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Abstract

Maternal inflammation during pregnancy can alter the trajectory of fetal brain development and 

increase risk for offspring psychiatric disorders. However, the majority of relevant research to date 

has been conducted in animal models. Here, in humans, we focus on the structural connectivity of 

frontolimbic circuitry as it is both critical for socioemotional and cognitive development, and 

commonly altered in a range of psychiatric disorders associated with intrauterine inflammation. 

Specifically, we test the hypothesis that elevated maternal concentration of the proinflammatory 

cytokine interleukin-6 (IL-6) during pregnancy will be associated with variation in microstructural 

properties of this circuitry in the neonatal period and across the first year of life.

Pregnant mothers were recruited in early pregnancy and maternal blood samples were obtained for 

assessment of maternal IL-6 concentrations in early (12.6±2.8 weeks [S.D.]), mid (20.4±1.5 weeks 

[S.D.]) and late (30.3±1.3 weeks [S.D.]) gestation. Offspring brain MRI scans were acquired 

shortly after birth (N=86, scan age=3.7±1.7 weeks [S.D.]) and again at 12-mo age (N=32, scan 
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age=54.0±3.1 weeks [S.D.]). Diffusion Tensor Imaging (DTI) was used to characterize fractional 

anisotropy (FA) along the left and right uncinate fasciculus (UF), representing the main 

frontolimbic fiber tract. In N=30 of the infants with serial MRI data at birth and 12-mo age, 

cognitive and socioemotional developmental status was characterized using the Bayley Scales of 

Infant Development. All analyses tested for potentially confounding influences of household 

income, prepregnancy Body-Mass-Index, obstetric risk, smoking during pregnancy, and infant sex, 

and outcomes at 12-mo age were additionally adjusted for the quality of the postnatal caregiving 

environment.

Maternal IL-6 concentration (averaged across pregnancy) was prospectively and inversely 

associated with FA (suggestive of reduced integrity under high inflammatory conditions) in the 

newborn offspring (bi-lateral, p<0.01) in the central portion of the UF proximal to the amygdala. 

Furthermore, maternal IL-6 concentration was positively associated with rate of FA increase 

across the first year of life (bi-lateral, p<0.05), resulting in a null association between maternal 

IL-6 and UF FA at 12-mo age. Maternal IL-6 was also inversely associated with offspring 

cognition at 12-mo age, and this association was mediated by FA growth across the first year of 

postnatal life.

Findings from the current study support the premise that susceptibility for cognitive impairment 

and potentially psychiatric disorders may be affected in utero, and that maternal inflammation may 

constitute an intrauterine condition of particular importance in this context.
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1. Introduction

Over the course of the last decade, there has been a dramatic improvement in the ability to 

non-invasively image the developing human brain using MRI-based techniques.1–4 This 

methodological advance holds great promise in increasing our understanding of the early 

origins of many neurodevelopmental and psychiatric disorders.5–7

Epidemiological findings have consistently associated maternal infection in pregnancy with 

suboptimal offspring cognitive and socio-emotional development and increased risk for 

schizophrenia and autism.8–16 Findings across studies of different maternal infections during 

pregnancy converge to suggest that it is the maternal inflammatory response to the infectious 

antigen, and not the presence of any specific antigen per se, that produces these observed 

effects in offspring17. Moreover, the presence during pregnancy of non-infectious clinical 

conditions associated with a proinflammatory state (e.g. high maternal BMI, 18–20 elevated 

social stress21 ) are also associated with an increased risk in offspring for psychiatric 

disorders. Maternal inflammation during pregnancy, therefore, may represent a common 

pathway that mediates the effects of a diverse set of inflammation-related states and 

conditions during pregnancy on offspring neurodevelopment and mental health outcomes.
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The pro-inflammatory cytokine interleukin-6 (IL-6) likely constitutes a key biological 

mediator by acting as a sensor, transducer, and effector of environmental conditions on the 

developing fetal brain.22 Several studies have established elevated IL-6 concentrations 

among women with obstetric states and conditions that have been shown to increase the risk 

for neurodevelopmental and psychiatric disorders in the offspring including obesity, 

infection and high psychosocial stress (sensor).21,23 These states and conditions are also 

characterized by higher IL-6 and other pro-inflammatory cytokines in the placental, intra- 

amniotic and fetal compartments, including the fetal brain and cord blood, with significant 

correlations between maternal and fetal IL-6 (transducers).24–27 While IL-6 plays a requisite 

role in fetal brain development,28 it is evident that inappropriately elevated levels may 

produce perturbations in cellular survival, proliferation and differentiation, axonal growth 

and synaptogenesis (effectors)29–32 Moreover, rodent models involving direct administration 

of IL-6 in the pregnant dam have demonstrated IL-6 as being both sufficient and necessary 
to evoke the pathway through which maternal inflammation negatively effects fetal 

outcomes33. For these reasons, we submit that characterization of maternal IL-6 

concentration during pregnancy in the context of studying human fetal brain development 

represents a crucial first step towards understanding pathways by which maternal 

inflammation influences offspring risk for neurodevelopmental and psychiatric disorders. In 

support of this premise, we have recently published findings establishing a link between 

maternal systemic inflammation during pregnancy, indexed by IL-6 concentrations, and 

offspring (newborn) amygdala volume and functional connectivity, as well as the longer-

term significance of this association in terms of child impulse control at 24 mo age (a 

phenotype that underlies many emotional and behavioral problems).34

In the brain, the uncinate fasciculus (UF) connects the anterior temporal lobe to the 

orbitofrontal cortex via limbic (e.g. amygdala) regions to facilitate a direct structural link 

between higher-order cognition and emotional regulation. Reduced integrity of the UF has 

been linked to a range of neurodevelopmental and psychiatric disorders (e.g., anxiety,35 

autism,36–37 conduct disorder39, schizophrenia,40–43 and psychopathy44–46), all of which are 

characterized by common underlying symptoms of socioemotional and cognitive deficits. 

Additional evidence of the importance of UF integrity in socioemotional and cognitive 

phenotypes comes from of a diverse set of studies in which socioemotional and cognitive 

deficits are preceded by structural insults to frontolimbic circuitry (e.g., traumatic brain 

injury,47 frontotemporal lobar degeneration,48 acute ischemic stroke,49 early life stress,50 

and preterm birth51). For these reasons, we suggest examination of the UF in the context of 

maternal inflammation during pregnancy is of interest for understanding potential 

neurodevelopmental pathways through which maternal inflammation during pregnancy may 

increase risk for poor developmental outcomes and psychiatric disorders.

The present study extends our previous work34 focusing on limbic functional connectivity 

by examining whether maternal IL-6 concentrations during pregnancy are also relevant for 

the structural development of offspring frontolimbic circuitry. We here focus on the 

microstructural integrity of the UF as indexed by Fractional Anisotropy (FA), an MRI-based 

direct measure of the anisotropy of water diffusing in the brain, and thereby an indirect 
measure of microstructural properties including axonal coherence, oligodendrocyte 

proliferation, and myelination. FA was characterized shortly after birth and at 12-mo age in 
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order to characterize interindividual variation in UF microstructural integrity. The 

importance of selecting the newborn brain as a starting point derives from the logic that 

brain circuitry at this time has not yet been influenced by postnatal environmental 

conditions. However, because brain connectivity changes rapidly over the first 12 months of 

postnatal life, we further tested whether maternal inflammation during pregnancy was 

associated with maturational change in UF during the first 12 months of postnatal life, after 

adjusting for variation in the postnatal caregiving environment. Finally, in consideration of 

UF variation as a potential neurodevelopmental pathway through which maternal 

inflammation increases risk for poor neurodevelopmental and psychiatric outcomes, we 

examined associations between UF development and socioemotional and cognitive 

functioning at 12-mo age.

2. Methods and Materials

2.1 Sample

Mother-child dyads were part of an ongoing, longitudinal study, conducted at the University 

of California, Irvine, for which mothers (N=147) were recruited during the first trimester of 

pregnancy. Exclusionary criteria were as follows: maternal use of psychotropic medications 

or systemic corticosteroids during pregnancy; infant birth before 34 weeks gestation; and 

infant congenital, genetic, or neurologic disorder. Demographic characteristics are presented 

in Table 1 . MR imaging was successfully performed shortly after birth in offspring (N=86, 

range: gest. Age=34.6–41.8 weeks, postnatal age at scan=0.7–8.2 weeks) and again at 12-

mos (N=32 longitudinally, range: postnatal age at scan=51.3–56.1 weeks). Socioemotional 

and cognitive developmental status at 12-mo age was available for all but two children with 

longitudinal (newborn and 12-mo age) brain imaging data (N=30 with longitudinal imaging 

and behavioral data). There were no significant differences in demographic variables 

between the sample of mother-child pairs enrolled in this study (N=147) versus the sample 

with available diffusion-weighted MRI data near birth (N=86, all p>0.1) or with the subset 

of infants with available longitudinal neuroimaging data and behavioral data (N=30, all 

p>0.1). All procedures were approved by the Institutional Review Board at the University of 

California, Irvine, and written informed consent was obtained from all mothers.

2.2 Measurement of Maternal IL-6 Concentration during Pregnancy

Maternal antecubital venous blood samples were collected in serum tubes (BD Vacutainer) 

in the first, second and third trimester. Serum IL-6 concentration was determined using a 

commercial high sensitivity ELISA (eBioscience) with a sensitivity of 0.03 pg/ml. IL-6 

concentration was moderately stable across pregnancy (ICC=0.45) and averaged across 

pregnancy to minimize error stemming from intra-individual physiological variation. The 

average was base 2 logarithm transformed to bring outliers closer to the mean and normalize 

the distribution. Maternal IL-6 concentration during pregnancy was not associated with 

offspring: gestational age at birth, postnatal age at scan or postmenstrual age at scan (all 

p>0.1, Supplementary Figure 1).
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2.3 Characterization of Infant Socioemotional and Cognitive Developmental Status

Infant socioemotional and cognitive development at 12-mo age was assessed with the 

Bayley Scales of Infant and Toddler Development, Third Edition (Bayley-III; Bayley, 2006). 

This is a widely used, standardized measure of infant development. The Social- Emotional 

Scale is based on caregiver report and designed to evaluate emerging social skills, self-

regulation, emotional expression and communication of needs. The Cognitive Scale includes 

developmentally appropriate assessment of emerging sensorimotor, attention and memory 

skills, as well as interest in and understanding of the environment. Higher scores indicate 

more developmentally advanced functioning in these areas. The distributions of the Socio-

Emotional and Cognitive Scales in the current sample were in line with expectations for the 

general population (Social-Emotional: Mean=94.2±14.3 [S.D.]; Cognitive: 

Mean=106.1±11T [S.D.]).

2.4 Characterization of the Postnatal Caregiving Environment

The Home Observation for Measurement of the Environment (HOME) Inventory52 was used 

to index the quality of the caregiving environment when the infant was 6- months-of-age. 

Measurement is based on in-home observation and a semi-structured interview with 

mothers. Observers were trained, and achieved reliability with a certified administrator of 

this inventory (95% agreement on two consecutive videos). We used a summary measure 

that incorporates assessment of interactions between infants and caregivers (responsivity and 

acceptance), and the extent to which the physical environment is organized and supportive of 

infant development (learning materials and organization); thus this measure can be 

considered as an estimate of the quality of the caregiving environment (Mean=34.9±3.9 

[S.D.], Range=23–39).

2.5 Neuroimaging Data Acquisition

MRI scans were acquired during natural sleep using a 12-channel head receive coil at 3T 

field strength on a Siemens Tim Trio system in N=86 neonates, of whom, N=32 were 

successfully rescanned at 12-mo age. After feeding and soothing to the point of sleep, 

neonates were placed in a CIVCO beaded pillow (www.civco.com). The pillow covered the 

neonates’ body and head, became rigid under vacuum, and provided a comforting swaddle, 

motion prevention and hearing protection when used in conjunction with standard foam 

earplugs. The longitudinal visit at 12-months-of-age was also conducted during natural 

sleep. A pediatric specialist observed participants throughout the duration of scans, 

monitoring for heart rate and oxygen saturation via a pulse-oximeter attached to the foot. 

Imaging parameters described below were matched between the neonatal and 12-mo age 

scans. High-resolution anatomical scans including T1-weighted (MPRAGE, TR/TE/

TI=2400/3.16/1200ms, Flip Angle=8 degrees, Matrix=256×256×160, 

Resolution=1×1×1mm, 6m18s) and T2-weighted (TSE, TR/TE=3200/255ms, 

Matrix=256×256×160, Resolution=1×1×1mm, 4m18s) images were acquired. The 42- 

direction diffusion weighted protocol (EPI, TR/TE=8900/83ms, FoV=256×224×150mm, 

Resolution=2×2×2mm, Partial Fourier=6/8, GRAPPA Phase Encoding Acceleration 

Factor=2, 42 unique directions at b=1000s/mm2, 7 at b=0) was 7 minutes and 43 seconds in 

duration.
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2.6 Data Preprocessing

Diffusion profile measurements were generated via the NA-MIC atlas-based fiber analysis 

toolkit.53 In brief, diffusion datasets were first rigorously checked for appropriate quality,54 

which included slice-wise and gradient-wise artifact detection, as well as eddy current and 

motion correction. Participants (NNewbom,removed/remaining=20/86; N12- 

mos,removed/remaining=2/32) were removed from analysis if they had less than 28 of 42 

remaining good directions after the initial QC process to ensure similar signal-to-noise ratio. 

Remaining participants had bad directions (NNewborn=36.5+/−3.6 remaining directions; 

N12-mos=39.4+/−1.8) censored prior to the derivation of diffusion metrics (e.g. FA). This was 

followed by weighted least square tensor estimation, skull stripping via prior brain mask 

from co-registered structural T2-weighted images, and unbiased study specific DTI atlas 

building. The sample-based atlas specific to the current studies acquisition parameters and 

age range was built using DTIAtlasBuilder (www.nitric.org/projects/dtiatlasbuilder) via a 

three-step registration: 1) affine registration, 2) unbiased diffeomorphic atlas computation,55 

and 3) refinement with a symmetric diffeomorphic registration via Advanced Normalization 

Tools (ANTS56). Fiber tract streamline DTI tractography was performed via 3D Slicer 

(version 4.3.0) (http://www.slicer.org) in the DTI atlas space followed by fiber cleaning with 

FiberViewerLight (www.nitric.org/projects/fwlight). Tractography was performed bilaterally 

for the UF and tracked according to the definition in the UNC pediatric DTI atlas 

(www.nitrc.org/projects/uncebds_neodti). The spatial extent of the UF was defined 

anteriorly by the medial fronto-orbital gyrus and posteriorly as the temporal pole. Fiber 

profiles were sampled at a 1mm step size along both directions away from the fiber’s 

intersection with the origin plane (plane that intersects the fiber bundle orthogonally at the 

median fiber location). Fiber profiles of FA were extracted after fiber parameterization for 

profile analysis. In supplementary analyses (Supplementary Section S.5), the set of observed 

diffusion properties was extended to include axial diffusivity (AD), radial diffusivity (RD), 

and mean diffusivity (MD).

Fiber profiles at 12-mo age were aligned with their neonatal counterparts using a linear 

registration with two degrees of freedom (a global scale factor applied to the arc-length and 

a bias applied to the origin across all participants) via cross-correlation of the group average 

as the cost function. The transformation (shift in origin, resampling via spline interpolation) 

from newborn to 12-mo space was applied uniformly to all newborn profiles. The output 

was visually confirmed to be in spatial correspondence (Supplementary Figure 2).

2.6.1 Analytical Approach—The methods outlined below (Sections 2.6.2–2.6.4) reflect a 

top-down analytical approach to elucidating associations between average maternal IL-6 

concentrations across pregnancy and early life UF development. To summarize, we first 

characterized FA across the entire UF in the neonate (using whole-tract measures, Section 
2.6.2), and tested for an association with maternal IL-6 concentration. We chose a Principal 

Components Analysis (PCA) approach in order to capture a whole-tract measure while also 

allowing for spatial heterogeneity in the UF. In order to establish the specificity of the effect 

on the UF, we extended the analyses to other major white matter pathways in the newborn 

brain and tested for an association with maternal IL-6 concentration during pregnancy using 

methods identical to the main analyses (Supplementary Materials Section S.4). We then 
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conducted analyses allowing a finer parcellation of the UF to test for region-specific 

associations between maternal IL-6 concentration during pregnancy and FA along the UF 

(using single points along the tract, Section 2.6.3). Finally, using regions-of-interest (ROIs) 

identified in the prior analyses, we characterized change in UF integrity during the first 12 

months of postnatal life (Section 2.6.4) and examined this metric in relation to maternal IL-6 

during pregnancy.

When considering the approach for testing the effect of maternal IL-6 concentration on 

fronto-limbic white matter circuitry, three primary considerations were made with respect to 

heterogeneity within the UF tract. First, there exists anatomical variation within the tract. 

For example, central UF fibers are tightly bound and coherently organized, whereas at the 

peripheral ends they begin to diverge towards their terminal endpoints. The consequences of 

this are a greater potential for measurement error in the peripheral ends (more spatial 

variation, lower signal-to-noise-ratio). By treating the points on the tract as independent 

observations, tract-points are statistically naive to other points along the tract. Alternatively, 

taking the mean of the whole tract potentially averages out anatomical-specific variation. 

Second, there exists spatiotemporal variation in gestational exposure to maternal 

inflammation across the UF. The UF is developing in utero through rapid neurogenesis, 

axonal organization, oligodendrocyte proliferation and even limited myelination. Therefore, 

the life history of a cell within the UF with respect to state, extent, duration, and timing of 

exposure to the inflammatory milieu varies greatly based on its age and position within the 

tract. By allowing a level of statistical independence to each point across the tract, one can 

model the relationship between maternal IL-6 concentration during pregnancy and FA, 

specific to a given position. Finally, because the peripheral ends will be less mature and 

therefore likely exhibit more maturation related changes in the age range of our sample, 

there will exist spatial variation in the strength of association with postmenstrual age (e.g., 

being more pronounced at the peripheral ends of the tract). A tract-based approach allows 

the model to have a spatially varying effect size with respect to subject age parameters, 

thereby increasing statistical precision.

While the tract-based approach used here addresses spatial heterogeneity in a simple to 

interpret linear regression model, it does not speak to the UF as a single entity beyond 

significance at the tract-level after a multiple comparisons correction. For this reason, the 

PCA-based approach addresses this by spatially collapsing across the tract using weights 

that orthogonally maximize variation.

2.6.2 Characterization of PCA-based Newborn Fractional Anisotropy along the 
Uncinate Fasciculus—Whole tract analysis was performed using a PCA data reduction 

technique, reducing on the tract dimension (from N=86 participants x M tract locations, to 

N=86 participants x P=2 selected principal components). PCA allowed us to transform 

highly correlated observations along the tract into linearly uncorrelated observations of 

reduced dimensionality, thereby increasing statistical power (fewer comparisons) while 

retaining important information about interindividual and regional variation. We used power 

analysis to define component selection criteria with the aim of minimizing comparisons 

(components) while optimizing variance explained (minimum effect size=8% variance 

explained for n=0.8, atwo-tailed=0.05, N=86). The threshold criteria were verified to be 
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visually consistent with standard retention criteria (being above the knee in the scree plot, 

Figure 1). The first two principal components for left and right UF were retained using these 

criteria and were tested for an association with maternal IL-6 during pregnancy using the 

analytic approach described below (Section 2.7). In order to justify data reduction, intra-tract 

Pearson correlation was used to demonstrate redundancy in interindividual variation along 

the UF (Figure 1).

2.6.3 Characterization of Tract-based Newborn Fractional Anisotropy along 
the Uncinate Fasciculus—Tract-based profile analysis considered each individual point 

along the UF (N=86 participants x M tract locations) using the analytic approach described 

below (Section 2.7). Clusters (ROIs) significant after considering the multiple comparisons 

made along the length of the UF were identified using a Monte Carlo approach by replacing 

the sign of the demeaned IL-6 values with randomly assigned signs (+1/−1) and simulating 

10,000 times to identify necessary cluster properties (extent and effect size) for significance 

at a corrected threshold of p<0.05.

2.6.4 Characterization of ROI-based Fractional Anisotropy at 12-mo age and 
Change from Birth Until 12-mo age—To test the association between maternal 

inflammation during pregnancy and longitudinal change in UF integrity, we restricted 12-mo 

age FA and serial change in FA to the ROIs identified in the above-described neonatal 

analyses in order to conserve statistical power by reducing degrees of freedom. Specifically, 

we used the linear regression analyses described below (Section 2.7) to test for an 

association between average maternal IL-6 concentration across pregnancy and ROI-

extracted FA at birth, at 12-mo age, and change in FA from birth until 12-mo age. Despite its 

apparent redundancy, the newborn time point was included because of the necessity for the 

longitudinal analyses to first residualize FA values for gestational age at birth and postnatal 

age at scan before testing for IL-6 associations (as opposed to a single linear model 

including gestational age at birth, postnatal age at scan, and maternal IL-6 concentration as 

predictors as described below for the characterization of the associations between maternal 

IL-6 concentration and newborn FA). The age residualization step is necessary to generate 

FA variables that represent change in FA from shortly after birth until 12-mo age that are 

independent of age at scan and the time between the two scans.

2.7 Statistical Approach

For statistical modeling we used the most parsimonious model possible in conjunction with 

two additional models that considered: 1) sex-specific associations between maternal IL-6 

concentration during pregnancy and UF FA outcomes, and 2) whether potentially 

confounding covariates changed the association between maternal IL- 6 concentration 

during pregnancy and UF FA outcomes. The parsimonious model reflected the strong age 

dependence of early life FA by including gestational age at birth and postnatal age at scan in 

the same linear model as maternal IL-6. As a separate test of sex-specific effects of maternal 

IL-6 on FA outcomes, we added infant sex and an IL-6 x sex interaction term to the 

parsimonious model. Finally, in an omnibus model we further considered household income, 

prepregnancy BMI, obstetric risk, smoking during pregnancy, and infant sex as potentially 

confounding variables. The set of confounding factors included in the omnibus model were 
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selected on the basis of their established association with maternal inflammation and/or 

offspring neurodevelopment. While they may themselves be effectors of maternal IL-6 

concentration (with the exception of sex), we tested their potential as hidden confounds due 

to their known associations with physiological processes unrelated to inflammation (e.g., 

BMI and altered glucose sensitivity) that have the potential to influence fetal brain 

development. All analyses examining associations between maternal IL-6 concentrations 

during pregnancy, UF development over the first year of life, and socioemotional and 

cognitive developmental outcomes at 12-mo also included the total HOME score as a 

covariate to account for the influence of the postnatal environment on infant brain 

development during this period.

2.8 Characterization of Maternal IL-6-associated Change in Fractional Anisotropy from 
Birth until 12-Mo Age and Socioemotional and Cognitive Development at 12-Mo Age

The association between region specific change in FA (from birth until 12-mo age) and the 

behavioral outcomes (socioemotional and cognitive development at 12-mo age) was tested 

via linear regression. To limit the number of comparisons and because it has been suggested 

that neurodevelopmental trajectories are more informative than specific neurophenotypic 

endpoints in neurodevelopmental disorders (e.g. autism57), we focused on longitudinal 

change in UF FA as the main predictor of 12-mo socioemotional and cognitive development. 

These analyses were adjusted for total HOME score, in acknowledgment of the impact the 

caregiving environment can have for brain, and subsequently socioemotional and cognitive, 

development.

Statistical mediation of the association between maternal IL-6 concentration during 

pregnancy and infant behavior at 12-mo age via variation in UF FA (longitudinal change in 

FA) was assessed using the Baron and Kenny method.58 This was followed by formal testing 

of the indirect pathway from maternal IL-6 concentrations to infant behavior via longitudinal 

change in FA within a structural equation modeling framework and employing bootstrapping 

(N=1,000) (Mplus, Version 7(37)).

3. Results

3.1 Interleukin-6 Concentration during Pregnancy

Median IL-6 across pregnancy (prior to base 2 logarithm transformation to normal 

distribution) was 0.76 pg/ml with a lower and upper quartile of 0.47 and 1.34 pg/ml, 

respectively. The base 2 logarithm values of mean IL-6 across pregnancy were −0.36 ± 1.05 

(S.D.) on average and normally distributed. The base 2 logarithm values were highly 

correlated across pregnancy trimesters (r1st,2nd=0.70; r2nd,3rd=0.59; r1st,3rd=0.54).

3.2 PCA-based Associations between Maternal IL-6 Concentration During Pregnancy and 
Newborn Fractional Anisotropy along the Uncinate Fasciculus

PCA-based results showed that the spatial intra-correlation structure was consistent with the 

known anatomical subdivisions of the UF59: composed of a frontal, isthmus and temporal 

segment (Figure 1B). Intra-tract correlation coefficients were large (r>0.6 within the three 

tract sub-regions), demonstrating a large degree of redundancy in interindividual FA 
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variation across the tract, thus supporting data reduction. The first principal component 

explained 60%/61% (left/right) of interindividual variation in FA (Figure 1C), was uniformly 

loaded across the entirety of the UF (Figure 1D), and strongly associated with gestational 

age at birth (left UF: 95% CI [0.45 0.74], p<10−4; right UF: 95% CI [0.51 0.77], p<10−4) 

and postnatal age at scan (left UF: 95% CI [0.49 0.78], p<10- 4; right UF: 95% CI [0.53 

0.79], p<10−4) but not maternal IL-6 concentration during pregnancy (left and right UF: 

p>0.4, Supplementary Table 1). The second principal component explained 9%/13% (left/

right) of interindividual variation in FA (Figure 1C), was loaded primarily in the central 

isthmus portion of the UF (Figure 1D), and associated with average maternal IL-6 

concentration across pregnancy but not gestational age at birth or postnatal age at scan 

(Table 2). The main effect of maternal IL-6 concentration during pregnancy on the second 

principal component was bi-lateral in the parsimonious model correcting for gestational at 

birth and postnatal age at scan. Sex-specific interactions with maternal IL-6 concentration 

during pregnancy were not significant in either the left or right UF (Table 2). Brain-wide 

analyses suggested that the association between maternal IL-6 concentration during 

pregnancy and newborn white matter FA is particularly salient to the UF (see Supplementary 

Materials Section S.4). The right UF survived post-hoc testing for potential prenatal 

confounding factors including household income, prepregnancy BMI, obstetric risk, 

smoking during pregnancy, and infant sex (Table 2). When including these additional 

covariates, the association between maternal IL-6 concentration and the left UF was reduced 

to a tendency (pIL-6, omnibus=0.082); however, none of the potential confounding factors were 

significantly (p<0.05) associated with the UF FA outcome in the full model, thereby 

supporting the appropriateness of the parsimonious model (Table 2).

3.3 Tract-based Associations between Maternal IL-6 Concentration During Pregnancy and 
Newborn Fractional Anisotropy along the Uncinate Fasciculus

Tract-based association analyses were conducted by treating points along the tract as 

independent observations in order to characterize regional effects of maternal IL-6 

concentration during pregnancy on newborn UF FA. Consistent with the PCA-based 

findings, gestational age at birth and postnatal age at scan were significantly and positively 

associated (p<0.05) with FA bi-laterally across large extents of the UF (95% of left tract 

locations; 98% right). After accounting for the effects of gestational age at birth and 

postnatal age at scan, maternal IL-6 concentration during pregnancy was bi-laterally and 

negatively associated with FA along the isthmus of the UF (Figure 2). The regional variation 

in effect size (beta coefficients) of maternal IL-6 (bottom row, Figure 2) mirrored the second 

principal component loading coefficients (Figure 1D), identified using the PCA data 

reduction approach. Significant clusters of association were identified using Monte Carlo 

methods (p<0.05) and served as ROIs (via spatial masking) for the post-hoc testing. The 

identified clusters were bilateral, along the isthmus of the UF, and in a region proximal to 

the amygdala (Figure 3). There was no significant main effect of infant sex or an interaction 

effect between maternal IL-6 concentration during pregnancy and infant sex on either left or 

right ROI-extracted UF FA (Table 3). Further, the association between maternal IL-6 

concentration during pregnancy and FA in the identified clusters survived, bi-laterally, post-

hoc testing for the potentially confounding variables household income, prepregnancy BMI, 

obstetric risk, smoking during pregnancy, and infant sex (Table 3).
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3.4 ROI-based Associations between IL-6 Concentration and Fractional Anisotropy at 12-
Mo Age and Change from Birth Until 12-Mo Age

For these analyses, FA at 12-mo age and longitudinal change in FA from birth until 12-mo 

age were restricted to the significant clusters (ROIs) identified in the neonatal analyses 

(described above) in order to conserve statistical power by reducing degrees of freedom. 

Average maternal IL-6 concentration across pregnancy was positively associated with 

change in FA in the UF ROI from birth until 12-mo age in the UF (Figure 4, p<0.05), but not 

with FA in the UF ROI at 12-mo age (Table 4). Thus, higher maternal IL-6 concentration 

across pregnancy was reflective of lower UF FA at birth, but accelerated maturation during 

the first year of life, resulting in no association between maternal IL-6 concentration during 

pregnancy and FA in the UF ROI at 12-mo age.

3.5 Maternal IL-6-associated Change in Fractional Anisotropy from Birth until 12-Mo Age 
and Socioemotional and Cognitive Development at 12-Mo Age

Average maternal IL-6 concentration across pregnancy was associated with Bayley cognitive 

development scores (95% CI [−8.7, −0.3], p=0.036), but not socioemotional development 

scores (95% CI [−5.2, 6.1], p=0.88) at 12-mo age after adjustment for interindividual 

variation in the postnatal caregiving environment. ROI-based longitudinal FA change from 

birth to 12-mo age in the left UF (95% CI [−263.1, −35.5], p=0.012), but not the right UF 

(95% CI [−111.1, 122.5], p=0.92), was associated with Bayley cognitive development scores 

at 12-mo age, after adjustment for the postnatal caregiving environment. Neither left (95% 

CI [−271.1, 53.5], p=0.18) nor right (95% CI [−192.5, 76.3], p=0.38) UF FA were associated 

with Bayley socioemotional scores at 12-mo age, after adjustment for the postnatal 

caregiving environment.

Based on the consideration that maternal IL-6 concentration during pregnancy was 

prospectively associated with both change in left UF FA from birth until 12-mo age and 
Bayley cognition scores at 12-mo age, we tested whether change in FA (newborn until 12-

mo age) mediated the association between maternal IL-6 concentration during pregnancy 

and cognitive developmental status at 12-mo age. Using the Baron and Kenny method for 

testing mediation, there was evidence for the change in UF FA from newborn until 12-mo 

age mediating the association between maternal IL-6 concentration during pregnancy and 

cognitive development at 12-mo age (full model including IL-6 and change in FA as 

predictors of cognitive developmental status at 12-mo: pIL-6=0.18, Pchange,FA=005; Figure 

5). The mediation effect remained significant in a formalized, bias-corrected, bootstrap 

analysis (95%CI [−4.1 −.12], p=0.05).

4. Discussion

The current study provides strong supporting evidence that the maternal inflammatory state 

during pregnancy is prospectively associated with offspring frontolimbic white matter 

microstructural properties. Further, we provide evidence that maternal inflammatory-related 

maturational changes in frontolimbic white matter microstructural properties during the first 

12 months of postnatal life are associated with early cognitive development. Specifically, 

using a prospective longitudinal study design, we made the following three observations: 1) 
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maternal IL-6 concentration across pregnancy was inversely associated with newborn UF 

FA, 2) maternal IL-6 concentration across pregnancy was positively associated with UF FA 

growth during the first 12 months of postnatal life, and 3) maternal inflammatory-related 

accelerated UF FA growth during the first 12 months of postnatal life mediated the negative 

association between maternal IL-6 concentration during pregnancy and offspring cognitive 

functioning at 12-mo age. Thus, maternal inflammation during pregnancy (as indicated by 

elevated IL-6 concentrations) appears to have implications both for the status of the 

offspring newborn brain and for subsequent postnatal brain development and cognitive 

functioning.

The magnitude of the association between maternal IL-6 concentration during pregnancy 

and offspring UF FA in the neonate was substantial, accounting for up to 14% of 

interindividual variation in newborn FA. In addition, this association persisted after 

correcting for household income, prepregnancy BMI, obstetric risk, smoking during 

pregnancy, and infant sex. Finally, in support of the generalizability of the current findings to 

within and across the UF, the observed association between maternal IL-6 concentration 

during pregnancy and newborn UF FA was found to be consistent across two complimentary 

methodological approaches (PCA-based and tract-based).

The strongest associations between maternal IL-6 concentration during pregnancy and 

offspring FA (newborn and change from near birth until 12-mo age) were in the central 

portion (isthmus) of the UF, a region proximal to limbic structures including the amygdala 

and hippocampus. The effect observed in the central UF is spatially consistent with FA 

reductions previously reported in high functioning ASD patients.60 However, it remains 

unclear how this region is uniquely affected by a higher inflammatory state during gestation 

or if the less coherent organization of the peripheral ends of the UF obfuscates the effect. 

While the inferior fronto-occipital fasciculus (IFOF) runs superior along the UF past the 

temporal stem, no major white matter tracts cross the UF in its short path from the temporal 

lobe to the frontal cortex, suggesting that the regional specificity is likely not a result of an 

interaction with crossing fibers. Interestingly, maternal depression during pregnancy has 

been shown to be associated with lower FA in the newborn amygdala (proximal to central 

UF),61 whereas maternal depression during pregnancy was positively associated with 

amygdala FA by 4 years of age.62 This supports the notion that the influence of the prenatal 

environment may be more salient to the dynamic process of brain development, as opposed 

to specific developmental end-points.

The observed pattern between maternal inflammation during pregnancy and early life UF FA 

can be summarized as two phases: 1) retarded growth during gestation (negative association 

between maternal IL-6 concentration and offspring UF FA), and 2) accelerated growth 

postnatally (positive association between maternal IL-6 concentration and offspring UF FA 

growth). Accelerated postnatal growth can be considered compensatory (i.e. a regression 

towards the mean in response to growth selectively restricted in utero) or reflective of a more 

general postnatal overgrowth pattern (i.e. the 12-month time point is where the growth 

trajectories of infants exposed to high versus low gestational inflammation cross paths, 

resulting in a null association at 12-mo age). Interestingly, the latter is consistent with the 

abnormal patterns of postnatal brain growth observed in Autism Spectrum Disorder 
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(ASD)63–67, for which prenatal inflammation is a risk factor, that have been characterized as 

reduced at birth but increasing in an accelerated manner during the first year of life.68 

Certainly, while our current study is not enriched for autism-risk, and therefore not 

positioned to meaningfully inform ASD disease related processes, the overlapping patterns 

and hypothesized links between maternal inflammation and offspring ASD-risk highlight the 

need for more comprehensive studies in humans characterizing the association between an 

inflammatory gestational milieu and postnatal brain growth trajectories in mother-child 

dyads at high risk for psychiatric disorders.

Our observation that accelerated change in UF FA from birth until 12-mo age is related to 

poorer cognitive development at 12-mo age suggests that this observed catchup growth may 

not be beneficial. This furthermore supports the notion that the dynamic process of brain 

development (i.e., change in UF integrity within the first year of life) may be more important 

and informative for the establishment of later behavioral phenotypes than the outcome at a 

certain point in time (i.e., UF integrity at 12-mo age), further emphasizing the need for 

prospective longitudinal studies aimed at characterizing brain developmental trajectories. 

While we again emphasize that the current study is not positioned to unravel ASD disease 

related processes, it is worth noting that in addition to maternal IL-6 concentration during 

pregnancy being associated with increased postnatal growth, the direction of effects 

observed here (neg. association between postnatal UF FA growth and cognitive development 

at 12-mo) are consistent with the cognitive deficits commonly seen in ASD at an early age.
69,70 Finally, the association between UF FA maturation during the first year of life and 

cognitive developmental status at 12-mo age was significant in the left, but not the right, UF. 

This is consistent with empirical evidence for alterations in the left UF being especially 

relevant in the context of early social emotional deprivation,71 and cognitive deficits found 

in clinical conditions.43

Based on the consideration that the structural connectivity of the UF is known to play a role 

in a variety of neurodevelopmental and psychiatric disorders in humans, of which many 

share common underlying socioemotional deficits, we hypothesized that altered UF FA 

development would be associated with socioemotional development at 12-mo age. While our 

findings did not support such a hypothesis, we cannot rule out the possibility that the 

combination of the reduced sample size in longitudinal data with behavioral outcomes 

(N=30), and the high degree of rater variability that accompanies maternal self-reporting of a 

single nuanced dimension of behavior, was insufficiently powered for identifying a 

meaningful effect of frontolimbic development on socioemotional outcomes. Given the 

strong presence of evidence for our hypothesis, we submit that longitudinal behavioral 

follow-up of this sample is warranted in order to more deeply characterize socioemotional 

outcomes in childhood.

It should be noted that common measures of diffusion, including FA, are an aggregate 

measure of a number of concomitant structural attributes at the microscopic level including 

axonal diameter, compaction, water content and fiber coherence,72 thereby complicating the 

specification of underlying microstructural properties associated with maternal inflammation 

during pregnancy. However, given that white matter maturation in fetal and early postnatal 

life is characterized by rapid neurogenesis, axonal organization, oligodendrocyte 
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proliferation and myelination,73–75 it is plausible that in utero exposure to maternal 

inflammation has affected these developmental processes. Because FA is largely insensitive 

to the isotropic process of oligodendrocyte proliferation and because the UF is one of the 

last structures in the developing brain to fully myelinate, based on our findings, the most 

likely processes to be influenced by maternal IL-6 concentration during pregnancy are pre- 

and postnatal neurogenesis and changes in axonal coherence.76–78 This is further supported 

by an observed correspondence between FA and AD findings (Supplementary Table 2 and 

Figure 4) when considering existing models of developmental changes in which axonal 

coherence and neurogenesis are uniquely accompanied by changes in FA and AD.73,75 

However, given the speculative nature of interpreting microscopic properties from 

macroscopic DTI observations72, future efforts in animal models aimed at elucidating the 

microstructural correlates of macroscopic diffusion measures are warranted, particularly in 

the context of developmental programming via maternal inflammation.

Limitations of the current study include the use of post-hoc statistics aimed at accounting for 

potentially confounding factors, the narrow focus on the UF, and the limited longitudinal 

sample size. Because testing for potential confounds occurred in a post-hoc fashion by 

selecting regions significantly associated with maternal IL-6 concentration during pregnancy 

in a parsimonious model, subsequent testing of confounding factors was biased towards IL-6 

significance.79 Therefore, the bias towards IL-6 does not fully allow the omnibus model to 

generalize how other aspects of the prenatal environment relate to newborn UF FA. 

However, the lack of significant associations with UF FA across the potential confounding 

factors, and the stability of the association between maternal IL-6 concentration and 

offspring UF FA after their inclusion in the statistical model, supports the parsimonious 

model as being the most appropriate choice. While supplementary analyses (Section S.4) 

suggested that the effects of maternal IL-6 concentration during pregnancy are highly salient 

to fronto-limbic white matter pathways (UF), less significant unilateral effects were detected 

on other frontally connected pathways (e.g. inferior fronto-occipital fasciculus). Therefore, 

we cannot fully exclude a more diffuse association between maternal IL-6 and frontal white 

matter. Future efforts employing complimentary strategies (e.g. amygdala-specific 

connectivity80) aimed at characterizing a more refined specificity of offspring brain 

alterations in association with maternal inflammation during pregnancy would be beneficial. 

Finally, complete longitudinal data (with newborn and 12-mo measures) were available in 

only a subset (N=30) of the neonatal population. While this limits the generalizability of the 

longitudinal findings, we submit that this study sample represents the largest, to date, with 

serial characterization of maternal inflammation during pregnancy and of offspring 

longitudinal brain development. In addition, it should be noted that the effect size (R2=22%) 

of the negative association between maternal IL-6 concentration during pregnancy and 

newborn FA was consistent between the subset of individuals with serial imaging (N=32) 

and those with newborn imaging (N=86), suggesting the subsample as being representative 

of the larger sample.

The findings of the current study contribute towards a continually growing body of evidence 

that supports maternal inflammation during pregnancy as having an influence on fetal brain 

development with potential implications for psychiatric disease risk. The magnitude of the 

association between maternal IL-6 concentration during pregnancy and offspring neonatal 
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FA along the UF was large (up to 14% of interindividual variation explained). Put into a 

clinical context, one recent study demonstrated a regionally similar reduction in UF FA of 

~16% in high functioning ASD individuals,60 roughly equivalent to the observed difference 

between offspring in the lowest and highest quintiles of maternal IL-6 concentration during 

pregnancy in the current sample. While our data could be interpreted as a normalization of 

UF FA in infants exposed to a high inflammatory milieu by 12-mo age, this is achieved by 

an accelerated growth trajectory (i.e. prenatal undergrowth is followed by early postnatal 

overgrowth) that is predictive of poorer cognitive performance at 12-mo age.

5. Conclusions

Findings from the current study support the premise that susceptibility for cognitive 

impairment (and potentially neurodevelopmental and psychiatric disorders) may, in part, be 

programmed in utero, and that such programming may be mediated through changes in 

frontolimbic white matter growth trajectories in early life. Thus, the current study adds to the 

growing awareness of the role the intrauterine environment plays for interindividual 

variation in offspring developmental outcomes and further suggests that the origins of 

cognitive and mental health problems may have their origins very early in life. Because the 

results of the current study highlight the gestational inflammatory milieu as a plausible 

etiological pathway, and because the gestational inflammatory milieu is a feasible 

intervention target, we further assert that this study provides a clinically-relevant basis for an 

improved understanding of the developmental origins of psychiatric disease, early 

identification of at-risk pregnancies, and thereby targets for the primary prevention of 

disease risk.
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Figure 1. Intratract Principal Components Analysis (PCA).
Intratract PCA reveals two, spatially distinct, principal components. A) Distribution 

(individual profiles in gray) of Fractional Anisotropy (FA) values along the right Uncinate 

Fasciculus (UF) spanning from the frontal to the temporal lobe. B) Heat map demonstrating 

high FA intratract correlation structure, separated by medial and lateral (frontal and 

temporal) portions of the UF. C) Scree plot showing PC selection criteria. D) PC1 loads 

uniformly across the tract relative to PC2, which loads primarily in the medial portion of the 

UF. Left UF statistics and mappings were consistent with those shown here for the right UF. 

Markers of spatial correspondence between figures 1A/D (vertical gray lines), and 1B 

(horizontal/vertical gray lines) are overlaid.
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Figure 2. Tract-based Associations Between Early Life Fractional Anisotropy and Average 
Maternal IL-6 Concentration Across Pregnancy.
Full sample Fractional Anisotropy (top row), tract-based significance for maternal 

gestational IL-6 associations (middle row) and effect size for maternal gestational IL-6 

associations (bottom row) are shown bi-laterally for the uncinate fasciculus. Clusters used in 

post-hoc analyses are denoted by red circle indicators and a label: (LUF=Left Uncinate 

Fasciculus, RUF=Right Uncinate Fasciculus).
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Figure 3. Negative Association Between Newborn Fractional Anisotropy and Average Maternal 
IL-6 Concentration Across Pregnancy.
A) Tract-based significance as projected onto the uncinate fasciculus in template space 

demonstrates a bilateral pattern of significance along the middle portion of the UF and 

proximal to the amygdala. B) Linear regression-derived scatter plots of gestational and 

postnatal age-corrected FA versus mean maternal IL-6 concentration across pregnancy are 

shown. Clusters used in post-hoc analyses are denoted by an asterisk and a label: (LUF=Left 

Uncinate Fasciculus, RUF=Right Uncinate Fasciculus).
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Figure 4. Positive Association Between Change in Uncinate Fasciculus (UF) FA from Birth Until 
12-mo Age and Average Maternal IL-6 Concentration Across Pregnancy.
Linear regression-derived scatter plots of gestational and postnatal age- corrected change in 

FA versus mean maternal IL-6 concentration across pregnancy are shown. Scatter points 

reflect ROI-based extracted FA values from central UF.
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Figure 5. Mediation Model.
Maternal gestational IL-6 concentration is positively associated with longitudinal change in 

left UF FA during the first 12 mos of life and negatively associated with cognitive 

developmental status at 12-mo. Longitudinal change in left UF FA is negatively associated 

with cognitive developmental status at 12-mo. Longitudinal change during the first year of 

life in the left UF FA mediates the association between maternal gestational IL-6 

concentration and cognitive developmental status at 12-mo age (p<0.05).

Rasmussen et al. Page 24

Neuroimage. Author manuscript; available in PMC 2020 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Rasmussen et al. Page 25

Table 1.
Demographic Information.

Demographic information of the participants included in the analyses (N=86 MRI scans at birth) and (N=32 

MRI scans at 12-mo age).

Maternal Age [years (SD)] 28.2 (5.5)

Infants

 Gestational Age at Birth [N=86,weeks (SD)] 39.3 (1.5)

 Age at Newborn MRI Scan [N=86, weeks (SD)] 3.73 (1.7)

 Age at 12-mo MRI Scan [N=32, weeks (SD)] 54.0 (3.1)

 Sex (male, frequency %) 55.8

Infant Race/Ethnicity (%)

 White non-Hispanic 37.5

 White Hispanic 35.0

 Asian 8.75

 Other 18.75

Household Highest Level of Maternal Education (%)

 High-School or Test Equivalent 22.1

 Vocational School or Some College 41.9

 Associates Degree 4.65

 Bachelors or Graduate Level Degree 31.4

Gross Annual Household Income (%)

 < $15,000 10.7

 $15,000 – 29,999 22.6

 $30,000 – 49,999 23.8

 $50,000 – 100,000 35.7

 > $100,000 7.1
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Table 2.
Parsimonious, Sex-Specific and Full Models for Uncinate Fasciculus (UF) Fractional 
Anisotropy (FA) Principal Component 2.

The association between average maternal Interleukin-6 (IL-6) concentration across pregnancy and FA in the 

right UF remained significant (p<0.05) after adjusting for confounding variables. Sex-specific effects of 

maternal gestational IL-6 concentration were not significant. The significance of the association in the left UF 

was attenuated to a tendency (p=0.08) in the full model. However, none of the confounding factors in the full 

model were significantly (p<0.05) associated with FA suggesting the parsimonious model as the most 

appropriate choice.

Dependent
Var.

Fiber
Tract Independent Var. r-

squared
p-
statistic

Parsimonious L UF Gestational Age 1.1% 0.303

FA (N=86) Postnatal Age 0.1% 0.802

Avg. Maternal IL-6 8.1% 0.008 **

R UF Gestational Age 0.6% 0.384

Postnatal Age 1.5% 0.213

Avg. Maternal IL-6 12.2% 0.001 **

Sex-Specific L UF Gestational Age 1.1% 0.352

FA (N=86) Postnatal Age 0.1% 0.728

Avg. Maternal IL-6 6.5% 0.016 *

Sex 0.0% 0.950

Sex x IL-6 0.9% 0.370

R UF Gestational Age 0.6% 0.387

Postnatal Age 1.0% 0.246

Avg. Maternal IL-6 9.5% 0.003 **

Sex 1.3% 0.392

Sex x IL-6 1.8% 0.248

Full Model L UF Gestational Age 2.3% 0.162

FA (N=86) Postnatal Age 0.1% 0.690

Avg. Maternal IL-6 3.4% 0.082

Sex 0.0% 0.368

Obstetric Risk 2.3% 0.099

Pre-preg. BMI 3.2% 0.676

Family Income 1.3% 0.279

Maternal Smoking 0.2% 0.837

R UF Gestational Age 0.8% 0.380

Postnatal Age 0.9% 0.368

Avg. Maternal IL-6 8.9% 0.006 **

Sex 0.8% 0.235

Obstetric Risk 3.5% 0.670

Pre-preg. BMI 0.3% 0.911

Family Income 0.0% 0.990

Maternal Smoking 0.0% 0.473
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Table 3.
Parsimonious, Sex-Specific and Full Models for Regional Fractional Anisotropy (FA) in 
the Uncinate Fasciculus (UF).

The association between average maternal Interleukin-6 (IL-6) concentration across pregnancy and FA in the 

central UF ROI remained bi-laterally significant (p<0.05) after adjusting for confounding variables. Sex-

specific effects of maternal gestational IL-6 concentration were not significant. None of the confounding 

factors in the full model were significantly (p<0.05) associated with FA suggesting the parsimonious model as 

the most appropriate choice.

Dependent
Var.

Fiber
Tract Independent Var. r-

squared
p-
statistic

Parsimonious L UF Gestational Age 6.7% 0.016 *

FA (N=86) Postnatal Age 14.2% <0.001 ***

Avg. Maternal IL-6 10.1% 0.003 **

R UF Gestational Age 6.3% 0.017 *

Postnatal Age 8.2% 0.009 **

Avg. Maternal IL-6 14.3% 0.001 ***

Sex-Specific L UF Gestational Age 5.8% 0.015 *

FA (N=86) Postnatal Age 11.4% 0.001 **

Avg. Maternal IL-6 6.7% 0.009 **

Sex 0.0% 0.953

Sex x IL-6 0.9% 0.317

R UF Gestational Age 5.7% 0.016 *

Postnatal Age 6.9% 0.008 **

Avg. Maternal IL-6 10.2% 0.001 **

Sex 0.8% 0.369

Sex x IL-6 1.5% 0.214

Full Model L UF Gestational Age 4.6% 0.033 *

FA (N=86) Postnatal Age 10.4% 0.002 **

Avg. Maternal IL-6 4.9% 0.028 *

Sex 0.0% 0.457

Obstetric Risk 1.5% 0.504

Pre-preg. BMI 0.4% 0.968

Family Income 0.1% 0.747

Maternal Smoking 0.0% 0.860

R UF Gestational Age 4.6% 0.032 *

Postnatal Age 7.0% 0.009 **

Avg. Maternal IL-6 10.1% 0.002 **

Sex 0.4% 0.462

Obstetric Risk 1.5% 0.929

Pre-preg. BMI 0.0% 0.340

Family Income 0.0% 0.840

Maternal Smoking 0.9% 0.523
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Table 4.
Correlation Between Maternal Gestational Interleukin-6 (IL-6) Concentration and Age-
Corrected Offspring Regional Fractional Anisotropy (FA) in Early Life.

Average maternal IL-6 concentration during pregnancy was negatively associated with age-corrected FA bi-

laterally in the newborn Uncinate Fasciculus (UF). Maternal gestational IL-6 concentration and UF FA at 12-

mo age were not significantly associated. However, elevated maternal gestational IL-6 concentration was 

associated with accelerated UF FA increase during the 12-mos of life.

Dep. Var. Fiber Tract Age Assessment r [95% CI] p-statistic

FA (N=86) L UF ROI Newborn -0.32 [−0.5 −0.1] 0.004**

R UF ROI Newborn -0.34 [−0.52 −0.13] 0.002**

FA (N=32) L UF ROI 12-mo 0.09 [−0.27 0.42] 0.643

R UF ROI 12-mo 0.03 [−0.32 0.37] 0.875

FA (N=32) L UF ROI 12-mo Change 0.42 [0.09 0.67] 0.013*

R UF ROI 12-mo Change 0.47 [0.14 0.7] 0.007**
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