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Dendritic processing of 
spontaneous neuronal sequences 
for single-trial learning
Tatsuya Haga  & Tomoki Fukai   

Spontaneous firing sequences are ubiquitous in cortical networks, but their roles in cellular and 
network-level computations remain unexplored. In the hippocampus, such sequences, conventionally 
called preplay, have been hypothesized to participate in learning and memory. Here, we present a 
computational model for encoding input sequence patterns into internal network states based on the 
propagation of preplay sequences in recurrent neuronal networks. The model instantiates two synaptic 
pathways in cortical neurons, one for proximal dendrite-somatic interactions to generate intrinsic 
preplay sequences and the other for distal dendritic processing of extrinsic signals. The core dendritic 
computation is the maximization of matching between patterned activities in the two compartments 
through nonlinear spike generation. The model performs robust single-trial learning with long-term 
stability and independence that are modulated by the plasticity of dendrite-targeted inhibition. Our 
results demonstrate that dendritic computation enables somatic spontaneous firing sequences to act as 
templates for rapid and stable memory formation.

Fast and robust learning is a fundamental ability of the brain and has been extensively explored in the hippocam-
pus and sensory cortices. During spatial navigation, hippocampal place cells rapidly acquire their spatial receptive 
fields during the first exposure to the spatial environment1. In addition to the learning speed, hippocampus can 
form distinct spatial representations for multiple spatial experiences without interference2,3, avoiding overwriting 
of previous memories. Hippocampal place cells exhibit firing sequences during locomotion4,5 and these sequences 
are replayed during awake and sleep states6,7. These replay sequences are widely thought to be crucial for the 
memory encoding and consolidation processes5,7,8, but the circuit mechanisms of rapid and robust memory for-
mation remain largely unknown.

It was recently suggested that a large fraction of place-cell sequences emerge from firing sequences that 
are ‘pre-played’ in spontaneous activity prior to spatial experience9,10. Although the role of spontaneous firing 
in place-field formation remains controversial11, supportive evidence is also accumulating12,13. Active roles of 
spontaneous firing sequences were also reported in the rodent auditory and somatosensory cortices14, in which 
repeated application of sequential stimuli consolidated spontaneous firing sequences existing prior to the sensory 
experiences. These results suggest that cortical networks have an innate structure to utilize spontaneous firing 
patterns for sequence learning. In addition, computational models suggest that the lognormal neuronal con-
nectivity observed in the hippocampus15,16 and neocortex17,18 embeds a rich repertoire of firing sequences into 
asynchronous irregular states of recurrent neuronal networks19,20.

Because the area CA3 is the likely source of preplay sequences observed in the area CA121,22, we build a recur-
rent network model to demonstrate how spontaneous firing of CA3 neurons enable sequence learning from 
one-time experience. Unlike the previous models of hippocampal sequence learning23–27, our model does not 
require the preconfigured place fields of individual neurons prior to sequence learning. However, our model 
assumes that spontaneous firing sequences exist prior to spatial experiences. Our primary interest is whether 
cortical circuits can rapidly and robustly associate sequences of sensory input patterns with specific preplay 
sequences. Our model proposes that dendritic coincidence detection is the key of this association. In the hip-
pocampus, the perforant path from the entorhinal cortex (EC) conveys sensory information to the distal den-
drites of CA3 pyramidal cells, while recurrent synapses primarily contact their proximal dendrites28. Similarly, 
in neocortical pyramidal cells distal dendrites receive top-down input from the higher cortical areas whereas 
bottom-up input from the lower cortical areas (or thalamic nuclei) terminates on the proximal dendrites29. We 
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suggest that this bipartite architecture of cortical networks allows pyramidal cells to amplify and potentiate coin-
cidence between two input streams.

To show this, we construct a mathematically tractable, yet biologically plausible two-compartment neuron 
model, which includes Hebbian plasticity in each compartment30 and coincidence detection between the com-
partments. The dendrite of our neuron model performs an operation similar to canonical correlation analysis 
(CCA) in signal processing31,32. Coincidence detection has been demonstrated in the dendrites of neocorti-
cal29,33,34 and CA135,36 pyramidal cells, but not directly in CA3 pyramidal cells. However, recent experiments have 
clarified that NMDA spikes are critical determinant of long-term potentiation (LTP) at CA3-to-CA3 synapses 
and that a burst of a few back-propagating action potentials is sufficient to generate NMDA spikes37. Although 
whether LTP at EC-to-CA3 synapses obeys a similar mechanism is unknown, we hypothesize that CA3 pyram-
idal cells also perform coincidence detection between distal and proximal dendritic inputs. We propose that the 
combination of dendritic computation and spontaneous firing sequences promotes the rapid formation of stable 
place fields and place-cell sequences.

Results
Two-compartment neuron model with nonlinear dendritic computation.  Dendritic coincidence 
detection and consequent synaptic plasticity play a pivotal role in the spatial memory encoding modeled below. 
Based on this principle, we constructed a mathematically tractable neuron model keeping its biological plausi-
bility. We considered a two-compartment neuron model with a somatic compartment describing, in reality, the 
combination of a soma, basal and proximal dendrites, and a distal dendritic compartment representing the apical 
tuft dendrite. Assuming that the conductance between two compartments is small29, we modeled the activation 
of each compartment independently as
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where x(t) determines the firing rate of sodium spikes in the somatic compartment, y(t) is the local activity in the 
distal dendritic compartment, wj

som and wj
dnd are synaptic weights on the somatic and dendritic compartments, 

respectively. The terms βy(t − Δt) and βx(t − Δt) represent the threshold modifications of somatic and dendritic 
spikes by the other compartments29,33 and short delay Δt = 1 ms. Unweighted postsynaptic currents I t( )j
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where the decay constant of postsynaptic currents τL = 10 ms. Each neuron has a sigmoidal nonlinear response 
function θ= + − −I If( ) 1/(1 exp( ( )))f with θf = 5 being a constant threshold.

Synchronous activation of the two compartments represented by the product x(t)y(t) triggers the dendritic 
mechanism of coincidence detection, such as calcium spikes in neocortical29,33 and CA135,36 pyramidal neu-
rons, which in turn enhances neuronal firing. Thus, the net output firing rate of the two-compartment neuron is 
expressed as

γ φ= +z t y t x t( ) (1 ( )) ( ), (4)

where φ is the maximum firing rate elicitable by local inputs to the somatic compartment, and γ is the amplifi-
cation factor of calcium spikes, and z(t) gives the output firing rate of the two-compartment neuron. The above 
equation takes into account the experimental observations that activation of distal dendrites increases the gain 
of somatic firing rate29,33.

We express the learning rule for the two-compartment neuron as

η α θ αΔ = − − + −w t x t x t x t y t x t I t( ) [(1 ) ( )( ( ) ) ( ) ( )](1 ( )) ( ), (5)j j
som som som

η α θ αΔ = − − + −w t y t y t x t y t y t I t( ) [(1 ) ( )( ( ) ) ( ) ( )](1 ( )) ( ), (6)j j
dnd dnd dnd

where α is a constant that determines the relative magnitude of the potentiation caused by calcium spikes. In both 
equations, the first terms in brackets represent Hebbian synaptic plasticity induced by local activities x(t) and y(t) 
by BCM theory38,39. While BCM theory was originally introduced to describe the relationship between somatic 
firing rate and weight changes, a similar rule to BCM theory was also shown for dendritic activity40. The second 
terms in brackets express the LTP effect generated by coincident proximal and distal dendritic inputs, as observed 
in CA1 pyramidal neurons35 and neocortical neurons41. Overall factors (1 − x(t)) and (1 − y(t)), which do not 
change the direction of weight changes, were multiplied to match to the objective function we present later. As in 
the original BCM theory, moving thresholds θsom(t) = c0E[x(t)]2, θdnd(t) = c0E[y(t)]2 prevent run-away evolution 
of synaptic strength.
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PCA-like and CCA-like learning in the two-compartment neuron model.  It is worth noting that 
the present learning rule for two-compartment neurons (β = 0) is derived from the following objective function:
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This objective function implies the maximization of second-order moments E[x(t)2], E[y(t)2] and correlation 
E[x(t)y(t)] in conjunction with the minimization of means E[x(t)]3 and E[y(t)]3. Therefore, the learning rule achieves 
the combination of PCA-like30 and CCA-like31,32 learning of input vectors = … … =t I t XI ( ) ( , ( ), ) ( som, dnd)X

j
X  

under a homeostatic constraint, where α determines the relative weight of CCA. In this paper, single-compartment 
neurons have only somatic compartment and hence perform only PCA-like learning supposed by BCM theory. In 
contrast, two-compartment neurons perform dual learning, that is, PCA-like learning within each compartment 
and CCA-like learning between the two compartments.

The learning behavior of the two-compartment neuron significantly varied depending on the correlation 
pattern of inputs. In Fig. 1a, the somatic and dendritic compartments received synaptic inputs from minority 
groups (A and A’) and majority groups (B and B’) of input neurons. Activities of these neurons were strongly 
correlated within each group but were uncorrelated between pairs of groups A-B’, B-A’ and A’-A’. We conducted 
simulations when A and A’ were either correlated or uncorrelated (Fig. 1b). When groups A and A’ were uncorre-
lated, synapses from groups B and B’ were potentiated more strongly than those from A and A’ (Fig. 1c, center). 
Accordingly, the activities of the two compartments were governed by inputs from groups B and B’, and hence 
were mutually uncorrelated (Fig. 1d, center). In this case, the learning performance was essentially the same as 
that of the single-compartment model (Fig. 1c, left: α = 0, no inter-compartment interaction). By contrast, when 
the activities of groups A and A’ were correlated, synapses from A and A’ were selectively potentiated whereas 
those from B and B’ were depressed (Fig. 1c, right). Accordingly, the two compartments exhibited correlated 
activities after learning (Fig. 1d, right). Note that in the two-compartment model output firing rate was approxi-
mately proportional to somatic activity.

For comparison, we calculated the principal components of input vectors Isom(t) and Idnd(t) when groups A 
and A’ were correlated. As expected, the first principal components extracted by PCA in the soma and dendrite 
were uncorrelated inputs from groups B and B’, respectively, and the scores (signals projected onto PC1 eigen-
vectors) were also uncorrelated between the two compartments (Fig. 1e). Then the pair of input vectors was 
analyzed by CCA, which extracted correlated inputs from groups A and A’ and also yielded highly correlated 
scores (Fig. 1f). Thus, CCA and the two-compartment neuron model operate similarly on correlated somatic and 
dendritic inputs.

These results imply that CCA-like learning of the two-compartment neuron model can extract a minor input 
component to one compartment if a coincident input is given to the other. The extraction of weak inputs based 
on correlation across compartments is a critical difference between our learning rule and conventional Hebbian 
learning, which basically extracts only major input components. However, if there is no coincident activity 
between the compartments, each compartment implements independent Hebbian learning and acts like an inde-
pendent neural unit.

CCA-like learning requires multiplicative gain modulation.  We implemented the following two types 
of inter-compartment interactions: multiplicative gain modulation and threshold modulation. Our learning rule 
assumes that the multiplicative soma-dendrite coupling x(t)y(t) induces LTP and the objective function suggests 
that this gives a major contribution to CCA-like learning. However, the parameter dependence of learning behav-
ior and the contribution of threshold modulation remain to be clarified. Therefore, we performed simulations of 
single cells with different parameter settings. We summarized the results in each setting by calculating differences 
in synaptic weights from input group A (A’) and group B (B’) on the two compartments:
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Positive values mean the dominance of CCA-like learning, and negative values mean the dominance of 
PCA-like learning.

First, we checked how the learning behavior depends on α (the relative strength of the multiplicative 
soma-dendrite coupling in learning rule) and β (threshold modulation). As shown in Fig. 2a, CCA-like learning 
is observed mainly in the region α > 0.5. This threshold for α is decreased by increasing the value of β. However, 
CCA-like learning did not appear for α = 0, and all synaptic weights approximately vanished because of homeo-
stasis when β was too high (white regions in Fig. 2a). Second, we fixed β at zero and set different values to α in 
learning rules for wj

som (αsom) and wj
dnd (αdnd), by which we confirmed that the contribution of the multiplicative 

coupling have to be high in both compartments for CCA-like learning (Fig. 2b). Third, we relaxed the assumption 
that the soma-dendrite coupling always cause LTP: we defined neural activities (or calcium influx) in the two 
compartments as zsom(t) = (1 − αsom)x(t) + αsomx(t)y(t) and zdnd(t) = (1 − αdnd)y(t) + αdndx(t)y(t), and used BCM 
learning rules
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Figure 1.  PCA- and CCA-like learning in a two-compartment neuron model. (a) Simulation settings. Each 
compartment receives inputs from 50 neurons. Each group A or A’ consists of 10 input neurons, and each group 
B or B’ of 40 neurons. (b) An example of input neuron activities when the groups A and A’ were correlated or 
uncorrelated. (c) Time evolution of synaptic weights are shown for the single-compartment model (left) and 
the two-compartmental model receiving uncorrelated (center) or correlated (right) inputs from A and A’. The 
single compartment neuron only received inputs from A and B. The means (lines) and standard deviations 
(shaded areas) are shown. (d) The activities of the neuron models were shown for the same simulation settings 
as in c. (e) PCA were applied to signals simulated in the same setting as in c when A and A’ were correlated. The 
eigenvectors (left) and the scores of the first PCs (right) are shown. (f) CCA were applied to signals simulated in 
the same setting as in c when A and A’ were correlated.
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We also calculated the values of sliding thresholds θsom and θdnd using zsom(t) and zdnd(t), respectively. 
Multiplicative amplification between somatic and dendritic activity and BCM-like learning rules are based on 
experiments and detailed simulation studies as we mentioned before. Due to the threshold parameters in Eqs 10 
and 11, coincident input to the somatic and dendritic compartments do not necessarily induce LTP and there is 
no theoretical constraint for CCA. Even in this case, we observed CCA-like learning for high α values (Fig. 2c). 
These results suggest that strong multiplicative gain amplification in both compartments is necessary and suffi-
cient for CCA-like learning, but threshold modulation alone is not sufficient for it. However, we will show later 
that threshold modulation is required for the learning performance of the network model.

The role of inhibitory feedback in the two-compartment neuron model.  The hippocampus has 
two major types of interneurons, one serving perisomatic inhibition and the other serving dendritic inhibi-
tion42,43. We modeled the effects of these inhibitory feedback projections I t( )i

sominh  and I t( )i
dndinh  in the 

two-compartmental neuron model (Fig. 3a). We determined the output from each inhibitory unit by the random 
projection of outputs from all pyramidal neurons (see Methods). Pyramidal neuron i was modeled as a 
two-compartment model with inhibitory feedback:
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Figure 2.  CCA-learning depends on multiplicative gain modulation. (a) Learning behavior of the soma (top) 
and dendrite (bottom) was evaluated for various values of α (multiplicative soma-dendrite coupling) and β 
(threshold modulation). Red and blue colors refer to CCA-like learning and PCA-like learning, respectively. 
(b) Learning behavior was evaluated at β = 0 for different values of α in the soma (αsom) and dendrite (αdnd). 
(c) Learning behavior was evaluated for the plasticity rules given by Eqs (10) and (11) (BCM theory in which 
synaptic weights were modified by the product of presynaptic and postsynaptic activities).
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som and vi

dnd are inhibitory synaptic weights.
It has been observed experimentally that not only excitatory but also inhibitory synapses exhibit 

activity-dependent plasticity44. Although the property of inhibitory synaptic plasticity has not been fully under-
stood, in this study inhibitory weights for the distal dendritic compartment are modified by a similar learning 
rule to excitatory synapses:

∆ η α θ α= − − + − .v y t y t x t y t y t I t((1 ) ( )( ( ) ) ( ) ( ))(1 ( )) ( ) (14)i
dnd inh inh inh

In this expression, θinh is a constant threshold and was fixed at 0.5 throughout this research (we note that the 
choice of this parameter value is not crucial for the performance of this model).

Figure 3.  Roles of plastic inhibitory feedback to the distal dendritic compartment. (a) Inhibitory feedback 
model is schematically illustrated. Inhibitory interneurons project to both somatic and dendritic compartments. 
(b) In this simulation setting, two pyramidal neurons projected to an inhibitory neuron and received inhibitory 
feedback at the somatic and dendritic compartments. In addition, pyramidal neurons received common somatic 
inputs from excitatory cell group C and mixed dendritic inputs from two mutually-uncorrelated excitatory cell 
groups A and B. The activity of cell group C was correlated with the activities of cell groups A and B with equal 
magnitudes. (c,d) Time evolution of synaptic weights on the dendritic compartments of the two cells with (c) or 
without (d) dendritic inhibition. The means (lines) and standard deviations (shaded areas) of synaptic weights 
are shown. (e) A single pyramidal neuron with inhibition fed back onto its dendrite received somatic inputs 
from a cell group C and dendritic inputs from two cell groups A and B. Activities of input neurons in groups 
A and B were initially uncorrelated within each group and with other groups. At time 300 sec, correlations 
were introduced within group A and between groups A and C. At time 600 sec, neurons in group A returned 
to an uncorrelated state, but neurons in group B became correlated within the group and with group C. (f,g) 
Time evolution of excitatory synaptic weights on the dendritic compartment with (f) or without (g) dendritic 
inhibition. (h) Time evolution of inhibitory synaptic weights on the dendritic compartments is displayed.
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We clarified the role of the plastic dendritic inhibition in CCA-like learning in two conditions. First, we sim-
ulated a network of two pyramidal neurons and an inhibitory neuron population (Fig. 3b). When a somatic 
input common to the two pyramidal neurons was correlated with dendritic inputs to both neurons with equal 
magnitudes, these neurons selectively learned different dendritic inputs in the presence of dendritic inhibition 
(Fig. 3c), but not in its absence (Fig. 3d). Though the present model also had lateral inhibition between the soma 
and somatic activity was amplified by dendritic activity (Eq. 4), the intersomatic lateral inhibition alone was 
insufficient for the separate learning of dendritic inputs. Thus, in this model, the functional specialization of den-
drites requires dendritic inhibition. In the second case, we examined the robustness of dendritic excitatory syn-
apses against changes in correlation structure of synaptic inputs (Fig. 3e). Without dendritic inhibition, an abrupt 
change in correlations between somatic and dendritic inputs rapidly eliminated the previously learned dendritic 
excitatory synapses (Fig. 3g). By contrast, dendritic inhibition prevented the rapid loss of synaptic memory traces 
(Fig. 3f). This stability was due to the potentiation of dendritic inhibitory synapses during the learning of the 
initial correlation structure between groups A and C (Fig. 3h). The potentiated dendritic inhibition changed the 
excitation-inhibition balance of the dendritic compartment such that its responses to the learned input pattern 
were enhanced whereas those to other input patterns were suppressed.

Thus, in our model the potentiation of dendritic inhibition separates and stabilizes the receptive fields on the 
dendrites acquired by CCA-like learning. We will show later that these properties play crucial roles in the robust 
memory encoding in a recurrent network model of the two-compartment neurons.

Robust single-trial learning of place fields by two-compartment neural network.  Using the 
two-compartment neuron model and the inhibitory feedback model described above, we constructed a CA3 
recurrent network model to investigate the role of dendrites in sequence memory (Fig. 4a). In this model, the 
somatic compartments of pyramidal neurons receive excitatory recurrent connections, theta-band (7 Hz) oscil-
latory input from the medium septum5 and random noise, while the dendritic compartments receive inputs 
from the entorhinal cortex (EC). Excitatory connections are reciprocally wired such that the recurrent network 
can propagate firing sequences5,45. We introduced short-term synaptic plasticity which facilitates propagation 
of sequential activity45. During run, we induced theta sequences along recurrent connections by suppression of 
the decay speed of short-term depression at recurrent connections and externally induced homogenous theta 
oscillation5 (Fig. 4b). Acetylcholine can exert this modulatory effect on neurotransmitter release in the hippocam-
pus46,47. During immobility and first run, we induced external triggers in a small portion of CA3 neurons to 
initiate preexisting firing sequences (Fig. 4b). The dentate gyrus (DG) may deliver this trigger, but noise may also 
activate spontaneous firing sequences45. Here, we used external triggers because the size of our network model 
was too small to allow arbitrary starting point of learning.

We considered an animal running back and forth on a one-dimensional (1D) track. During a run, 
position-dependent sensory features on the track activate some EC neurons sequentially, while noise input 
activates others (distractors) randomly (Fig. 4c). Prior to the first run, there is no way for the animal to know 
the sensory features and their order of appearance along the track. Therefore, the initial weights of EC-to-CA3 
projections were chosen randomly, and accordingly dendritic activity showed no initial place-dependence. The 
position-dependent EC activity may represent local landmarks in the lateral EC or the firing fields of grid cells in 
the medial EC48.

The animal was initially immobile at an endpoint of an unfamiliar track, where sequences were randomly 
triggered (Fig. 4d, top), which in turn activated sequential spontaneous CA3 activity (Fig. 4d, bottom). These 
sequences were initially not associated to any sensory information (hence any spatial information) represented 
in EC. However, during the first traversal the dendritic compartments rapidly learned to associate sequential 
EC-to-CA3 inputs with the triggered firing sequence (Fig. 4d, middle). During subsequent runs, in which trig-
gers were no longer provided, dendritic activity established control of somatic activity, and hence of sequence 
propagation. Thus, without any pre-configured place fields, CA3 neurons showed clear place-dependent firing in 
the second and third traversals across an unfamiliar track (Fig. 4d). We note that the modulations of the gain and 
threshold of somatic firing rates promoted the learning of place fields (Fig. 4f).

For comparison, we constructed a single-compartment network model and trained it on the same spatial 
navigation task. This model received both recurrent synapses and EC inputs at the somatic compartments (thus, 
the dendritic compartments were passively driven by somatic activity and played no active role). The model 
failed to form place fields (Fig. 4e). To maintain a similar learning speed, we used a relatively large value of the 
learning coefficient. However, in this condition noise input (from the distractor EC neurons) easily disturbed the 
formation of place fields before they became robust. On the other hand, if the learning coefficient was small, firing 
sequences could not follow changes in the movement directions of the animal at both ends of the maze. Thus, the 
separation of afferent inputs and recurrent inputs by dendrites is necessary for the efficient use of spontaneous 
firing sequences in memory formation.

We assessed the quality of the place fields formed in various simulation conditions by means of “information 
per spike”49, a measure based on the mutual information between neural activity of each cell and animal’s position 
(see Methods). In both models the average mutual information simulated with spatially-structured EC-to-CA3 
projections was high in a familiar track (Fig. 4g). However, in an unfamiliar track only the two-compartment 
model acquired highly place-dependent neural activity, but the single-compartment model exhibited low mutual 
information for all three values of learning coefficient. The performance of the two-compartment model in the 
unfamiliar track was also impaired if we turned off the plasticity effect (learning coefficient η = 0). Importantly, 
if we decreased the initial weights of recurrent synapses (by a multiplicative factor of 0.5), the two-compartment 
model failed to learn the unfamiliar track, indicating the crucial role of spontaneous firing sequences in the place 
field formation. As expected, increasing the weights (1.25 times) did not degrade the performance in learning. 
We also checked the importance of gain modulation and threshold modulation in our activity model. Turning 
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off threshold modulation (β = 0, γ = 2) strongly impaired the performance, whereas the effect of removing gain 
modulation (β = 4, γ = 0) was modest (Fig. 4g). Thus, the propagation of firing sequences is largely controlled by 
threshold modulation, whereas gain modulation regulates sequence learning. Both types of inter-compartment 
interactions are necessary for our network model.

Figure 4.  Robust single-trial learning of place fields on a one-dimensional track. (a) Our CA3 network model 
consists of 500 EC neurons projecting to the distal compartments of 300 two-compartment CA3 neurons, which 
have inhibitory feedback to both distal dendritic and somatic compartments. DG input activates neuron 1 to 
neuron 10 of CA3 in a probabilistic manner. (b) DG-evoked preexisting activity patterns in CA3 were simulated 
without EC input. The animal was immobile from 0 to 5 sec and ran from 5 to 10 sec. (c) The behavioral 
paradigm and activities of EC neurons in the present simulations. Position-dependent sensory features are 
encoded by 300 EC neurons, whereas other 200 EC neurons (neuron ID 300 to 500) show position-independent 
distractor activity. (d,e) Activities of the two-compartment network model (d) and single-compartment 
network model (e) for animal’s movements shown in the top panels. The single-compartment network model 
was simulated with η = 0.5. (f) Time evolution during learning is shown for the dynamical variables of the 
two-compartment neuron. The examples were from CA3 neuron #100. (g) Average information per spike was 
calculated in various conditions. Three simulation trials were performed in each condition with different initial 
conditions. The strength of recurrent connections was measured relative to the connection strength used in c 
and d. In simulating familiar tracks, we used the initial weights of EC-to-CA3 synapses optimized to generate 
place-dependent firing. In the simulations of unfamiliar tracks, these initial weights were randomly shuffled.
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Learning place fields from activities of grid cells.  In the previous section, we showed that our model 
can rapidly associate sequential input patterns to internal firing sequences. However, we assumed that each input 
cell is activated at specific position on a track. In reality, the number of such sparsely activated “landmark” cells 
is likely to be small, and most of inputs from EC show more complex activity patterns such as grid cells50. With 
such input patterns, place fields cannot be formed by the simple one-to-one association between places and cells. 
Therefore, we tested whether our model work for grid-like input patterns along the track (see Methods). The 
spatial frequency and phase of grid patterns were randomly determined for each input neuron to mimic grid 
cells in EC50. An example of input patterns is shown in Fig. 5a. Our two-compartment recurrent network model 
could learn place code in this environment (Fig. 5b). Furthermore, while the two-compartment model attained 
high information per spike, the single-compartment model only gained poor information (Fig. 5c). These results 
suggest that the two-compartment model also works robustly with realistic activity patterns in EC.

Long-term stability of memory in remote replay events.  At a first glance, memory formation 
through one-time experience looks easy if synaptic modifications are sufficiently fast. However, this was not 
the case as there was a trade-off between learning speed and the long-term stability of memory. In the case of 
spatial memory, previously formed place fields have to be preserved during spontaneous replays in sleep states6 
and awake replays of remote experiences7. Now, we examine the stability of spatial memory against such replay 
events. To this end, we first trained the network model on an unfamiliar track (Fig. 6a) and then introduced 
random noise in EC and CA3 to generate irregular firing of EC neurons and spontaneous firing sequences in 
CA3 (Fig. 6b). We exposed the network to these noisy activities for 600 sec, and then we confirmed that the 
two-compartment neurons still preserved their place fields (Fig. 6c). This stability was achieved by lateral inhi-
bition between the dendritic compartments, which suppressed dendritic activity during replay events (Figs 3 
and 6b, bottom). The inhibitory effect prevented undesirable association of random EC inputs and spontaneous 
replays in CA3. Actually, the place fields were completely eliminated when all inhibitory weights were set equal to 
zero during replay events (Fig. 6d). Thus, our two-compartment network model reconciles conflicting demands 
on the brain’s memory systems, i.e., single-trial formation and long-term stability of memory, without an ad hoc 
tuning of model parameters.

Plasticity of dendritic inhibition prevents overwriting of multiple episodes.  So far, we have stud-
ied the one-to-one association between a linear track and a firing sequence. However, in many real-world tasks, 
the hippocampus has to separately store multiple memories. In spatial navigation experiments, CA3 develops 
sparse and orthogonal spatial representations2,3. To examine whether our two-compartment neuronal network is 
capable of learning such representations, we tested the formation of spatial memory on a Y-maze, of which three 
arms were in turn and repeatedly visited by the animal (Fig. 7a). We configured initial recurrent connections 
such that the CA3 network had three preexisting firing sequences (Fig. 7b), which could be triggered by noise 
and trigger inputs (Fig. 7c). Here, three is the minimal number of sequences required for learning all three arms. 
Due to intersomatic lateral inhibition, the trigger inputs could not co-activate all three sequences, and random 

Figure 5.  Learning of place fields from activities of grid cells. (a) Activity patterns of four EC neurons are 
shown during a traversal on the 1-D track. Each color shows activity of an EC neuron. The activity traces were 
smoothed by a Gaussian filter of 100-ms width, which makes the modulations by theta oscillation invisible.  
(b) Activities of the two-compartments are displayed during the animal’s movements shown in the top panel.  
(c) Average information per spike was calculated in various conditions. Three simulation trials were performed 
in each condition for different realizations of the network and parameters of grid cells.
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noise determined which sequence is activated by a trigger input. The firing sequences were accompanied by theta 
oscillation during run (Fig. 7d–f).

The network model robustly assigned the individual firing sequences to representing different arms (Fig. 7d 
and e). Inhibitory plasticity played a crucial role in the learning procedure. After the first traversal on an arm, 
a firing sequence (a CA3 neuron ensemble) was assigned to this arm. When the animal traveled on the second 
arm, dendritic inhibition decreased the response gain of this neuron ensemble (Fig. 7d, bottom) to associate 
one of the other neuron ensembles (i.e., other firing sequences) with the second arm. In fact, as shown in Fig. 7f, 
without dendritic inhibition the different arms may not be represented by different firing sequences. Learning 
performance assessed by information per spike was significantly degraded without dendritic inhibition (Fig. 7g). 
By this inhibitory mechanism, this network model encodes a new memory into a yet unassigned firing sequence, 
avoiding to overwrite old episodes with a novel episode.

Figure 6.  Long-term stability of memory against spontaneous activation. (a) Dendritic and somatic activities of 
the two-compartment CA3 neurons are shown before and during the first traversal on a one-dimensional track. 
(b) Dendritic activity and firing sequences during spontaneous activity are shown together with inhibitory 
inputs to the dendritic compartments. (c) Activity of the two-compartment network model during traversals on 
the one-dimensional track is shown after exposure to spontaneous activity. (d) Similarly, such network activity 
is shown in the case that the dendritic inhibition was removed during the exposure to spontaneous activity.
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Replay of firing sequences is biased by recent experiences.  Correlation structure changes in spon-
taneous hippocampal activity before and after experiences51. In particular, replay sequences become statistically 
significant only after experiences11. Does our network model show similar changes? We examined this when the 
CA3 recurrent network has somewhat complex structure. To be specific, we considered a two-compartment net-
work model with bifurcating firing sequences (Fig. 8a). At the bifurcating point, neurons at the junction were ini-
tially connected to both pathways with equal strength, and firing sequences propagated into one of the branches 
with approximately equal probabilities (Fig. 8b). After the exploration of the 1D track, the model associated one 
of the branching sequences with this experience (Fig. 8c, input pattern 1) and selectively replayed this sequence 
in spontaneous activity (Fig. 8d), implying that the recurrent connections for generating this sequence were 
selectively potentiated. Highly selective replay of the associated sequences was quantified by numerical simula-
tions (Fig. 8f). After the learning, we input a novel sensory sequence (input pattern 2) to the model. Our model 
encoded input pattern 2 into another branch that was not used for input pattern 1 (Fig. 8e), as in the example in 
Fig. 7. Notably, to generate input pattern 2, we only shuffled the temporal order of sensory objects (equivalently, 
the temporal order of firing in EC neurons) of input pattern 1. It implies that our model can discriminate differ-
ence in the temporal order of sensory inputs.

The proposed model reconciles the concept of preplay with experience-dependent replay. Assume that CA3 
has a rich repertoire of innate firing sequences (Fig. 8g). When the animal experiences sequential sensory events 

Figure 7.  Orthogonal memory formation in a Y-maze. (a) Behavioral paradigm is schematically illustrated. 
The animal starting from the junction successively visits three arms on a Y-maze. (b) In the initial setting of the 
recurrent network, a DG input triggers three firing sequences when the animal is at the junction of the Y-maze. 
Each branch of sequence consists of 150 neurons. (c) Spontaneous activity during the resting state is shown 
for the three branches of the two-compartment network model before the exploration. (d) The dendritic and 
somatic activities of the two-compartment network model during the first run on the Y-maze. Time evolution 
of inhibitory inputs to the dendritic compartments is also shown. (e) Activity of the two-compartment network 
model during the second run is shown. (f) Activity of two-compartment model without dendritic inhibition 
during the first run on the Y-maze. (g) With and without dendritic inhibition Information per spike was 
calculated over five simulation trials with different random seeds.
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(e.g., from the nest to a pond through a forest), the events are rapidly associated with a branching firing sequence 
that happens to be most strongly correlated with them (Fig. 8h). This sequence will be replayed more frequently 
than previously and consolidated more robustly through plasticity at recurrent connections. Now, the animal vis-
ited another destination from a midpoint of the learned path (e.g., from the nest to a cave through the forest). Our 
model suggests that sensory events on the novel path should be assigned to a different branch of firing sequences 
(Fig. 8i). Then, the merits of this model reside in i) fast and robust memory encoding, ii) economical representa-
tions (no need of re-encoding the remembered part, i.e., from the nest to the forest, of novel experiences), and iii) 
easy update of spatial map (the spatial relationships between old and novel sensory objects are naturally preserved 
in the branching network structure).

Figure 8.  Memory encoding on branching firing sequences. (a) The somatic recurrent network of the two-
compartment neuron model that has a bifurcating point. Neurons 1 to 100 constitute the trunk, 101 to 250 the 
left-side branch, and 251 to 400 the right-side branch. (b) Spontaneous branching firing sequences before spatial 
exploration are shown. (c) The two-compartment network model associated a sequence of sensory events 
(input pattern 1) is shown with the left-side branch of synaptic pathways. (d) After this encoding, spontaneous 
replay was biased to the firing sequence associated with input pattern 1. (e) The network model encoded a novel 
sensory sequence (input pattern 2) into the right-side branch of synaptic pathways. (f) The relative frequency 
of replay of the spontaneous firing sequence encoding input pattern 1 was calculated before and after the first 
experience for five simulation trials using different random seeds. The numbers of sequences propagating 
into either branch were counted for 60 sec in spontaneous activity. (g) The proposed memory encoding model 
utilizes a rich repertoire of branching firing sequences in the CA3 network. (h) Sequential sensory events are 
associated to a branching of firing sequences. (i) Novel sensory events are encoded into a different branch of 
sequences.
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Discussion
In this study, we showed how spontaneous firing sequences (i.e., preplay events) contribute to cortical memory 
processing. To show this, we proposed a two-compartment neuron model that incorporates the effects of den-
dritic spikes on Hebbian learning. The proposed learning rule combines the conventional Hebbian plasticity for 
PCA of uncorrelated inputs with canonical correlation analysis of correlated somatic and dendritic inputs. A 
recurrent network of the two-compartment neurons performed robust single-trial learning of sequential sensory 
events. The model predicts that plasticity of dendritic inhibition plays pivotal roles for the stability and inde-
pendence of synaptic memory traces. Our results indicate that dendritic computation serves for fast and robust 
memory encoding.

Mechanisms and functional implications of CCA-like learning.  In the two-compartment neuron, 
CCA-like learning extracts a minor input component at one compartment when correlated input is given to the 
other compartment. This computation was inferred from dendritic coincidence detection in neocortical29,33,34,41 
and hippocampal CA1 pyramidal cells35,36, for which back-propagating action potentials play an active role. 
Though no direct evidence has been reported for coincidence detection in CA3 pyramidal cells, recent studies 
showed that in these neurons a burst of back-propagating action potentials generates NMDA spikes, which are 
sufficient for the induction of LTP at CA3-to-CA3 synapses37. Therefore, it is not so unrealistic to expect that CA3 
pyramidal cells also perform coincidence detection between distal and proximal dendritic inputs.

Similar learning schemes are also expected to work in the neocortex. Actually, the role of spontaneous fir-
ing sequences in encoding novel sensory stimuli has been suggested in the auditory and somatosensory cor-
tex14. In neocortical pyramidal neurons, calcium spikes presumably integrate the processing of functionally 
distinct inputs to the basal dendrites and apical tufts29,34. Such structure may be useful for optimizing multi-layer 
feed-forward neural network (deep learning)52 and many other types of cortical computation34. It has also been 
shown that dendritic processing is beneficial for sequence processing in the cortex53. However, the learning 
mechanism for linking top-down, bottom-up, and endogenous sequential activity in the cortex is still unknown. 
We suggest that CCA-like learning is a likely mechanism of this integrated signal processing. In engineering, 
CCA is a well-established multivariate analysis method used in variety of applications such as the integration of 
multi-modal sensory inputs in video streams31. Our model suggests that cortical neurons can perform similar 
computations in the brain.

Our CCA-like learning requires dendritic inhibition to ensure the stability and independence of memory 
traces. Overwriting has been a long-standing issue in memory processing54. In our model, activity-dependent 
inhibitory plasticity at the distal dendrites of pyramidal cells prevents the overwriting of memories. Such plas-
ticity is crucial for the stability of memory traces (Fig. 6) and the robust association of multiple sequential experi-
ences with firing sequences of different neuron ensembles (Figs 7 and 8). Because somatostatin-positive (SOM+) 
interneurons target the apical dendrites of cortical pyramidal cells42,43, this interneuron subtype likely underlies 
the proposed dendritic inhibition. However, it has been recently shown that each interneuron subtype has a 
different tendency in connecting with dendritic branches and hence has a different computational effect55. It is 
intriguing to explore how the various subtypes of interneurons differently affect CCA-like learning.

Realistic network mechanisms for preplay sequences.  Local cortical circuits including those of 
CA315,16 were shown to have log-normal synaptic weight distributions. Computational studies showed that 
this class of recurrent neuronal networks can generate tremendously many spontaneous firing sequences with 
various branching patterns16,19,20. It will be intriguing to study whether the proposed mechanism can encode 
complex sensory experiences into realistic spontaneous firing sequences generated by log-normal connectivity. 
Simulations of such network models will require a spiking version of the two-compartment model as well as an 
efficient platform for large-scale network simulations. Another possible implementation for generating complex 
sequential activity is branch-level nonlinear dendritic computing, which increases the robustness and flexibility 
of recurrent network53,56,57. Although learning mechanisms for branch-level computation have been proposed53,56, 
self-organization of spontaneous activity is still challenging.

Realistic recurrent network models will allow us to examine whether the proposed learning scheme generates 
place fields in a 2D environment. In the previous models58,59, Hebbian plasticity reorganized recurrent connec-
tions such that omnidirectional 2D place fields emerge from multiple 1D place fields passing through a particular 
position from various directions. The same mechanism, in principle, works in our model if it has sufficiently 
many firing sequences for learning various spatial paths. This reorganization of the neural network may recruit 
new cells for the consolidation of firing sequences, as observed in experiment12. However, the formation of stable 
2D place fields will be much slower than the learning of 1D tracks.

Testable assumptions and predictions.  The most important assumption of our model is the dendritic 
mechanism for correlation maximization (CCA), which was modeled based on findings in the neocortex and 
CA1. Although there are some related experimental studies in CA337,60,61, whether dendritic coincidence detec-
tion in CA3 pyramidal cells is analogous to that in CA1 and neocortical pyramidal cells should be clarified by 
future experiments.

Our model assumes that coincident somatic and dendritic activation potentiates both excitatory and inhibi-
tory synapses. While inhibitory plasticity depends on calcium signals62,63, whether it depends on dendritic spikes 
has yet to be examined. Our results predict that the loss of dendritic inhibition disrupts the stability and orthog-
onality of CA3 place fields. Whether the removal of dendritic inhibition triggers forgetting or remapping of 
memory traces before the consolidation is an interesting open question. Selective deletion64 or optogenetic inacti-
vation42 of SOM+ interneurons may remove dendritic inhibition. Alternatively, activation of vasoactive intestinal 
polypeptide-positive (VIP) interneurons, which disinhibit distal dendrites40, may lead to similar results.
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Our model suggests that plasticity of EC-to-CA3 synapses is more important than that of recurrent synapses 
in CA3 for single-trial learning of place fields. Though the ablation of NMDA receptors in CA3 results in the 
disruption of pattern completion and single-trial learning1,65, which synaptic connections, CA3-to-CA3 synapses 
or EC-to-CA3 synapses, are more responsible for learning novel experiences has to be clarified. Recently, dopa-
minergic input from locus coeruleus to CA3 was shown to promote single-trial learning of episodes66. Though 
the underlying mechanisms of the enhanced learning performance remain unknown, one possibility is that the 
dopaminergic input enhances spontaneous activity, or preplay events, in CA3. It will be intriguing to examine 
this possibility.

Relationship to other models of CA3 and dendritic computation.  In our model, hippocampal neu-
rons do not have preconfigured place fields, but they are formed through experiences. Previous models learn 
sequences under the assumption that place fields are configured prior to learning23–25,27,46. However, the lack of 
preconfigured place fields was recently shown in CA1, where artificially induced dendritic spikes generated an 
arbitrary place field in an arbitrary pyramidal neuron36.

Samsonovich and McNaughton67 proposed a “map-based path integration” model, which associates sensory 
inputs with a preexisting hippocampal “chart” (a two-dimensional attractor map). Although this model and ours 
share a similar concept, our model clarifies the roles of dendritic computation and inhibition in implementing 
this rapid and robust association. Moreover, the chart model has no plastic recurrent connections and hence does 
not account for replay events. In Káli and Dayan59, recurrent weights were trained through correlations among 
DG-to-CA3 inputs, and EC-to-CA3 weights through correlations between DG inputs and EC inputs. Thus, their 
learning rule also produces correlations between EC-to-CA3 inputs and recurrent inputs. However, our learning 
rule, but not theirs, explains the extremely sparse activity of DG granule cells in spatial exploration68 if trigger 
inputs actually arise from the occasional firing of DG. In addition, our model uses strong recurrent synapses for 
single-trial learning, while their model requires weak recurrent inputs during the early phase of learning.

Urbanczik and Senn69 proposed a two-compartment model in which dendritic synapses are modified to pre-
dict somatic activity through unidirectional soma-dendrite interactions. In contrast, our neuron model modifies 
somatic and dendritic synapses simultaneously through bidirectional soma-dendrite interactions. This raises 
a conceptual difference between the two models: our model performs unsupervised learning of the two input 
streams, while their model obeys supervised learning of dendritic input using somatic input as a teacher signal. 
Recently, dendritic computation and recurrent networks were combined to improve the capacity of pattern com-
pletion70. In contrast, our model focusses on the role of dendritic computation in sequence learning.

In sum, our multi-compartment learning rule extends the computational ability of neurons to a conjunctive 
analysis of synaptic inputs targeting different dendritic sites. Because the proximal (somatic) and distal dendrites 
in pyramidal neurons are targeted by outputs of distinct brain regions, our learning rule has implications for the 
mechanisms of integrating parallel distributed processes across the brain.

Methods
Weight changes and moving thresholds.  In all numerical simulations, we modified excitatory synapses 
in the somatic and dendritic components according to the following second-order stochastic dynamics incorpo-
rating delays, weight decays and spontaneous fluctuations:
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where τw is the time constant for delays of synaptic changes, ηdecay is the speed of weight decay,  t( ) is normal 
Gaussian noise and σw is the standard deviation of spontaneous fluctuation. The weights were constrained in 
non-negative values during simulations.

Long-term plasticity of dendritic inhibitory weights vij
dnd was implemented as
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Somatic inhibitory weights vi
som were fixed.

For single-compartment neuron, plasticity follows BCM rule:
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where τmean determines the typical time scale of the averaging.
Parameters were τ σ η= = = . = −c 70, 1000 ms, 0 001, 100 w w decay

7 and τ = 60000 msmean  unless otherwise 
specified.

Inhibitory feedback model.  We implemented inhibitory feedback to pyramidal neuron i as ∑ v I t( )j ij j
som sominh  

(somatic inhibition) and ∑ v I t( )j ij j
dnd dndinh  (dendritic inhibition). Somatic inhibitory weights vij

som were fixed 
throughout the present simulations, and dendritic inhibitory weights vij

dnd were modified by the plasticity rule 
given in Eqs (18) and (19). Outputs of inhibitory neurons I t( )i

sominh  and I t( )i
dndinh  were determined by the summed 

outputs of excitatory neurons in the recurrent network as
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where I t( )j
PY  are unweighted synaptic outputs from pyramidal neurons that are calculated by the same way with 
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som  in Eq. (4) or Eq. (29) using =u t z t( ) ( )j j

som . The weights θij
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dnd were uniformly sampled from [0, 1] 
and normalized to satisfy θ θ∑ = ∑ = −Ni ij i ij inh

som dnd 1. These weights were fixed during all simulations. The num-
ber of inhibitory inputs was 1 in Fig. 3 and 100 in other simulations for either of somatic inhibition and dendritic 
inhibition.

Two-compartment recurrent neural network model.  Here we define the two-compartment neu-
ral network used in Figs 4 to 8. The activity of neuron i in two-compartment recurrent neural networks was 
described as
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The values of parameters were set as τ τ= =500 ms, 200 msSTD STF  and τ = 10 msL . The value of initial release 
probability USTF was 0.5 for all excitatory synapses in the immobile state of animal, and was changed to 0.03 for 
recurrent synapses during animal’s movement. At the moment that the animal started a movement from 
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immobile state, F t( )j
som  was immediately changed to 0.03. We note that the long-term plasticity rules also depend 

on short-term plasticity through I t( )j
X .

The firing rate of EC neurons u t( )j
dnd  were calculated as

φ= ( )u t f I t( ) ( ) , (32)j j
dnd

input
input

where φ = .0 08 kHzinput . I t( )j
input  depends on simulation settings.

The values of parameters for plasticity were α = 0.9 and η = ηinh = 1. Self-connections wii
som were fixed at zero. 

Simulation without dendritic inhibition was performed with ηinh = 0.

Single-compartment recurrent neural network model.  In single-compartment recurrent neural net-
works, all somatic and dendritic inputs were connected to a single compartment (soma). Accordingly, the activity 
of neuron i was described as
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Variables in this model were calculated in the same way to those in the two-compartment model. We updated 
both somatic and dendritic excitatory weights wij

som and wij
dnd by BCM theory with somatic activity. The values of 

parameters for the single-compartment model was basically the same as those of the two-compartment model, 
except φ = .0 1 kHz. Learning speed was set as η = 0.5 in Fig. 5d, though different values (η = 0.1, 1.0) were also 
used in a quantitative assessment.

Details of the single-cell simulations.  In Figs 1 and 2, four independent source signals si(t)(i = 1, 2, 3, 4) 
were generated from Ornstein-Uhlenbeck process
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where σn = 0.1. Input currents to dendritic input neurons I t( )j
input,dnd  were was determined as
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d
( ) 1 ( ) ( ) ( ) ( groupA ),

(38)j j
input,dnd

L

input,dnd
A n

τ
σ= − + + ∈ ′ .

t
I t I t s t t jd

d
( ) 1 ( ) ( ) ( ) ( groupB )

(39)j j
input,dnd

L

input,dnd
4 n

In the case of uncorrelated A and A’, =′s t s t( ) ( )A 1  while in the case of correlated A and A’, =′s t s t( ) ( )A 2 . Output 
firing rates of input neurons u t( ),j

som  u t( )j
dnd  were calculated by the same sigmoidal function f(I) as that of the 

two-compartment neuron model:

φ= ( )u t I t( ) f ( ) , (40)j j
som

input
input,som

φ= .( )u t I t( ) f ( ) (41)j j
dnd

input
input,dnd

The values of parameters were given as φ φ α β γ η= = . = . = = = .0 08 kHz, 0 5, 0, 1, 0 2input and 
σw = 0.005. Simulations of the single-compartment neuron were performed for α = β = γ = 0 without changing 
the values of the other parameters. Initial weights were uniformly sampled from [0, 5].

Details of simulations of inhibitory feedback model.  In Fig. 3, we calculated source signals si(t) in the 
same way with previous section. In the two-cell simulation for separation, we prepared two source signals. We 
calculated ≤ ≤I t j( ) (1 10)j

input,som  and ≤ ≤I t j( ) (1 20)j
input,dnd  by
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
τ

σ= − + + + .
t

I t I t s t s t td
d

( ) 1 ( ) ( ) ( ) ( )
(42)j j

input,som

L

input,som
1 2 n


τ

σ= − + + ∈
t

I t I t s t t jd
d

( ) 1 ( ) ( ) ( ) ( groupA),
(43)j j

input,dnd

L

input,dnd
1 n


τ

σ= − + + ∈ .
t

I t I t s t t jd
d

( ) 1 ( ) ( ) ( ) ( groupB)
(44)j j

input,dnd

L

input,dnd
2 n

In the single-cell simulation for stabilization, we prepared 21 source signals. Throughout the simulation, we 
calculated ≤ ≤I t j( ) (1 10)j

input,som  and ≤ ≤I t j( ) (1 20)j
input,dnd  by

τ
σ= − + +

t
I t I t s t td

d
( ) 1 ( ) ( ) ( ),

(45)j j
input,som

L

input,som
1 n


τ

σ= − + ++t
I t I t s t td

d
( ) 1 ( ) ( ) ( ),

(46)j j
input,dnd

L

input,dnd
j 1 n

from 0 s to 300 s,


τ

σ= − + + ∈
t

I t I t s t t jd
d

( ) 1 ( ) ( ) ( ) ( groupA),
(47)j j

input,dnd

L

input,dnd
1 n


τ

σ= − + + ∈+t
I t I t s t t jd

d
( ) 1 ( ) ( ) ( ) ( groupB),

(48)j i
input,dnd

L

input,dnd
j 1 n

from 300 s to 600 s, and


τ

σ= − + + ∈+t
I t I t s t t jd

d
( ) 1 ( ) ( ) ( ) ( groupA),

(49)j j
input,dnd

L

input,dnd
j 1 n

τ
σ= − + + ∈

t
I t I t s t t jd

d
( ) 1 ( ) ( ) ( ) ( groupB),

(50)j j
input,dnd

L

input,dnd
1 n

from 600 s to 1200 s. We determined output firing rates of input neurons u t( ),j
som  u t( )j

dnd  by Eq. (40), (41).
The values of parameters for the two-compartment neuron model were given as φ φ α= = . = .0 08 kHz, 0 9,input  

β γ= . =2 5, 1 and η = ηinh = 0.2. Initial excitatory weights were uniformly sampled from [0, 5] and dendritic 
inhibitory weights v t( )i

dnd  were initially zero. Somatic inhibitory weights v t( )i
som  were fixed at 20. Simulations with-

out dendritic inhibition were performed with ηinh = 0.

Simulation settings for the one-dimensional track.  In Fig. 4, we used 300 CA3 neurons and 500 EC 
neurons. Initial recurrent synaptic weights from neuron j to neuron i (i ≠ j) in CA3 were given as

=





− .






− 









w w i j

w
exp 0 5 ,

(51)
ij
som

max
width

2

where wmax = 18, wwidth = 5. Here we included random fluctuation of weights sampled from normal Gaussian 
distribution t( ) , and negative weights were set to zero. Self-connections wii

som were always zero. In qualitative 
assessment, we multiplied 0.5 or 1.25 to wmax in each simulation.

Initial synaptic weights from EC wij
dnd were determined as

=





− .






− 









.w w i j

w
exp 0 5

(52)
ij
dnd

max
dnd

width

2

where =w 5max
dnd . We used this setting to simulate the “familiar track”. In the simulation of “unfamiliar track”, we 

randomly shuffled values of these weights in each postsynaptic neuron i. Namely, shuffling was performed for 
index j.

A function satisfying ≤ ≤pos t0 ( ) 1 designated the animal’s position on the one-dimensional track. The ani-
mal stopped at pos(t) = 0 from 0 s to 5 s. From 10 s to 25 s, the position in first run is expressed as
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=











−
≤ <

≤ < .

−
− .

. ≤ < .

. ≤ <

.pos t

t s t s

s t s
t s t s

s t s

( )

15
5

(10 15 )

1(15 17 5 )

1 17 5
5

(17 5 22 5 )

0(22 5 25 ) (53)

From 25 s to 40 s, the position in second run is expressed as

=











−
≤ <

−
−

.
≤ < . .

. ≤ <

pos t

t s t s

t s t s

s t s

( )

25
10

(25 35 )

1 35
2 5

(35 37 5 )

0(37 5 40 ) (54)

From 40 s to 50 s, the position in third run is expressed as

=











. ×
−

≤ <

. − . ×
−

≤ <

. + . ×
−

≤ <

.pos t

t s t s

t s t s

t s t s

( )

0 8 40
4

(40 44 )

0 8 0 4 44
3

(44 47 )

0 4 0 6 47
3

(47 50 )
(55)

External inputs to somatic compartments I t( )i
ext  were

=







+ + ≤ ≤

− +
.I t

I t I t n t i

I t I t n t
( )

( ) ( ) ( ), if 1 10

( ) ( ) ( ), otherwise (56)
i

i

i

ext
theta trig ext

theta trig ext

I trig(t) is a trigger input for firing sequences, which takes 10 or 0. When the animal was immobile, the trigger 
was activated by a Poisson process at 1 Hz, and the duration of each activation was 10 ms. Additionally, when the 
animal started the first run in each simulation trial, we turned on the trigger for 100 ms. Note that we did not 
induce any trigger when the animal started the second and later runs. I theta(t) stands for theta oscillatory input 
from medial septum

π=I t A f t( ) sin(2 ), (57)
theta

theta theta

during run and I theta(t) = 0 during immobility. Values of parameters were set as Atheta = 10 and ftheta = 7/1000 kHz. 
Noise term n t( )i

ext  were generated by


τ

σ= − +
t

n t n t td
d

( ) 1 ( ) ( ),
(58)i i

ext

L

ext
n

where σn = 0.1 and t( )  is Gaussian white noise.
Inputs to EC neurons ≤ ≤I t i( ) (1 500)i

input  were given as

=I t n t( ) ( ), (59)i i
input input

during immobility, where noise term n t( )i
input  followed the same dynamics as n t( )i

ext . During run, inputs to 
position-dependent EC neurons ≤ ≤I t i( ) (1 300)i

input  were given as

σ
=






− .






− 









+ . − . +I t A pos t center i I t n t( ) exp 0 5 ( ) ( ) 0 5 ( ) 0 5 ( ),

(60)
i i
input

F
F

2
theta input

where  t( ) is Gaussian white noise and center(i) = i/300. Inputs to distractor EC neurons (301 ≤ i ≤ 500) during 
run were given as

= + . − . +I t s t I t n t( ) ( ) 0 5 ( ) 0 5 ( ), (61)i i
input dist theta input

Sources for distractors sdist(t) were generated from independent Ornstein-Uhlenbeck processes

τ
σ= − + .

t
s t s t td

d
( ) 1 ( ) ( )

(62)
dist

dist

dist
s
dist

Values of parameters were set as σn = 1, AF = 5.0, σF = 0.1, σdist = 0.02 and τdist = 500 ms.
When gain modulation was turned off (β = 4, γ = 0), the maximum firing rate φ was changed from 0.08 kHz 

to 0.1 kHz.
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Learning place fields from grid-cell activity.  In Fig. 5, simulation setting was basically the same as in 
Fig. 4 but the number of input neurons was changed to 300. Among these neurons, 100 neurons were distractors 
and 200 neurons were grid cells, which were activated as

π
=











−










+ . − . +I t A c pos t
w

p I t n t( ) exp cos 2 ( ) 0 5 ( ) 0 5 ( ),
(63)

i
i

i i
input

grid grid grid
grid theta input

during run. The same parameter values Agrid = 5 and cgrid = 3 were used for all grid cells, whereas pi
grid and wi

grid 
were sampled independently and randomly for different grid cells from [0, 2π] and [0.2, 0.6], respectively.

Simulation settings for spontaneous replay.  In Fig. 6, initial setting was the same as in Fig. 4 but there 
was no distractor inputs. Only the first run was performed on the one-dimensional track, and spontaneous activ-
ity was simulated for the next 600 s. After that, simulation of the “third run” in Fig. 4 was conducted. During 
spontaneous activity, simulation setting was basically the same as that of immobility periods in Fig. 4 except for 
the addition of population bursts in EC, which were simulated by adding inputs n t( )i

burst  as

= +I t s t n t n t( ) ( ) ( ) ( ), (64)i i i
input burst burst input


τ

σ= − + .
t

n t n t td
d

( ) 1 ( ) ( )
(65)i i

burst

burst

burst
burst

where σburst = 0.1 and τburst = 100 ms. We turned on and off the burst input by switching sburst(t) between 1 and 
0. The occurrence of population bursts followed a Poisson process at 1 Hz, and each burst lasted for 200 ms. For 
the results shown in Fig. 6d (dendritic inhibition OFF), we performed the same procedure but all weights of the 
dendritic inhibition and ηinh was set to zero after the “first run”.

Simulation settings for the Y-shape track.  In Fig. 7, we used 450 CA3 neurons. We divided these neu-
rons into three groups, ≤ ≤ ≤ ≤ ≤ ≤i i i1 150, 151 300, 301 450, and recurrent synaptic weights within each 
group were determined in the same way as in the one-dimensional track, using wmax = 20 and wwidth = 5. Recurrent 
synaptic weights across groups were initially zero. Initial synaptic weights from EC wij

dnd were uniformly sampled 
from the interval [0, 2].

The current position of the animal on the Y-shape track was specified by the arm number (arm(t) = 1, 2, 3) and 
the position on the current arm, ≤ ≤ .pos t0 ( ) 0 5. During the first 10 s, the animal stopped at the center of the 
Y-shape arm. After that, the animal repeated the following movement on different arms every 10 s:

=











≤ < .

. ×
− .

.
. ≤ <

. ≤ < .

. − . ×
− .

.
. ≤ <

.pos t

s t s
t s t s

s t s
t s t s

( )

0 (0 2 5 )

0 5 2 5
2 5

(2 5 5 )

0 5 (5 7 5 )

0 5 0 5 7 5
2 5

(7 5 10 )
(66)

External inputs to the somatic compartments I t( )i
ext  were basically the same as the ones used for the 

one-dimensional track. However, trigger inputs (I trig(t) = 5 or 0) were positively induced to activate 10 neurons 
per group ( ≤ ≤ ≤ ≤ ≤ ≤i i i1 10, 151 160, 301 310) for 200 ms when the animal started to run each arm for 
the first time in the simulation.

We used 450 position-dependent EC neurons, and inputs to these EC neurons I t( )i
input  (1 ≤ i ≤ 450) during 

immobility were the same as those in the one-dimensional track, whereas the inputs during the run depended on 
animal’s position as

= + . − . +I t I t I t n t( ) ( ) 0 5 ( ) 0 5 ( ), (67)i i i
input pos theta input

σ=
















− .






− 









=I t A pos t center i if arm t center arm i

otherwise

( ) exp 0 5 ( ) ( ) , ( ) _ ( )

0,

,

(68)

i
pos F

F

2

where the receptive field center center(i) of neuron i was uniformly sampled from [0, 0.5] and 150 neurons were 
assigned to each arm: center_arm(i) =  1, 2 and 3 for 1 ≤ i ≤ 150, 151 ≤ i ≤ 300, and 301 ≤ i ≤ 450, respectively.

Simulation settings for branching firing sequences.  In Fig. 8, we used 400 CA3 neurons and 300 EC neurons. 
We divided neurons into three groups, ≤ ≤ ≤ ≤ ≤ ≤i i i1 100 (root), 101 250 (branch A), 251 400 (branch B), 
and recurrent synaptic weights within each group were determined in the same way with the one-dimensional 
track, using wmax = 18 and wwidth = 5. Weights were set to zero between branch A and branch B, and



www.nature.com/scientificreports/

20Scientific ReporTs |  (2018) 8:15166  | DOI:10.1038/s41598-018-33513-9

= = ′





− .






− 









∈ ∈w w w i j

w
i jexp 0 5 ( root, branch A),

(69)
ij ji
som som

max
width

2

= = ′





− .






− + − 









∈ ∈w w w i j

w
i jexp 0 5 (100 ) ( 250) ( root, branch B) ,

(70)
ij ji
som som

max
width

2

for other weights. The value of ′w max was 14. Initial synaptic weights from EC wij
dnd were uniformly sampled from 

the interval [0, 2].
The animal was immobile from 0 s to 60 s, and from 75 s to 135 s. In these periods, the number of firing 

sequences was counted in each branch to compare sequence propagation before and after an experience. During 
60–75 s (first experience) and 135–150 s (second experience), pos(t) was changed in a similar way to the “first run” 
on the one-dimensional track (Fig. 3). The position center(i) of neuron i was uniformly sampled from [0, 1] for 
the first experience, and center(i) >0.2 were similarly resampled for the second experience. Trigger inputs were 
activated at the beginning of the first run, and the amplitude and length of each trigger input was 5 and 500 ms, 
respectively. We turned off synaptic plasticity during immobility to evaluate the effect of the previous experience 
explicitly. Other simulation settings were basically the same as in simulations of the one-dimensional track.

Information per spike.  We evaluated the accuracy of place fields by using information per spike given as 
follows:

∑
λ

λ
λ

λ
pos pos p pos( ) log ( ) ( ),

(71)i

i i
i

where posi is the binned position of the animal ( = …i N1, , bin), p(posi) is the probability that the animal is found 
at given position i, λ is the mean firing rate of the cell, λ(posi) is the mean firing rate when the animal is in posi. 
After removing immobile periods, we computed information per spike for all CA3 neurons having the mean fir-
ing rate higher than 1 Hz and averaged this quantity over these neurons. The number of bins Nbin was 50 in Figs 3 
and 4; 75 (25 for one arm) in Fig. 6.

Code Availability
All codes for simulations and visualization were written in Python 3 and available at https://github.com/Tatsuy-
aHaga/preplaymodel_codes.
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