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Genome-wide association identifies 
methane production level relation 
to genetic control of digestive tract 
development in dairy cows
M. Pszczola   , T. Strabel, S. Mucha & E. Sell-Kubiak

The global temperatures are increasing. This increase is partly due to methane (CH4) production from 
ruminants, including dairy cattle. Recent studies on dairy cattle have revealed the existence of a 
heritable variation in CH4 production that enables mitigation strategies based on selective breeding. 
We have exploited the available heritable variation to study the genetic architecture of CH4 production 
and detected genomic regions affecting CH4 production. Although the detected regions explained 
only a small proportion of the heritable variance, we showed that potential QTL regions affecting CH4 
production were located within QTLs related to feed efficiency, milk-related traits, body size and health 
status. Five candidate genes were found: CYP51A1 on BTA 4, PPP1R16B on BTA 13, and NTHL1, TSC2, 
and PKD1 on BTA 25. These candidate genes were involved in a number of metabolic processes that are 
possibly related to CH4 production. One of the most promising candidate genes (PKD1) was related to 
the development of the digestive tract. The results indicate that CH4 production is a highly polygenic 
trait.

The increase in the global temperature has a serious impact on the environment and humans. Some of these 
consequences may exceed adaptive capacities of some species, lead to water supplies shortage, melt the glaciers 
and increase sea level as well as trigger extreme climatic events1. The estimated global temperature increase in 
2010 due to greenhouse gas (GHG) and aerosol emissions was 0.81 °C in relation to the pre-industrial era. The 
0.11 °C of this increase was contributed by methane (CH4) emissions from direct livestock emissions2. Most of 
livestock CH4 emissions are caused by ruminants3,4. The CH4 emissions from ruminants are mostly due to enteric 
fermentation.

In ruminants the enteric fermentation is a consequence of a normal digestive process. One of their stomachs, 
the rumen, is inhabited by rumen microorganisms, enabling digestion of feed that contains high amounts of fiber. 
One of the by-products of this digestive process converting the feed provided to the ruminants by the microor-
ganisms is CH4.

The CH4 consists of carbon. When carbon is lost from the body it may no longer be used by the animal as a 
source of energy. Therefore, apart from its environmental impact, CH4 emission in ruminants has also a potential 
negative impact on the profitability of animal production5,6. Due to those potential consequences of CH4 emis-
sions from ruminants, mitigation strategies are under investigations. Optional strategies range from adjusting 
the management to nutritional treatments7. These strategies may have a high impact on CH4 production. An 
additional strategy of mitigating CH4 production might involve selective breeding for lower emitters. Such a 
strategy could be possible in case of the existence of genetic variation in CH4 production and a favorable genetic 
association of CH4 and traits in the current breeding goals.

Recent genetic studies on dairy cattle revealed that while most of the variation in CH4 production is due 
to non-genetic factors (i.e. feed, management and other environmental factors), the genetic component (i.e. 
genetic variance) in CH4 production also exists8–13. However, information on the extent of genetic control over 
CH4 production and the genetic architecture of the trait is generally scant. For example, Manzanilla-Pech et al.14  
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performed GWAS on different methane phenotypes in beef cattle and validated the results on dairy cattle, whereas 
Van Engelen15 performed GWAS on Holstein cows using phenotypes predicted from milk and breath analyses.

Only lately the technology for measuring CH4 production both on a large scale and on individual animals 
has become available. Among others, high throughput measuring techniques are based on breath analyses, since 
approx. 90% of enteric CH4 is released during eructation events and by breathing5. Nonetheless, collection of such 
phenotypic records is still challenging and data sets are limited. This technique is promising as it is non-invasive, 
based on infra-red analyses of breath samples and measurements can easily be taken during milking or feed-
ing13,16–19. The most common application of these techniques is in combination with automatic milking systems 
(AMS) enabling a relatively long measurement period (duration of the milking); additionally, several observa-
tions per cow per day may be collected from a large number of animals. This type of measurement set up enables 
collection of large volumes of data, which is a prerequisite for genetic analyses.

To our knowledge, to date no reports are available on genome-wide association analyses based on direct 
measurements of daily CH4 production in dairy cattle. Therefore, the objective of this study was to undertake 
a genome-wide association study using CH4 phenotypes measured by breath analyzers to unravel the genomic 
regions controlling CH4 production from dairy cattle.

Results
Detected SNPs.  The genetic variance for daily CH4 production was estimated independently for each level 
of 2nd order Legendre polynomials. As the first parameter explains most of the variation, only SNP detected with 
it will be presented and discussed in this study. The GWAS performed on daily CH4 production indicated 50 SNPs 
with BF > 10 associated with CH4 production in dairy cattle (Fig. 1). Those SNPs were located on 18 different BTA 
(Tables 1 and 2). From detected SNPs, three had a BF above 30, which is defined as “very strong” association20. On 
BTA 1, 4, 9, 13 and 25 analysis in Haploview21 indicated six potential candidate QTL regions (Fig. 2). For those 
regions and two single SNP associations on BTA 9 and 20, a total of 130 candidate genes (protein-coding and 
non-coding RNA) were located with BIOMART22 (Table 1).

The three SNP detected for raw phenotypes with BF > 30 and six possible candidate QTL regions explained 
0.032% of the total genetic variance (Table 1), whereas the remaining SNPs with 10 < BF < 30 explained 0.122% 
of this variance (Table 2). Overall this gives a very low result of 0.154% of the total genetic variance explained by 
detected SNPs.

Bioinformatics analysis of detected regions.  Out of 130 candidate genes for CH4 production, 46 
remained for a further GO Term analysis as known and non-ambiguous genes. For possible candidate genes, 428 
different GO Terms were described: 82 cellular component terms, 251 biological process terms and 95 molecular 
function terms. Based on the GO Terms, five candidate genes were selected as the most promising: CYP51A1 on 
BTA 4, PPP1R16B on BTA 13, and NTHL1, TSC2, and PKD1 on BTA 25 (Table 3).

Based on Cow QTLdb20, 52 QTLs involved in production and reproduction traits were selected as potentially 
playing a role in daily CH4 production in cows. Those QTLs were clustered into five groups: feed efficiency, milk 
related, body size and health status (see Table 4).

Discussion
To our knowledge this is the first GWAS on direct measurements of daily CH4 production performed in dairy 
cattle. So far one GWAS on direct measurements of CH4 production was performed in beef cattle with validation 
on dairy cattle14 and for CH4 intensity15. Another GWAS study on dairy cattle23 used predicted CH4 following the 
formula proposed by Dijkstra et al.24. Thus very little is still known on the actual genomic architecture of CH4 pro-
duction in dairy cattle. Our results provide more insight into the genomic architecture of CH4 production thanks 
to the identification of genomic regions involved in the control of this trait and revealed genomic relationships 
between CH4 production and other traits.

Methane emission may be expressed in several ways depending on the aim of a given study25–28. First of all, 
when the total CH4 emitted by cows is of interest, the CH4 production phenotype expressed in g/d or l/d may 
be used16–18,28. When the goal is to minimize the amount of CH4 emitted from the supplied unit of feed (i.e. 

Figure 1.  Results of genome-wide association study for raw phenotypic methane production. Pink triangles 
indicate SNPs with Bayesian Factor (BF) >= 30, pink circles SNPs with 10 =< BF < 30 and black dots non-
significant SNPs.
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dry matter intake) in order to maximize feed conversion, the CH4 yield26 is the trait of interest (CH4 produced 
per kg of dry matter intake). Another way of expressing emission is CH4 intensity26, where produced CH4 is 
expressed per unit of product (milk or meat). Similarly to the residual feed intake, CH4 may be expressed as a 
difference between predicted and measured CH4 emission (i.e. residual CH4 emission)14,26,29. For our analyses 
we have decided to use the phenotype applied most widely in the literature and the least influenced by other 
traits not strictly related to CH4 emission itself (e.g. dry matter intake, milk production, live weight). Another 
reason is related with the fact that when calculating our CH4 production phenotype, we account for body weight, 
physiological status and milk production as described in Pszczola et al.13 following Madsen et al.28. Therefore, 
calculations of CH4 yield or CH4 intensity may have resulted in some potential overestimation of CH4 emissions 
due to double counting.

Selected candidate regions.  Based on the bioinformatics analysis of detected regions for CH4 production 
in dairy cattle, five most promising candidate genes were selected based on GO Term analysis (Table 3). The 
first of them, CYP51A1 (BTA4: 9,306,414-9,323,252) located within the region of a candidate QTL on BTA 4, is 
a member of the cytochrome P450 family 51 subfamily A. Based on GO Terms this gene is involved in two bio-
logical processes that could potentially affect CH4 production in dairy cattle. Those GO Terms are the lipid met-
abolic process and the steroid metabolic process30,31, which are confirmed by CYP51A1 and its family members 
being involved in the synthesis of cholesterol, steroids and other lipids32. Lipids (i.e. fatty acids) were previously 
reported to be related to CH4 production, including several studies that used fatty acids present in milk to predict 
CH4 production24,33–39.

The second gene, namely PPP1R16B (BTA13: 68,258,627-68,366,080), a protein phosphatase 1 regulatory 
subunit 16B, is located within the candidate QTL region on BTA 13. For this gene two biological processes 
were found in GO Terms analysis that could link it to CH4 production. One of them, the establishment of the 
endothelial barrier, e.g. in the intestine, is defined as “… specific and selective control over the passage of water 
and solutes, thus allowing formation and maintenance of compartments that differ in fluid and solute composi-
tion”40. The other, the positive regulation of blood vessel endothelial cells30,40,41. The biological processes involving 
PPP1R16B suggest that this gene could affect the digestive process by controlling the passage of water within 
the intestine and providing blood vessels to the endothelial cells of the intestine. Being part of such processes, 
PPP1R16B could affect efficient use of feed and in this way control the amount of by-products (including CH4) 
produced during the process of digestion.

The three other genes were all located within the largest detected candidate QTL region on BTA 25, comprising 
of four SNPs. The first of the genes, NTHL1, nth like DNA glycosylase 1, is located at 1,590,252-1,595,934 bp. Its 
GO Term is the metabolic process, which includes protein synthesis and gradation31,40. The process involving this 
gene suggests that NTHL1 may affect digestive processes and consequently also a number of their by-products, 
e.g. CH4, being released post feeding.

The second of the above-mentioned genes, TSC2 (BTA25:1,596,730-1,626,967), tuberous sclerosis 2, is the 
only candidate gene with a GO Term related to a cellular component, in that case lysosome31,40. Moreover, TSC2 
has been very well studied in humans, as its mutation causes tuberous sclerosis and its product is believed to 
be a tumor suppressor32. In the case of dairy cattle the location of the TSC2 gene in lysosome, which contains 

BTA SNP name
Position 
(bp) MAF BF

Candidate 
QTL

Allele subs. 
effecta

Number of 
candidate genes

Total genetic 
var. expl. (%)

1 BTA89822nors 46223040 0.491 14.33
Yes

0.113
12 0.006

1 BTA89820nors 46321775 0.488 12.26 0.193

4 Hapmap39581BTA70101 9203380 0.497 12.26
Yes

0.226
14 0.003

4 ARSBFGLNGS109843 9615916 0.430 14.33 0.251

9 BTB00395654 60102040 0.353 32.29 — 0.132 1 0.003

9 ARSBFGLNGS36482 64262480 0.365 16.41
Yes

0.201
9 0.005

9 BTB01673493 64291804 0.365 16.41 0.172

9 Hapmap42513BTA33276 66997852 0.215 23.76
Yes

0.183
7 0.005

9 Hapmap27624BTA154889 67122449 0.318 13.29 0.158

13 BPI1 67833218 0.402 11.22
Yes

0.144
21 0.003

13 ARSBFGLNGS103635 67888763 0.467 48.68 0.152

20 ARSBFGLNGS109784 909076 0.407 36.61 — 0.129 1 0.003

25 ARSBFGLNGS61709 1086505 0.432 17.45

Yes

0.277

65 0.004
25 ARSBFGLNGS103099 1127441 0.395 15.37 0.238

25 ARSBFGLBAC43143 1184038 0.395 24.82 0.101

25 Hapmap29768BTC016149 1205232 0.346 16.41 0.321

Table 1.  Candidate QTL regions and single SNPs detected for methane production with Bayesian Factor (BF) 
above 30, their position in base pairs, minor allele frequency (MAF), number of candidate genes and percentage 
of total genetic variance explained by them. aAllele substitution effects were estimated as α σ= −pq(2 )a

2 1 , 
where σa

2 is the genetic variance explained by the SNP, and p and q are the frequencies of the two alleles76.
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hydrolytic enzymes and takes part in energy metabolism, suggest that it could be involved in digestion processes 
and degradation of metabolites, this may affect CH4 produced by a cow.

The last of the candidate genes on BTA 25 is PKD1, encoding polycystein 1, a transient receptor potentially 
involved in channel interacting (1,627,978-1,666,088 bp). Three biological processes were assigned to it in GO 
Term analysis, i.e. blood vessel development40, nitrogen compound metabolic process31,40,42,43 and the digestive 
tract development40. All three GO Terms indicate that PKD1 is involved in digestion processes either directly by 
affecting the development of the digestive tract, or possibly also blood vessels around it as well as metabolic pro-
cesses of a nitrogen compound. All those functions, in general, indicate that PKD1 might be involved in emissions 
of greenhouse gases, not only CH4 but also nitrogen related.

To confirm that the candidate genes detected in this study are the actual causative mutations affecting CH4 
further functional studies such as gene expression or sequencing of the region of highest interest are required. 
However, this was outside the scope of this paper.

Potential Quantitative Trait Loci.  Next to the search for candidate genes, we have also looked for previ-
ously detected QTLs for traits potentially related to CH4 production. Those QTLs were clustered in four groups of 
similar traits: feed efficiency, milk related, body size and health status (see Table 4). It has to be noted that in this 
study the estimation of CH4 production included an equation, in which fat-protein-corrected milk, live weight 
and pregnancy status are taken into account, and some of the found relationships may be present due to this fact. 
Alternatively, CH4 concentration (expressed in ppm) could be used for the association study. At this moment, 

BTA SNP name
Position 
(bp) MAF BF

Allele sub. 
effecta

Total genetic 
var. expl. (%)

1 ARSBFGLNGS94761 53656600 0.416 11.22 0.088

0.003
1 ARSBFGLNGS3821 61286751 0.337 15.37 0.177

1 BTB01665387 63061634 0.437 12.26 0.231

1 ARSBFGLNGS4572 67212088 0.381 28.01 0.179

2 Hapmap44041BTA23382 10617894 0.266 15.37 0.200 0.001

3 Hapmap33584BTA141202 30922247 0.128 10.19 0.235

0.075

3 Hapmap44183BTA105889 37602383 0.428 14.33 0.172

3 ARSBFGLNGS38388 43476846 0.421 11.22 0.170

3 ARSBFGLNGS98870 98587436 0.428 16.41 0.114

3 Hapmap39765BTA62582 99317016 0.266 13.29 0.225

4 BTA72259nors 20510260 0.360 17.45 0.172 0.001

8 Hapmap26798BTA82382 11398105 0.191 11.22 0.207

0.012

8 BTB00863195 23634451 0.449 10.19 0.088

8 ARSBFGLNGS39902 24288969 0.404 17.45 0.114

8 Hapmap52006BTA77999 29628947 0.449 15.37 0.133

8 BTB01356348 34847992 0.280 11.22 0.185

9 UAIFASA4057 50279445 0.245 16.41 0.197

0.005

9 BTB00392496 50899854 0.322 21.65 0.155

9 BTB01520203 62539556 0.383 22.70 0.166

9 Hapmap58377rs29014990 66292441 0.353 18.50 0.179

9 Hapmap42705BTA85041 99135245 0.196 16.41 0.191

10 BTA59410nors 17730891 0.215 12.26 0.194 0.002

11 ARSBFGLNGS27959 22465305 0.128 12.26 0.161

0.00411 BTB01397452 33167082 0.428 21.65 0.156

11 BTB01641011 33771048 0.486 10.19 0.117

12 BTA31817nors 22219373 0.241 11.22 0.289 0.001

15 ARSBFGLNGS86665 67556240 0.227 16.41 0.196 0.003

18 ARSBFGLNGS14182 33602408 0.323 12.26 0.144 0.001

19 Hapmap48676BTA18047 47374363 0.490 13.29 0.094 0.003

20 ARSBFGLBAC36856 63407185 0.356 23.76 0.129 0.001

23 Hapmap61132rs29019650 11907305 0.402 10.19 0.158 0.001

24 ARSBFGLBAC31288 4273189 0.178 20.60 0.242 0.002

25 ARSBFGLNGS114786 7952738 0.400 10.19 0.141 0.002

28 BTB00987935 35294673 0.400 21.65 0.169 0.005

Table 2.  Suggestive SNPs detected for methane production with Bayesian Factor 10 < BF < 30, their position in 
base pairs, minor allele frequency (MAF) and percentage of total genetic variance explained by them. aAllele 
substitution effects were estimated as α σ= −pq(2 )a

2 1 , where σa
2 is the genetic variance explained by the SNP, 

and p and q are the frequencies of the two alleles76.
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however, CH4 production is the most widely reported trait in genetic studies regarding reduction of enteric CH4 
emissions. For this reason we restricted our study to this trait.

Firstly, the comparison indicated an overlap between the genomic regions controlling the CH4 production 
and QTLs for feed efficiency traits (e.g. residual feed intake, feed conversion ratio, average daily gain; Table 4). 
The relationship between diet composition and CH4 production44 or the effect of additives reducing emission45–49 
or dry matter intake50–52 is well known. It is anticipated that increased CH4 production leads to the loss of energy 
provided with feed5,6, and therefore more efficient cows should produce less CH4. Jentsch et al.53 showed that 
greater feed ingestion results in higher total CH4 production; however, CH4 production per kg dry matter intake 
decreases. Pickering et al.54 also reported the presence of a correlation between CH4 production and intake, while 
studies of55–57 showed that selection for cows with a low residual intake (efficient ones) results in lower CH4 pro-
duction. Unfortunately, in this study no data was available on individual feed intake of cows and therefore we were 
not able to verify this statement empirically.

Figure 2.  Results of the linkage disequilibrium (LD) analysis for significant SNPs detected on Bos Taurus 
autosomes (BTA) for raw phenotypic methane production. (A) BTA 1, (B) BTA 4, (C) BTA 9, (D) BTA 13, (E) 
BTA 25. Each square contains a value for r2 between neighboring SNP.
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Secondly, regions controlling CH4 production were also overlapping with QTLs for traits describing various 
aspects of milk production (e.g. milk yield, milk protein and fat yield, milk composition; Table 4). The relation-
ship between milk composition and CH4 production is particularly plausible because of common biochemical 
pathways between CH4, acetate and butyrate58. Furthermore, earlier studies showed that it is possible to use milk 
fatty acid composition to predict CH4 production24,33,35–39.

Thirdly, it was found that height, chest depth and body weight of the cow were genetically controlled by the 
same regions as potential QTLs for the CH4 production. Body characteristics such as body weight were earlier 
shown to be related to CH4 production52,59,60. Heavier cows are usually bigger and have a larger rumen capacity 
and a lower passage rate61, which leads to greater CH4 production52.

Finally, the QTLs detected previously for the health status of the cow (e.g. mastitis, somatic cell score, immu-
noglobulin G level) were also found in regions overlapping with SNPs detected in this study for CH4 produc-
tion. Thus reports on the relationship between the health status of the animal and the direct CH4 production 
are limited. Zetouni et al. (2008) showed a negative genetic correlation on the health of the cows and methane 

Gene BTA Position Type of GO Term GO Term name

CYP51A1 4 9306414–9323252 Biological process
lipid metabolic process

steroid metabolic process

PPP1R16B 13 68258627–68366080 Biological process
establishment of an endothelial barrier

positive regulation of blood vessel endothelial cell proliferation 
involved in sprouting angiogenesis

NTHL1 25 1590252–1595934 Biological process metabolic process

TSC2 25 1596730–1626967 Cellular component Lysosome

PKD1 25 1627978–1666088 Biological process

blood vessel development

nitrogen compound metabolic process

digestive tract development

Table 3.  GO Terms for most promising candidate genes detected for methane production in dairy cattle.

Group of traits Trait BTA

Feed efficiency

Residual feed intake 4

Feed conversion ratio 4

Average daily gain 4

Body size

Height (mature) 4

Chest depth 9

Body weight (mature) 9

Milk

Milk fat yield 9; 25

Milk protein yield 1; 13; 20

Milk yield 13

Milk energy yield 9

cis-Vaccenic acid content 20

Docosatetraenoic acid content 9

Eicosapentaenoic acid content 9

Linoleic acid content 1

Milk alpha-casein percentage 1

Milk capric acid percentage 13

Milk caproic acid percentage 13

Milk caprylic acid percentage 13

Milk myristoleic acid percentage 13

Milk palmitoleic acid percentage 1; 13

Oleic acid content 1

Polyunsaturated fatty acid content 1

Health status

Somatic cell score 4; 9

Clinical mastitis 9

Immunoglobulin G level 4; 20

Infectious bovine keratoconjunctivitis susceptibility 1; 20

M. paratuberculosis susceptibility 20

Table 4.  Previously detected QTLs within the identified genomic regions potentially related to methane 
production.
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production and a very low positive genetic correlation with udder health62. Elliott-Martin et al. (1997), based on 
breath analyses, indicated that CH4 could be used to diagnose ketosis. Moreover, the health status of the animal 
is known to affect other traits such as dry matter intake or production, and therefore is likely to affect CH4 pro-
duction. It is likely that a sick animal produces less methane due to a lower milk production; however, methane 
intensity (i.e. the amount of methane produced per kg of milk) would increase. Next to QTLs related to traits 
indicating the health status of the cow also QTLs indicating susceptibility to illness were found in the regions 
important to CH4 production.

Based on the several traits mentioned above that share the genetic background with CH4 production, it may 
be suggested that some of the detected regions in this study have a pleiotropic effect. This knowledge is very ben-
eficial especially in the case of production traits controlled by the same regions as CH4 production (i.e. assumed 
to be genetically correlated), which could serve as indicator traits for enteric CH4 production and eliminate dif-
ficult and time-consuming phenotyping. Our findings mostly match the study of Negussie et al.63, who reviewed 
literature on potential indirect traits for measuring CH4 production. Further evaluation of genetic relationships 
between CH4 and other traits is necessary to confirm relationships revealed by our study and before inclusion of 
CH4 to the breeding program can be made.

Power of the experimental design.  The Bayesian method selected to perform GWAS for CH4 production 
allows for good distinctions between SNP with large and small effects on a trait, as in each iteration a different 
combination of SNPs is given a large effect. Thus detected SNPs give a valuable indication for the genomic regions 
potentially involved in CH4 production in dairy cattle. This was confirmed also by bioinformatics post-analysis 
of detected regions with the functions of selected candidate genes and QTLs for other traits detected within 
those regions. However, the total genetic variance explained by significant SNPs was very low. This could be due 
to several possible reasons, i.e. (1) a low number of animals used in the study, (2) the accuracy of the collected 
phenotypes, and (3) the polygenic nature of the studied trait.

Firstly, it should be noted that the analyzed dataset was relatively small, and therefore the power of the GWAS 
design was too low to detect a majority of SNPs associated with CH4 production. Taking into account the herita-
bility of this trait at 0.2713, a higher number of genotyped animals would be needed to obtain a higher percentage 
of genetic variance explained by the detected SNP. Therefore, the analyses of a larger dataset (for both phenotypic 
and genomic data) may shed light on more specific SNPs with large effects However, generating a large data set 
by one project is difficult due to related costs (measuring and genotyping). Therefore, generating such a dataset 
by combining phenotypic observations and genotypes from various experiments could be a solution producing 
more reliable results in the future.

Secondly, to obtain reliable GWAS results reliable phenotypes are needed. In our study we used a technique 
that measures CH4 at the AMS during milking. To verify the accuracy of the sensor used in this study we vali-
dated the used sensor against sensors used in Respiration Chambers (the standard CH4 measuring technique). 
This comparison showed a high similarity between results generated by the two sensors when used in the AMS64. 
There are no studies comparing the performance of sensors used in the present study when installed in the 
Respiration Chamber. Several factors could lead to inaccuracies in the collected measurements such as occasional 
wind in the area of AMS or cows’ head movement. These factors were not controlled in this study. To account for 
these arguably random effects we measured CH4 for the individuals in the long period of time (i.e. resulting in 
multiple observations per animal). The average repeatability of the analyzed phenotype was 0.25 as reported in 
Pszczola et al.13.

Thirdly, the greater data set and increased accuracy of the measuring method could not have been enough 
to explain more genetic variation if the analyzed trait was highly polygenic. In previous studies using the same 
methodology, but larger data sets, only 0.83% of the genetic variance was explained by SNP in GWAS on litter size 
in pigs65 and 9.5% in GWAS on teat number in pigs66. Based on the presented results it seems that CH4 production 
is also a highly polygenic trait and many different regions are involved in its regulation. It might not be, therefore, 
possible to detect all of them using GWAS.

As CH4 production turned out to be a very polygenic trait in application to breeding practice, it may be more 
advisable to use the genomic prediction approach without specifying particular SNPs as being more important 
than others (e.g. genomic BLUP). In fact, de Haas et al.67, Lassen et al.68 and Wilson et al.69 performed genomic 
prediction type analyses while searching for correlated traits. The biggest challenge for the performance of 
genomic prediction with sufficient, reasonable or high accuracy of the estimated genotypic values is to create an 
adequately large reference population, which is likely to require cooperation between several countries.

Conclusions
This study aimed at detecting genomic regions affecting CH4 production in dairy cattle and showed that SNPs 
associated with the trait of interest may be detected. However, CH4 data collection poses a challenge, leading to 
a lower power of the experimental design and prevented detection of a high number of SNPs with a large effect 
on CH4 production. Consequently, only a small proportion of the genetic variance was explained by the SNPs. 
Nonetheless, the candidate QTL region on BTA 25, where three candidate genes were identified, may be consid-
ered as a genomic region regulating CH4 production in dairy cattle. Furthermore, the comparison of the QTL 
regions affecting CH4 production with previously reported QTLs indicated common genomic regions between 
CH4 production and traits related to feed efficiency, milk related, body size and health status. The found candidate 
genes were also involved in a number of metabolic processes possibly related to CH4 production. One of the most 
promising candidate genes (PKD1) was related to the development of the digestive tract being the environment 
inhabited by methanogens and the site for methane production. In general, all the evidence shows that CH4 pro-
duction is a polygenic trait.



www.nature.com/scientificreports/

8Scientific REPOrTS |  (2018) 8:15164  | DOI:10.1038/s41598-018-33327-9

Methods
All research was approved by the Local Ethical Committee for Experiments on Animals in Poznan, Poland 
(Decision Number: 64/2012) and performed in accordance with the “Act on the protection of animals used for 
scientific purpose” of the Republic of Poland, which complies with the European Union Legislation for the pro-
tection of animals used for scientific purposes.

Phenotypes.  The observations on CH4 production [g/d] used in this study were obtained from Pszczola et al.13,  
where all the detailed information on farms, measuring set-up and data processing can be found.

In short, animals available for this study were 287 Polish Holstein-Friesian cows kept on two commercial 
farms in Poland. This was a subset of 483 cows phenotyped for CH4 production and analyzed in Pszczola et al.13, 
of which 287 were genotyped. The CH4 production was measured repeatedly on Farm1 during two periods: from 
2014/12/02 to 2016/02/03, and from 2016/06/01 to 2016/09/17, and on Farm2 from 2016/02/05 to 2016/03/14. 
Cows were milked repeatedly during the experiment, in total 25,872 CH4 production observations were collected 
for the genotyped animals.

The CH4 production was measured using a non-invasive Fourier Transform Infrared Spectroscopy breath 
analyzer (GASMET 4030; Gasmet Technologies Oy, Helsinki, Finland) during milking in AMS (Lely Astronaut 
A4). Concentrations of CH4 and CO2 measured during milking were converted to daily CH4 production in grams 
per day [g/d] following Madsen et al.28 and Pedersen et al.70. This calculation took into account the concentrations 
of CH4 and CO2, fat-protein corrected milk, live weight and duration of the pregnancy. Multiple daily outputs per 
cow were corrected for the diurnal variation in CH4 and averaged per cow per day.

Genotypes.  Cows were genotyped with the Illumina BovineSNP50 v2.0 BeadChip (Illumina Inc., San Diego, 
CA) at the Cattle Genetics Laboratory of the Polish Federation of Cattle Breeders and Dairy Farmers. Ear tissue 
samples used to extract DNA were collected in the course of a routine procedure within the breeding program. 
The genotyped SNPs were processed with following quality control checks: (1) being in Hard-Weinberg equilib-
rium, (2) having the minor allele frequency above 0.05, (3) not being monomorphic, and (4) having a call rate of 
above 0.95. Six cows were removed as they had the call rate below 0.9. After quality control and removing SNPs 
located on sex chromosomes and chromosome 0 (unassigned), 39,680 SNPs remained for the genome-wide asso-
ciation analysis.

Genome-wide association.  To identify regions of the genome affecting CH4 production, a multi-SNP 
genome-wide association analysis was performed with the application of the Bayesian Variable Selection 
method71. The method allows for a simultaneous estimation of the effects of all markers used in the analysis. The 
analysis was performed with the Bayz software72 on daily CH4 production using the model developed by Pszczola 
et al.13. The model was:

∑
∑ εβ

= + + × +

× = +
=

=

µ eCH Xb L DIM

with L DIM Z ,
k n

3
ij

k n
3

ij u ijk ijk

4 1

1

where CH4 stands for the daily CH4 production levels of a cow; µ is an n-vector equal to the mean; Xb is the 
design matrix of fixed effects of year-week of measurement and cow’s lactation number (levels 1 or 2+) fitted 
within the general lactation curve, which was modeled using 3rd order Legendre polynomials; and e is an n-vector 
of random residual effects assumed to be normally distributed σN(0, )e

2 . The Lk is a vector of individual random 
animal effect, which was modeled using 2nd order Legendre polynomials. The mapping of marker effects is con-
structed as a hierarchical model on random animal effects73. Firstly, the model accounts for genetic variance only. 
Secondly, at the next level the model allows disentangling permanent environmental (Note: this accounted for 
repeated observations of daily CH4 production per cow.) and genetic variances independently for each level of 2nd 
order Legendre polynomials. Here the Zu is a matrix with dimensions n by p, with n being the number of geno-
types and p being the number of SNP coded as 0, 1, 2 copies of a specific allele vector; βijk is a p-vector with the 
random effects of markers; and εijk accounts for the permanent environmental effect assumed to be normally 
distributed σεN(0, )2

ijk
.

For the marker effect the Bernoulli distribution was applied:

β
σ π

σ π








~
N

N

(0, ) with probability:

(0, ) with probability:

g

g

2
0

2
1

0

1

where for the first distribution it is assumed that the SNPs have a small effect (σg
2
0
); whereas in the second distri-

bution the SNPs are assumed to have a large effect, which explains a large part of variance (σg
2
1
) of analyzed traits. 

In this study, a prior of π1 = 0.001 was selected, thus on average only 1 in 1,000 SNPs was in the second distribu-
tion in each cycle. This resulted in only ~38 SNPs per cycle to have a large effect on the traits. The posterior means 
were calculated with 500k MCMC iterations with burn-in of 5k iterations to secure that all the SNPs were 
used65,66,74. Selecting a stringent prior provides a more precise distinction between SNPs with large and small 
effects on the trait66,75. If the SNP was not genotyped for a certain animal then Bayz assigned an average genotype 
to that position.
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Identification of significant SNPs.  The Bayes Factor (BF) was calculated for each SNP to determine the 
significant associations:

π π
=

−ˆ ˆp p
BF

/(1 )
/

,i i

1 0

where π1 and π0 are the prior probabilities and p̂i is the posterior probability of the fraction of times the SNP was 
in the distribution with a large effect. Following the definitions of Kass and Raftery20, the SNPs with BF > 30 are 
described as a “very strong” association and with BF > 150 as “decisive”. The variance explained by significant 
SNPs was estimated as a fraction of the total genetic variance explained by all SNPs.

To confirm the potential QTL regions, also the linkage disequilibrium (LD) measured by r2 was estimated in 
Haploview21 between the SNPs detected on one BTA and not further from each other than 500 kbp. The candidate 
gene search was performed with the BIOMART software available in Ensembl Bos Taurus UMD 3.132 by entering 
the position of a possible QTL region or one of the most significant SNPs with ±500 kbp. To limit the number of 
QTLs to the most promising as candidate genes for daily CH4 production the BIOMART database was also used 
to study Gene Ontology Terms (GO Terms) of those QTLs. Furthermore, the Cow QTL database of the Animal 
Genome project20 was used to find previously detected QTLs within the most promising regions detected here for 
daily CH4 production. This was done analogically as for the candidate gene search, i.e. by entering the position of 
a possible QTL region or one of the most significant SNPs with ±500 kbp.
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