. 2014; Logan et al. 2014), whereas others have not (rooks: Bird and 

Emery 2009a; Eurasian jays: Cheke et al. 2011). Bird and Emery suggest that the ability to 

solve the tasks does not depend upon the ecological factor of tool use. However, any task has 

many demands. Some of these (e.g., attending to and orienting to food location and distance) 

will articulate well with the bird’s evolutionarily prepared behavior, whereas others will not 

(e.g., dropping stones).

In the present context, Rutz et al. (2016) recently reexamined the ecological basis for the 

widely cited example of a New Caledonian crow ‘spontaneously’ bending straight pieces of 

wire into hooked tools to retrieve rewards from an experimental apparatus similar to the one 

employed in the Aesop’s fable tasks (see Weir et al. 2002). Rutz et al. (2016) reported that 

wild New Caledonian crows routinely bend the shaft of stick tools during their manufacture, 

using techniques that are indistinguishable from those reported in captivity.

Using individual action data for insight into the rate and mode of learning

In their recent meta-analysis, Ghirlanda and Lind (2017) used trial-level data that were 

derived by pooling all of the choices made by all subjects in each trial (within each article). 

Their primary goal was to assess whether corvids’ success in the Aesop’s fable tasks could 

be attributed to an initial preference for the functional option and/or learning across trials. 

Consistent with these predictions, in the tasks that contrasted large vs. small, sinking vs. 

floating, and hollow vs. solid objects, New Caledonian crows, jays, and grackles (though not 

rooks), all showed significant first-trial preferences for functional objects (i.e., large over 

small stones, sinking over floating objects, and solid over hollow objects). Many subjects 

also selected the functional objects more frequently within trials as the task progressed. The 

researchers also tested subjects’ first-trial preferences for functional substrates (i.e., water) in 

the water vs. sand contrast. Here, the results were mixed, with New Caledonian crows 

showing a first-trial preference for the water tube in two of three experiments. Ghirlanda and 

Lind also found that performance increased substantially across trials for most subjects, but 

did not find evidence for meaningful individual differences between birds. Together, these 
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findings suggest that successful performance in the Aesop’s fable tasks can be accounted for 

by a combination of an initial preference for the functional option and the learning that 

occurs across trials within each task (see Ghirlanda and Lind 2017 for additional discussion 

of stimulus generalization and associative learning effects).

Our meta-analytic approach differs from Ghirlanda and Lind (2017) in two important ways. 

First, our analyses utilize a finer-grained unit of learning (i.e., each discrete object drop), 

instead of considering learning at the level of a trial (i.e., successful or unsuccessful retrieval 

of the food). Each object that a subject inserted had the potential to provide the subject with 

task-relevant information and a learning opportunity. Thus, analyzing the data by each object 

insertion, instead of combining multiple insertions into a single trial, provides a more fine-

grained measure of learning. To that end, we analyzed subjects’ learning rates as a function 

of each object insertion, which we argue is a more accurate unit of learning. Second, we 

combined subjects across studies for equivalent tasks, allowing for much larger Ns in our 

analyses. This strategy allowed us to quantify the actual rates and modes of learning. 

Specifically, we pooled and analyzed the data from five published research articles to assess 

learning within and between several Aesop’s fable tasks. Using these data structures, we (1) 

conducted multilevel analyses to estimate subjects’ initial preference and rate of learning in 

the original Aesop’s fable task involving the choice between water vs. sand, (2) replicated 

and extended these multilevel analyses to two additional tasks: sink vs. float and hollow vs. 
solid, (3) tested whether rate of learning changes as a function of each prior action taken by 

the subject (i.e., within-task transfer), and (4) estimated whether there was any transfer of 

learning across tasks (i.e., between-task transfer).

Methods

Literature search

An initial search was conducted through the electronic Web of Science database. We 

searched for all available records using the following combinations of keywords: (corvid OR 
crows) AND (Aesop); (corvid OR crows) AND (water displacement). The search yielded 11 

hits (with removal of duplicates). We also searched for articles citing Bird and Emery 

(2009b), which resulted in 76 articles. Finally, we consulted review articles for additional 

relevant studies (Ghirlanda and Lind 2016; Jelbert et al. 2015; Shettleworth 2009, 2012; 

Taylor 2014; Taylor and Gray 2009).

Inclusion criteria

The following three criteria were used to select research articles for this meta-analysis:

1. The article had to be published in a peer-reviewed journal; no unpublished data 

were considered.

2. Subjects in the article had to belong to the monophyletic group, including rooks, 

Eurasian jays, and New Caledonian crows. This monophyletic group is in turn a 

nested subset of the larger passerine bird family, the Corvidae (or “corvids”).

3. Subjects in the article had to take part in at least one variant of the water vs. sand 
displacement task first published by Bird and Emery (2009b).

Hennefield et al. Page 5

Anim Cogn. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A total of five research articles, describing 33 separate tasks, were identified for inclusion in 

this meta-analysis. These articles are Bird and Emery (2009b), Cheke et al. (2011), Jelbert et 

al. (2014), Logan et al. (2014), and Taylor et al. (2011). Application of the second criterion 

excluded an article by Logan et al. (2015) that tested two western scrub jays (in addition, 

these birds did not demonstrate reliable learning in the water displacement task). Application 

of the third criteria excluded an article by Logan (2016) that tested six grackles. Only one 

grackle began the water vs. sand task and refused to continue past the second trial; thus, the 

task was eliminated from the study.

The unit of learning: each object insertion versus each trial

In all articles, the data were presented as individual trials, each of which consisted of 

multiple object drops. All studies within the articles implemented 20 trials for each subject, 

except Cheke et al. (2011), which used 15 trials for each subject. Despite the availability of 

the data for individual drops, all five articles analyzed learning rate at the level of a trial. 

Each trial began when subjects inserted their first object into a tube, and ended when the 

subject retrieved the food in the tube, exhausted all available objects, or ceased participation. 

A successful trial was defined as all object insertions until subjects ultimately retrieved the 

food. An unsuccessful trial was defined as subjects’ failure to retrieve the food during a set 

period of time or when all available objects were inserted by subjects and they were still 

unable to retrieve the food. However, each trial consisted of multiple, discrete acts of object 

insertion, each of which either brought the reward closer to the subject or did not. The 

number of insertions per trial varied from 1 to 17. Thus, the length of each trial, and the 

subsequent amount of information that a subject could learn during each trial, varied across 

trials and across individual subjects.

Preliminary data transposition

All five articles primarily presented their raw data in grids, with one grid representing each 

individual subject’s performance on a particular task. In four of the articles, within each 

grid, each row represented one trial, and each column represented an object insertion choice 

made by the subject; Cheke et al. (2011) presented the rows and columns in reverse. The 

squares within the grid were color-coded to indicate the subject’s specific choice (e.g., blue 

if a stone was dropped into a water tube; green if it was dropped into a sand tube). We 

transposed each color-coded data point into a binary numerical data point (e.g., 1 for water 

tube insertion; 0 for sand tube insertion) for multilevel logistic modeling analyses. Two 

research assistants who were blind to the hypotheses of this study transposed the data. 

Agreement was extremely high (Cohen’s κ = 0.985). The second author resolved any 

discrepancies in the data transposition.

Analysis plan

Despite the small number of birds studied in each article (Mdn=4, M=4.2 per task; see Table 

1), there is now a larger sample on which to base multilevel modeling analyses. We used 

multilevel modeling to better account for the dependencies that are present within the 

experimental designs in these studies. Neither object insertions nor trials are independent 

measures, as the same subjects repeatedly perform each behavior; therefore, these data do 

not meet the standard assumptions of independence necessary for the conventional statistical 
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approaches such as t-tests and ANOVAs. In contrast, multilevel modeling analyses allow us 

to statistically account for the dependent nature of the observations at each nested level (e.g., 

insertions nested within subjects and tasks, and subjects and tasks nested within articles), 

and to more accurately characterize subjects’ behavior within and between tasks (see 

Raudenbush and Bryk 2002 for an introduction to multilevel modeling).

Multilevel logistic model—Due to the variation in number of object insertions that each 

subject completed—ranging from 1 to 150 insertions—we selected the median number of 

insertions, 63 (per subject, per task), as our cut-off point for our primary analyses. By doing 

so, we limit the degree to which a few subjects may over-influence the results, because they 

have more data points. This approach is more conservative than one based on the maximum 

number of object insertions, because the subjects with the most object drops also tended to 

make the most inefficient choices throughout the tasks. Primary analyses using the median 

number of object insertions are presented in ESM Appendix (1), and parallel analyses using 

the maximum number of object insertions are presented in ESM Appendix (2). All 

qualitative statistically significant effects remained the same except the one noted below in 

“Initial preference at task onset (intercept)”.

In each task, subjects had to choose between a tube or object that would yield the reward or 

yield the reward at a faster rate (which we call the “efficient choice”) versus a tube or object 

that would not (the “inefficient choice”). Because these choices were binary (e.g., either 

efficient tube or object was chosen [1] or not chosen [0]), we used a multilevel logistic 

model, modeled with the lme4 package version 1.1–12 (Bates et al. 2015) with insertion 

order nested within subject, and subject nested within each article. We also included species 

as a predictor of performance in the models. Species was not included as a predictor when 

modeling the hollow vs. solid task, because all subjects were of the same species (New 

Caledonian crows). We used the likelihood ratio test for model selection. For each model, 

we started with the maximal structure and then removed terms one at a time, starting with 

the study level and then proceeding to the bird level. We tested for variance of random 

slopes as well as the covariance between terms (see ESM Appendix 1 for model selection 

details). The output of the model is given in logit units (e.g., a one unit increase in insertion 

order leads to a predicted bt logit increase in selecting the efficient choice). To interpret these 

effects, we converted the logits to odds ratios (OR) with the equation OR = ebi.

Within-task analysis plan—We characterized overall learning in each task by first 

assessing subjects’ initial choice of tube or object at the onset of a task, and then statistically 

modeling the rate at which subjects chose the most efficient tube/object as that task 

progressed. We also assessed whether subjects learned from their choices at each insertion—

that is, Did making either an efficient or inefficient choice affect whether their subsequent 

choice was efficient or inefficient? We restricted our within-task analyses to the three tasks 

with the largest samples of subjects that were claimed to demonstrate successful learning: 

(1) water vs. sand, (2) float vs. sink, and (3) hollow vs. solid. We selected the water vs. sand 
contrast (with sand used to refer to all non-functional substrates including sand, sawdust, 

and woodchips) for our analyses because it was reported in all five articles and included the 

largest sample of subjects (N = 22). In addition, in three of the articles, water vs. sand was 
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the first task that subjects participated in after the initial training. We selected the float vs. 
sink and hollow vs. solid contrasts, because subjects were reported as having successfully 

completed these tasks in four articles, and these tasks had the second and third largest 

sample of subjects, respectively (N = 18 for float vs. sink; N = 11 for hollow vs. solid; see 

Table 1 for more details). Although the U-tube task included 12 subjects across three 

articles, and the narrow vs. wide task included 11 subjects across two articles, few subjects 

successfully learned to retrieve the food in either task (U-Tube success rate = 8.3%; narrow 
vs. wide success rate = 36.4%; see Table 1). As the purpose of these analyses was to model 

learning across the tasks, we excluded tasks in which learning did not appear to occur.

Between-task analysis plan—We also tested whether birds demonstrated transfer of 

learning across tasks—that is, whether subjects’ rate of learning increased in subsequent 

tasks as they gained more experience with the Aesop’s fable tasks. Specifically, we tested 

whether subjects more quickly learned to choose the efficient option in later (relative to 

earlier) tasks (across articles, the tasks were not given in any consistent order). This pattern 

of results should be expected if subjects either used task-specific information learned in 

earlier tasks to complete subsequent tasks, or developed a higher-order, role-based 

representation of water displacement. Across the five articles included in this meta-analysis, 

subjects took part in 16 distinct tasks. To maximize the number of tasks included in our 

between-task analyses, our minimal inclusion criteria consisted of all tasks that involved 

both water (displacement) and a binary choice. These criteria yielded a total of ten tasks: 

large vs. small stones, water vs. sand, air vs. water, sink vs. float, baited vs. unbaited, U-
tube, hollow vs. solid, narrow vs. wide equal, narrow vs. wide unequal, uncovered u-tube 
(see Table 2 for a brief description of each task). In addition, we also conducted between-

task analyses (including all subjects who participated in those tasks) including only those 

tasks in which learning was reported to occur: large vs. small stones, water vs. sand, air vs. 
water, sink vs. float, baited vs. unbaited, hollow vs. solid, and narrow vs. wide unequal.

Results

Characterization of subjects’ overall learning

We used multilevel logistic modeling to characterize subjects’ overall learning within each 

task. Analyses of the intercepts of these models (i.e., subjects’ initial preference for the 

efficient or inefficient options at the onset of the task) are presented in Table 3. Analyses of 

the slopes of these models (i.e., the rate of learning) are presented in Table 4. Results are 

also depicted graphically in Fig. 1. Figures were created using the ggplot2 package version 

2.2.1 (Wickham and Chang 2015). All analyses were conducted considering water as the 

efficient choice in water vs. sand, sink as the efficient choice in float vs. sink, and solid as 

the efficient choice in hollow vs. solid.

In the water vs. sand task, the best-fitting model allowed intercepts to vary at the article level 

and both intercepts and slopes to vary at the bird level. There was no covariance between 

intercepts and slopes at the bird level. In the float vs. sink task, the best-fitting model 

allowed intercepts to vary at the article level and both intercepts and slopes to vary at the 

bird level. There was no covariance between intercepts and slopes at the bird level. In the 
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hollow vs. solid task, the best-fitting model allowed intercepts to vary at the article level and 

at the bird level.

Initial preference at task onset (intercept)—The intercepts indicate the initial 

preference subjects had for each tube or object at the onset of each task. If subjects were 

equally likely to choose the efficient or inefficient option, the odds ratio would be 1. In the 

water vs. sand task, the intercept was not statistically significant, suggesting that subjects did 

not prefer either the water or sand tube at the onset of the task (p = .08; the odds of subjects 

choosing the water tube were 0.53 times greater than the odds of subjects choosing the sand 

tube at task onset, 95% Wald Confidence Intervals [CI] = [0.27, 1.07]). Similarly, in the float 
vs. sink task, the intercept was not statistically significant, suggesting that subjects did not 

prefer either the sinking or floating objects at the onset of the task (p = .84; the odds of 

subjects choosing the sinking object were 1.23 times greater than the odds of subjects 

choosing the floating object at task onset, 95% CI = [0.17, 9.18]). However, in the hollow vs. 
solid task, the intercept was statistically significant, suggesting that subjects were more 

likely to choose the solid object over the hollow object at the onset of the task (p < .001; the 

odds of subjects choosing the solid object were 57.02 times greater than the odds of subjects 

choosing the hollow object at task onset, 95% CI = [10.18, 319.33]). This finding suggests 

that subjects had a robust preference for solid objects over hollow objects at the onset of the 

task, which likely influenced their performance on this task (see “General Discussion”).

In our parallel analyses that used the maximum number of insertions, the intercept for the 

float vs. sink task was statistically significant, suggesting that subjects had a preference for 

sinking objects over hollow objects at the onset of the task (p = .03). Although we made an a 

priori decision to base our interpretations on the analyses that use the median number of 

insertions, this maximum insertion analysis raises the possibility that subjects did have an a 

priori preference for the sinking object. If so, this finding would be in line with the hollow 
vs. solid task finding that subjects had a preference for solid objects at the onset of the task. 

This was the only significant difference between our primary analyses that used the median 

number of insertions and the parallel analyses that used the maximum number of insertions.

Rate of learning (slope)—The slope of the models represents the rate at which birds 

chose the efficient choice—in other words, the rate of learning within each task (see Table 

4). In the water vs. sand task, the slope was statistically significant, suggesting that, with 

each stone insertion, subjects became more likely to choose the water tube over the sand 

tube (p < .001; the odds of subjects choosing the water tube were 1.04 times greater than the 

odds of subjects choosing the sand tube over the course of the task, 95% CI = [1.02, 1.06]). 

This finding indicates that, over the course of the task, subjects were learning to prefer 

dropping stones into water tubes over sand tubes.

Similarly, in the float vs. sink task, the slope was statistically significant, suggesting that, 

with each insertion, subjects became more likely to choose a sinking object over a floating 

object (p < .001; the odds of subjects choosing the sinking object were 1.05 times greater 

than the odds of subjects choosing the floating object over the course of the task, 95% CI = 

[1.03, 1.07]). This finding indicates that subjects learned to select sinking object over 

floating object over the course of the task.
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In contrast, in the hollow vs. solid task, the slope was not statistically significant, suggesting 

that, with each insertion, subjects were not more likely to choose a solid object over a 

hollow object (p = .67; the odds of subjects choosing the solid object were 1.01 times greater 

than the odds of choosing the hollow object over the course of the task, 95% CI = [0.98, 

1.03]). This finding indicates that subjects did not learn to select solid object over hollow 

object over the course of the task. This is likely because on every insertion—including the 

initial insertion—subjects had a very high (ceiling) rate of selecting the solid object (see Fig. 

1).

Rate of learning (as a function of the previous choice)—In addition to examining 

the learning rate across insertions to determine whether birds showed an increase in 

choosing the efficient option as object insertions increased, we also analyzed whether birds 

in the water vs. sand and float vs. sink tasks learned from their choices at each insertion (see 

Table 5). Given that subjects in the hollow vs. solid task did not demonstrate learning over 

the course of that task, we excluded that task from these analyses. We used multilevel 

modeling to determine subjects’ probability of selecting the efficient option (i.e., water tube/

sinking object) when the inefficient option (i.e., sand tube/floating object) was chosen in the 

previous insertion compared to when the efficient option was chosen in the previous 

insertion. Again, we nested insertion order within subject and subject within article to 

account for dependencies and used likelihood ratio tests to find the best-fitting model. To 

ease interpretability, we calculated the expected odds when the inefficient option was 

previously chosen and when the efficient option was previously chosen, instead of reporting 

an intercept and slope. When presenting the results, we converted the logits into odds ratios.

In the water vs. sand task, the best-fitting model allowed intercepts and slopes to vary at both 

the article level and bird level. Intercepts and slopes covaried at the article level and the bird 

level. When the sand tube was the previous choice, subjects were not more likely to choose 

the water tube over the sand tube on the subsequent insertion (p = .08; the odds of subjects 

choosing the water tube were 0.67 times greater than the odds of subjects choosing the sand 

tube on the subsequent insertion, 95% CI = [0.43, 1.05]). However, when subjects previously 

chose the water tube, they were more likely to choose the water tube again on the subsequent 

insertion (p < .001; the odds of subjects choosing the water tube again were 5.0 times greater 

than the odds of subjects choosing the sand tube on the subsequent insertion, 95% CI = 

[2.66, 9.38]). The rates of learning according to whether the previous insertion was the water 

tube or the sand tube were also significantly different (p < .001). These findings indicate that 

subjects used information gained by their insertions into the water tube—but not the sand 

tube—to inform their subsequent insertions.

In the float vs. sink task, the best-fitting model allowed intercepts to vary at both the article 

level and bird level. Slopes also varied at the bird level, but did not covary with intercepts. 

When the floating object was the previous choice, subjects were not more likely to choose 

the sinking object over the floating object on the subsequent insertion (p = .40; the odds of 

subjects choosing the sinking object were 1.57 times, 95% CI = [0.55, 4.44] greater than the 

odds of subjects choosing the floating object on the subsequent insertion). In contrast, when 

the sinking object was the previous choice, subjects were significantly more likely to choose 

the sinking object again on the subsequent insertion (p = .01; the odds of subjects choosing 
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the sinking object again were 2.43 times greater than the odds of subjects choosing the 

floating object on the subsequent insertion, 95% CI = [1.23, 4.80]). The rates of learning 

according to whether the previous insertion was the sinking or floating object were also 

significantly different (p = .01). Together, these findings indicate that subjects used 

information gained by their efficient choices (i.e., food moving closer when sinking objects 

were dropped into the water tube) to inform their subsequent insertions, but did not learn 

from inefficient choices (i.e., food remaining stationary when floating objects were dropped 

into the water tube).

Characterization of subjects’ transfer of learning between tasks

The tasks and subjects included in the transfer effect analyses are found in Table 1. Within 

each article, subjects participated in multiple tasks. It is possible that learning to select the 

most efficient option in one task transferred to subsequent tasks, such that subjects learned 

more quickly to select the efficient option in latter tasks compared to former tasks. To 

investigate the possible transfer of learning across tasks, we tested whether the order in 

which subjects completed each task served as a significant predictor of rate of learning 

across tasks. The best-fitting model allowed intercepts, object insertion order, and task order 

to vary and covary at the article level. At the bird level, only intercepts and insertion order 

varied, and they did not covary.

Table 6 shows the fixed effects of the model predicting the effects of learning by task order. 

Fixed effects are the weighted average across all the subjects in all the articles—that is, they 

represent the overall effect of task order on efficient option choice for the average subject in 

all the articles. The slope was not statistically significant (p = .22), indicating that task order 

did not affect the rate at which the subjects learned to choose the efficient option for latter 

tasks (see Appendix 1 for coefficients of species level).

Table 7 shows the random effects or variability of the coefficients across subjects. Random 

effects, assigned to each subject, represent how each subject deviates from the average 

subject. None of the variances are significant (ps > 0.94), indicating that there were no 

significant individual differences in subjects’ rate of learning as a function of task order. We 

also conducted these analyses with task order as a binary variable, with 0 = first experiment 

and 1 = not the first experiment. Again, the order of task did not significantly predict the 

slope (rate of learning across the tasks).

As most birds did not successfully learn to retrieve the reward in the narrow vs. wide equal, 
U-tube, and uncovered U-tube tasks, we conducted between-task transfer of learning 

analyses that excluded these tasks. We posited that restricting our analyses to the tasks in 

which subjects successfully retrieved the food (large vs. small stones, water vs. sand, air vs. 
water, sink vs. float, baited vs. unbaited, hollow vs. solid, and narrow vs. wide unequal) 
would provide the strongest (and most conservative) test of transfer of learning across tasks. 

The best-fitting model allowed intercepts, object insertion order, and task order to vary but 

not covary at the article level. Intercept and experiment order varied and covaried at the bird 

level. Table 8 shows the fixed effects of the model predicting the effects of learning by task 

order. The slope was not significant (p = .06), indicating that task order did not affect 

subjects’ learning. Table 9 shows the random effects across subjects. Variances were not 
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significant (ps > 0.84), indicating that there were no significant individual differences in 

subjects’ learning as a function of task order. Thus, even when restricting the analyses to the 

tasks in which subjects successfully retrieved the food, there is no evidence that subjects 

transferred what they learned in one task to subsequent tasks (see Appendix 1 for 

coefficients of species level).

General discussion

The results of our analyses of the main variant of the Aesop’s fable paradigm (water vs. 
sand, N = 22 subjects) allow for some clear initial conclusions. First, although the birds did 

not have an initial preference for one tube over the other, each successive stone drop was 

associated with an approximately 5% increase in the likelihood of choosing the water tube. 

Furthermore, after each stone drop into the water tube, birds were significantly more likely 

to choose that tube again on the very next drop. We detected no such learning effect when 

they had previously chosen the sand tube. These results suggest that the birds’ learning was 

driven by perceptual feedback of the food moving incrementally closer to their beak each 

time that they dropped a stone in the water tube. The fact that the birds learned nothing from 

dropping stones in the sand is difficult to reconcile with the idea that they were reasoning 

about higher-order, role-based constructs such as mass, volume, or displacement. In any 

event, we conclude that their learning on the water vs. sand task can be completely explained 

by associative learning and/or perceptually based (first-order) relational reasoning.

As with the sand vs. water task, in the float vs. sink task, birds did not initially prefer either 

floating or sinking objects when they were required to choose one to drop into a single tube. 

However, after dropping a sinking object, birds were significantly more likely to select a 

sinking object on their next drop. These findings indicate that the birds used information 

gained by their insertions of sinking objects—but not floating objects—to inform their 

subsequent insertions. Together, these findings support the assertion that the birds’ learned 

behavior in this variant of the task is again driven by the perceptual feedback of the food 

moving closer to their beak.

In contrast to the findings that birds did not prefer water tubes or solid objects at task outset, 

our meta-analysis revealed that the birds demonstrated a significant preference for solid 

objects over hollow objects at the outset of the hollow vs. solid task. Furthermore, the birds 

did not become more likely to choose solid objects as the task progressed (likely due to the 

fact that their initial preference for solid objects was near ceiling). Although no higher-order 

reasoning is needed to explain this result, it is unclear how the birds’ behavior in this task 

connects to overarching aims of the Aesop’s fable paradigm. That is, if corvids do have 

higher-order relational reasoning that allows them to represent constructs such as water 

displacement, they should also represent mass and volume, and thus have an a priori 

preference to choose solid over hollow objects (possibly related to their natural behavior of 

dropping heavy nuts on anvils in the wild; see Hunt 2014). Success on the first trial of all of 

these tasks would seem to be a plausible prediction if corvids did, indeed, utilize higher-

order relational reasoning to complete the tasks. However, the Aesop’s fable tasks are 

predicated on the assumption that the task is novel and subjects do not begin the tasks with a 

priori preferences for the functional options (see Bird and Emery 2009b; Jelbert et al. 2014; 
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Logan et al. 2014; Taylor et al. 2011). This methodological catch-22 highlights a key 

problem inherent in these tasks that future researchers need to resolve if these types of 

empirical methods are to be used to advance the field of comparative cognition. We discuss 

this issue further below.

Our analyses also reveal no between-task transfer effects—that is, the order in which birds 

completed the tasks did not affect the rate at which they learned to select the efficient 

options as they gained experience with the Aesop’s fable tasks. This lack of transfer across 

tasks is striking given that the birds demonstrated learning within at least some of the tasks 

(e.g., water vs. sand; sink vs. float), and that the perceptual properties, configurations, and 

goals appeared to be relatively similar across tasks (i.e., a binary choice between tubes or 

objects, where one choice more efficiently yields a reward). The lack of transfer across tasks 

raises the distinct possibility that the birds were not deploying a core strategy—such as 

reasoning about water displacement—to solve the tasks. Instead, the birds appeared to 

approach each task as a new and distinct problem to solve rather than slight variations on the 

same problem. (Of course, even if the subjects had shown some transfer between tasks, the 

difficulty of ascribing this to higher-order causal reasoning vs. learning about general 

adaption would be problematic.)

Our work is not the first to consider the types of information that subjects use to solve the 

Aesop’s fable tasks. Jelbert et al. (2015) discussed two alternative models that could 

challenge the idea that higher-order causal reasoning is required for successful performance: 

perceptual-motor learning (i.e., first-order relational reasoning; Penn et al. 2008) and object 

biases (i.e., a priori preferences for objects with some specific perceptual characteristics vs. 

others). Ghirlanda and Lind (2017) also consider these possibilities, yet they suggest that 

small changes to the stimuli and methods can address them. Indeed, they state that, “every 

time a confound is suggested, an experiment can be designed to address it” (p. 247). 

However, that claim does not address the larger issue of underspecification inherent in the 

Aesop’s fable tasks. That is, although success on the first trial is not a necessary condition of 

causal understanding, the question of what it means for subjects to have (or not have) an 

initial preference, and how task-based learning (including trial-and-error learning) connects 

to specific models of causal understanding, are of central importance to the methods and 

interpretations of these studies. Critically, these questions cannot be addressed via a series of 

control conditions and follow-up tasks.

Perceptual-motor learning (i.e., first-order relational reasoning; Penn et al. 2008) provides a 

model in which birds solve the task by choosing the tube in which a successful action (e.g., a 

stone drop) has previously served to bring the food closer to them, and then repeating that 

rewarded action until they have retrieved the food (Jelbert et al. 2015). In fact, it is hard to 

imagine how the subjects would not use the powerful information contained in such 

perceptual feedback. Jelbert et al. contend that the question of import is not whether 

perceptual feedback is used, but the extent to which subjects use it to solve the task. We 

agree. Unfortunately, the present analysis raises the thorny question of whether the Aesop’s 

fable tasks could ever dissociate between perceptual-motor learning and higher-order, role-

based reasoning. Several ways to test the perceptual feedback hypothesis have been 
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suggested (e.g., Jelbert et al. 2015; Logan et al. 2014), but, because the causal power of these 

two functions is unknown, attempts to discriminate between them are likely to prove elusive.

For example, Jelbert et al. (2015) suggest blocking subjects’ visual access to the movement 

of the food reward. However, as they note, “Subjects did not … typically succeed from the 

very first trial.” (p. 2). Our meta-analysis provides further evidence that subjects did not 

choose the more efficient option at the onset of either the water vs. sand or float vs. sink 
task. Thus, the subjects appear to need some perceptual feedback to succeed at these tasks, 

and such feedback may be completely sufficient. Without a formal specification of the 

relative causal power of alternative learning functions, it is not possible to determine what 

function an organism may be using.

The second alternative explanation put forth by Jelbert and colleagues (2015) is that a priori 

preferences for objects with specific perceptual characteristics could lead subjects to succeed 

at the Aesop’s fable tasks. When subjects were initially trained to drop stones into tubes, 

they might have developed a preference for those stones. When later presented with sinking 

and floating objects, subjects chose the sinking objects, as those were most similar to the 

sinking stones from their training sessions. Jelbert et al. argue that an a priori object bias 

can, therefore, account for birds’ success in the float vs. sink object tasks, but not in tasks 

that involve functional and non-functional tubes (e.g., water vs. sand). We agree with Jelbert 

et al.’s former assessment, but disagree with the latter. If subjects have an a priori preference 

for the water tube—for example, a predisposition to prefer the visual characteristics of water 

over sand or prior negative experiences with sand—that a priori preference could drive them 

to interact more frequently with the water tube, biasing them towards the more efficient 

substrate. Our analyses suggest that birds did not have an initial preference for the water 

tube, but they did have a preference for the solid stones, and this preference for solid stones 

likely accounted for subjects’ near-ceiling performance in the hollow vs. solid task.

To rule out an object-bias explanation, Jelbert et al. (2015) suggest that these biases could be 

ameliorated before the experimental tasks begin (e.g., the birds could be differentially 

reinforced for interacting with the less preferred option; Logan et al. 2014). We question 

whether attempts to induce unbiased neutral states through training can be a productive 

starting point. For example, imagine a bird with an a priori preference for heavy objects. If 

that bird is trained to use a light object on a specific task, does this imply that the bird has 

lost their preference for the heavy objects, or that the original preference will not bias the 

bird toward heavy objects in the subsequent experimental tasks?

Ghirlanda and Lind (2017) also contend that the previous reinforcement for stones similar to 

the solid objects in the solid vs. hollow contrast could have created a preference for solid 

objects that led to subjects’ success in that task. They suggest that painting the solid objects 

to look less like stones and ascertaining subjects’ predispositions to interact with solid over 

hollow objects are both solutions to this problem. These suggestions allow for a more 

nuanced understanding of the subjects’ performance within the tasks, such as what 

perceptual cues are most salient and how predispositions interact with task-based learning. 

However, it is difficult to understand how they will allow us to discriminate between 

alternative learning functions (i.e., perceptual feedback vs. higher-order relational 
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reasoning). Thus, although we agree with Ghirlanda and Lind about the importance of 

considering how predispositions, previous experiences, and trial-and-error learning interact 

when investigating causal reasoning, we do not see how the proposed task modifications 

could “yield better tests of causal cognition” (p. 239).

Although Jelbert et al. (2015) acknowledge that alternative explanations have not been ruled 

out, they conclude that, “across all these tasks, corvids were able to rapidly learn the most 

functional option, indicating that they appear to understand aspects of the causal nature of 

water displacement” (p. 2). They also note: “To understand the cognitive mechanisms that 

seemingly enable corvids to learn causal rules more effectively than arbitrary rules, future 

studies controlling for the object-bias hypothesis, and the perceptual-motor feedback 

hypothesis, will be highly informative.” (p. 6). Similarly, Logan et al. (2014) describe a 

number of methodological problems associated with the paradigm, but maintain that minor 

methodological improvements will allow for “more powerful comparisons between humans 

and other animal species and thus help us to determine which aspects of causal cognition are 

distinct to humans” (p. 1). In contrast, we propose that, without a formal specification of the 

causal power of alternative learning models, these tasks are unsuited to discriminating 

between alternative meanings of “causal reasoning”. Moreover, our analyses detect a pattern 

of learning that is consistent with associative learning and/or first-order relational reasoning.

We raise the question of whether many of the methodological practices that appear 

throughout these projects (e.g., reporting learning rates at the level of the trial instead of the 

individual object drop, attempting to control for subjects’ preferences via differential 

rewarding, discounting the influence of prior experience, etc.) may result from 

underspecification of the constructs to be tested, and the alternative models against which 

the constructs in question are being tested. If “causal reasoning” is intended to be 

isomorphic with “goal-directed behavior”, then the birds in the Aesop’s fable studies can 

properly be regarded as engaging in “causal reasoning”. A caution, however, is needed. 

Dropping stones into a water-filled tube with the intention of eliciting an observable effect 

(e.g., the water rising and the bait moving closer) may be structurally analogous to rats 

learning to press levers to dispense a food reward or primates using a stick to retrieve an out-

of-reach food reward. On the other hand, if “causal reasoning” is restricted to entail higher-

order, role-based reasoning about constructs such as mass, volume, and water displacement 

(see Penn et al. 2008; Povinelli 2011), the question arises as to whether the present tasks 

provide any evidence of such reasoning in corvids, or if they are in principle capable of 

doing so. Future research could begin with detailed specifications of the alternative 

constructs and/or learning processes under consideration, combined with the specification of 

why specific patterns of results are inconsistent with specific alternatives.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Probability that subjects choose the more efficient option as a function of tube/object 

insertion order. Each color represents a different subject, and the solid black line depicts the 

overall relationship. The overall relationship is a weighted average of the different subjects 

and articles, with subjects and articles that have more data being weighed more heavily.

Hennefield et al. Page 18

Anim Cogn. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hennefield et al. Page 19

Ta
b

le
 1

Ta
sk

s 
an

d 
su

bj
ec

ts
 in

cl
ud

ed
 in

 th
e 

tr
an

sf
er

 e
ff

ec
t a

na
ly

se
s

A
rt

ic
le

Su
bj

ec
ts

, N
=2

8
T

ra
in

in
g

B
as

ic
 w

at
er

a
L

ar
ge

 
vs

. s
m

al
l 

st
on

es

W
at

er
 v

s.
 s

an
d

A
ir

 v
s.

 w
at

er
Si

nk
 v

s.
 f

lo
at

b
B

ai
te

d 
vs

. u
nb

ai
te

d
U

-T
ub

e
H

ol
lo

w
 v

s.
 s

ol
id

N
ar

ro
w

 
vs

. w
id

e 
eq

ua
l

N
ar

ro
w

 
vs

. w
id

e 
un

eq
ua

l

U
nc

ov
er

ed
 U

-T
ub

e
O

th
er

 t
as

ks
c

B
ir

d 
an

d 
E

m
er

y 
(2

00
9b

)

4 
ca

pt
iv

e 
ro

ok
s

T
ra

in
ed

 
in

 B
ir

d 
an

d 
E

m
er

y 
(2

00
9a

)

3/
3 

(1
00

)d
3/

3 
(1

00
)

3/
3 

(1
00

)
–

–
–

–
–

–
–

–

Ta
yl

or
 

et
 a

l. 
20

11

5 
w

ild
-c

au
gh

t 
N

ew
 

C
al

ed
on

ia
n 

cr
ow

s

✓
4/

4 
(1

00
)

4/
4 

(1
00

)
4/

4 
(1

00
)

4/
4 

(1
00

)
4/

4 
(1

00
)

–
–

–
–

–
–

2 
T

ub
e 

se
ar

ch
 ta

sk
s

2 
to

ol
-u

se
 ta

sk
s

C
he

ke
 

et
 a

l. 
(2

01
1)

5 
ha

nd
-r

ai
se

d 
E

ur
as

ia
n 

ja
ys

✓
–

–
2/

4 
(5

0)
1/

2 
(5

0)
2/

2 
(1

00
)

2/
2 

(1
00

)
0/

3 
(0

)e
–

–
–

–
A

rb
itr

ar
y 

re
w

ar
d 

m
ov

em
en

t c
ue

s

Je
lb

er
t 

et
 a

l. 
(2

01
4)

6 
w

ild
-c

au
gh

t 
N

ew
 

C
al

ed
on

ia
n 

cr
ow

s

✓
–

–
6/

6 
(1

00
)

–
6/

6 
(1

00
)

–
0/

4 
(0

)
5/

5 
(1

00
)

0/
5 

(0
)

3/
4 

(7
5)

–

L
og

an
 

et
 a

l. 
(2

01
4)

8 
w

ild
-c

au
gh

t 
N

ew
 

C
al

ed
on

ia
n 

cr
ow

s

✓
–

–
3/

5 
(6

0)
–

6/
6 

(1
00

)
–

1/
5 

(2
0)

6/
6 

(1
00

)
4/

6 
(6

7)
3/

4 
(7

5)
0/

5 
(0

)
M

ul
tis

to
ne

 p
la

tf
or

m

To
ta

ls
 7

/7
(1

00
)

7/
7 

(1
00

)
18

/2
2 

(8
2)

5/
6 

(8
3)

18
/1

8 
(1

00
)

2/
2 

(1
00

)
1/

12
 (

8)
f

11
/1

1 
(1

00
)

4/
11

 (
36

)f
6/

8 
(7

5)
0/

5 
(0

)f

a T
he

 b
as

ic
 w

at
er

 ta
sk

 d
id

 n
ot

 in
vo

lv
e 

a 
bi

na
ry

 c
ho

ic
e 

an
d 

w
as

 th
us

 n
ot

 in
cl

ud
ed

 in
 th

e 
tr

an
sf

er
 a

na
ly

se
s

b Si
nk

 v
s.

 f
lo

at
 is

 c
al

le
d 

he
av

y 
vs

. l
ig

ht
 in

 T
ay

lo
r 

et
 a

l. 
(2

01
1)

c T
he

 c
ol

um
n 

lis
ts

 a
dd

iti
on

al
 ta

sk
s 

pr
es

en
te

d 
in

 e
ac

h 
ar

tic
le

 th
at

 d
id

 n
ot

 in
vo

lv
e 

w
at

er
 (

di
sp

la
ce

m
en

t)
, a

nd
 w

er
e 

no
t i

nc
lu

de
d 

in
 th

e 
tr

an
sf

er
 a

na
ly

se
s

d x/
n 

=
 n

um
be

r 
of

 S
s 

th
at

 th
e 

au
th

or
s 

de
sc

ri
be

d 
as

 s
uc

ce
ss

fu
l/n

um
be

r 
of

 S
s 

pa
rt

ic
ip

at
in

g 
in

 th
e 

ta
sk

. P
er

ce
nt

 o
f 

su
cc

es
sf

ul
 b

ir
ds

 a
re

 in
 p

ar
en

th
es

es
. E

ac
h 

ta
sk

 in
vo

lv
ed

 a
 b

in
ar

y 
ch

oi
ce

 a
nd

 w
at

er
 

(d
is

pl
ac

em
en

t)
 e

xc
ep

t b
as

ic
 w

at
er

e Fo
llo

w
in

g 
th

e 
in

iti
al

 U
-T

ub
e 

ta
sk

, t
w

o 
co

rv
id

s 
co

m
pl

et
ed

 a
 s

ec
on

d 
U

-T
ub

e 
ta

sk
 in

 w
hi

ch
 th

e 
co

lo
r 

an
d 

sh
ap

e 
th

at
 d

en
ot

ed
 th

e 
fu

nc
tio

na
l t

ub
e 

w
as

 r
ev

er
se

d.
 T

he
se

 a
dd

iti
on

al
 d

at
a 

w
er

e 
in

cl
ud

ed
 in

 th
e 

ta
sk

 
tr

an
sf

er
 a

na
ly

se
s 

in
 “

C
ha

ra
ct

er
iz

at
io

n 
of

 s
ub

je
ct

s’
 tr

an
sf

er
 o

f 
le

ar
ni

ng
 b

et
w

ee
n 

ta
sk

s”

f T
he

 m
aj

or
ity

 o
f 

co
rv

id
s 

te
st

ed
 d

id
 n

ot
 s

uc
ce

ss
fu

lly
 c

om
pl

et
e 

th
e 

U
-T

ub
e,

 n
ar

ro
w

 v
s.

 w
id

e 
eq

ua
l, 

an
d 

un
co

ve
re

d 
U

-T
ub

e 
ta

sk
s

Anim Cogn. Author manuscript; available in PMC 2018 November 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hennefield et al. Page 20

Table 2

Brief description of tasks

Task name(s) Objects Apparatus Description of measure

Basic water 1 type: similar sized 
stones

1 tube: water Total number of stones dropped into the 
tube to retrieve food

Large vs. small stones 2 types: smaller stones 
and larger stones

1 tube: water Tests which size stones Ss drop into the 
tube

Water vs. sand 1 type: similar sized 
stones

2 tubes: water and sand/woodchip/
sawdust

Tests which tube Ss drop stones into

Air vs. water 1 type: similar sized 
stones

2 tubes: water and air (empty tube w/ 
bait suspended inside)

Tests which tube Ss drop stones into

Sink vs. float (heavy vs. 
light)

2 types: rubber and foam/
polystyrene

1 tube: water Tests which object Ss drop into tube

Baited vs. unbaited 1 type: similar sized 
stones

2 tubes: water baited with worm and 
water not baited

Tests which tube Ss drop stones into

U-tube 1 type: similar sized 
stones

2 tubes: “functional” tube connected to 
a water-baited third tube and “non-
functional” tube not connected to 
water-baited third tube. Connections 
were hidden

Tests which tube Ss drop stones into

Hollow vs. solid 2 types: wire/metal frames 
and clay/metal cubes

1 tube: water Tests which object Ss drop into tube

Narrow vs. wide equal 1 type: similar sized 

rubber/clay blocks*
2 tubes: narrow tube and wide tube; 
water level/bait was placed at the same 
height in both tubes

Tests which tube Ss drop stones into

Narrow vs. wide 
unequal

1 type: similar sized 

rubber/clay blocks*
2 tubes: narrow tube with low water 
level/bait and wide tube with high 
water level/bait

Tests which tube Ss drop stones into

Uncovered U-tube 1 type: similar sized 
stones

2 tubes: “functional” tube connected to 
a water-baited third tube and “non-
functional” tube not connected to 
water-baited third tube. Connections 
were not hidden

Tests which tube Ss drop stones into

*
Logan et al. (2014) used both clay and rubber objects in this task; Jelbert et al. (2014) used rubber blocks
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Table 3

Intercept results of multilevel binary logistic regressions predicting probability of efficient option by insertion 

within each task

Tasks Number of subjects Intercept Odds ratio (OR) Confidence interval (CI) p

Water vs. sand 22 −0.63 0.53 [0.27, 1.07] .08

Float vs. sink 18 0.21 1.23 [0.17, 9.18] .84

Hollow vs. solid 11 4.04 57.02 [10.18, 319.33] <.001
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Table 4

Slope results of multilevel binary logistic regressions predicting probability of efficient choice by insertion 

within each task

Tasks Number of subjects Slope Odds ratio (OR) Confidence interval (CI) p

Water vs. sand 22 0.04 1.04 [1.02, 1.06] <.001

Float vs. sink 18 0.05 1.05 [1.03, 1.07] <.001

Hollow vs. solid 11 0.01 1.01 [0.98, 1.03] .67
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Table 5

Differences in odds ratio of making the efficient choice based on whether the previous choice was inefficient 

or efficient

Tasks Odds ratio if previous inefficient Odds ratio if previous efficient Test of difference p

Water vs. sand 0.67 5.00 <.001

Float vs. sink 1.57 2.43 .01
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Table 6

Fixed effects of logistic model predicting odds of making the efficient choice across object insertion by task 

order

Coefficient Odds ratio (OR) Confidence interval (CI) z p

Intercept 1.53 [0.85, 2.76] 1.41 .16

Object insertion order 1.02 [1.01, 1.04] 4.20 <.001

Task order 0.81 [0.57, 1.14] −1.23 .22
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Table 7

Random effects across subjects (individual differences) predicting odds of making the efficient choice across 

object insertion by task order

Coefficient Variance Chi-square df p

Intercept 0.21 22.45 34 .94

Object insertion order 0.0002 15.76 34 1.00
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Table 8

Fixed effects of multilevel model predicting odds of making the efficient choice across stone insertion by task 

order, excluding tasks in which subjects demonstrated no learning

Coefficient Odds ratio (OR) Confidence interval (CI) z p

Intercept 0.78 [0.42, 1.44] −0.80 .43

Object insertion order 1.03 [1.02, 1.04] 6.13 <.001

Task order 1.43 [0.99, 2.08] 1.90 .06
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Table 9

Random effects across subjects (individual differences) predicting odds of making the efficient choice across 

stone insertion by task order, excluding tasks in which subjects demonstrated no learning

Coefficient Variance Chi-square df p

Intercept 0.58 19.73 27 0.84

Task order 0.78 0 27 1.00
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