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ABSTRACT

Human locomotion involves a complex interplay 
among multiple brain regions and depends on con-
stant feedback from the visual system. We sum-
marize here the current understanding of the rela-
tionship among fixations, saccades, and gait as 
observed in studies sampling eye movements dur-
ing locomotion, through a review of the literature 
and a synthesis of the relevant knowledge on the 
topic. A significant overlap in locomotor and sacca-
dic neural circuitry exists that may support this re-
lationship. Several animal studies have identified 
potential integration nodes between these over-
lapping circuitries. Behavioral studies that explored 
the relationship of saccadic and gait-related impair-
ments in normal conditions and in various disease 
states are also discussed. Eye movements and lo-
comotion share many underlying neural circuits, 
and further studies can leverage this interplay for di-
agnostic and therapeutic purposes. 
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INTRODUCTION

Visual information from the environment is gath-
ered through quick eye movements, which consist 
of a series of saccades and fixations. Saccades align 
the fovea with an object of interest.1 Once an object 
is foveated, it is held stationary during a fixation, al-
lowing time for the visual information to be collect-
ed.1 Efficient locomotion is dependent upon visual 
information that is gathered by these quick eye 
movements. Understanding the relationship among 
fixations, saccades and locomotion may provide in-
sight into how these seemingly parallel and poten-
tially integrated systems work together.

When studied independently, saccadic and loco-
motor parameters (Table 1) can be measured pre-
cisely. It is difficult to reach the same level of precision 
when measuring both parameters simultaneously. To 
get around this, most studies in the literature have 
correlated saccadic eye movement or gait-related 
parameters2,3 with a given disease state or functional 
impairment.

 In this review, we explore the literature for corre-
lations made between saccades and locomotion. We 
present the neural circuitry of saccadic and gait-re-
lated circuitry and the similarities between them. We 
highlight brain regions that have been found in ani-
mal studies that potentially integrate these two net-
works. Lastly, we review neurodegenerative diseases 

that manifest saccadic and gait-related impairments.

NEURAL COMPONENTS OF 
SACCADES, FIXATIONS AND 
LOCOMOTION

Fixation, saccades and locomotion are served by 
specific areas and networks of the brain. It is partic-
ularly interesting to compare the neural compo-
nents of saccades and locomotion because there are 
many overlapping brain areas, suggesting a poten-
tial integrated neural network between them.

The most relevant areas that support neural inte-
gration between saccades and locomotion would 
likely be at the level of the brainstem and the cere-
bellum (Figure 1). Afferent inputs between these 
two parallel networks differ greatly, in that spinal 
cord pathways provide the majority of sensory infor-
mation for locomotion, while the geniculate and ex-
trageniculate pathways are important for saccades. 
On the other hand, modulating structures such as 
the cerebral cortex, basal ganglia and thalamus are 
common to all sensorimotor networks and are non-
specific to locomotion and saccades. Saccades and 
locomotion are primitive functions, are well-devel-
oped in lower species,4,5 and are more likely to be 
preserved in primitive integrating brain areas, such as 
the brainstem and cerebellum, more specifically, the 
mesopontine tegmentum and the cerebellar vermis.

Table 1. Eye movement/fixation parameters and gait/balance parameters

Saccadic/fixation parameters2

Fixation duration Duration of time that the eyes remain fixated. Measured in milliseconds to seconds.
Saccadic duration Duration of time between saccadic initiation and the saccadic endpoint.
Saccadic latency Time taken for the eyes to move (saccade) after the target appears. Measured in milliseconds or seconds.
Saccadic amplitude Arc distance of rotational movement made during a saccade. Sometimes called saccadic size. Measured in degrees or minutes.
Saccadic peak velocity During a saccade, it is the highest velocity attained. Measured in degrees/seconds.
Saccadic intrusions Series of irregular interruptions by fast eye movements during primary fixation. 
Saccadic gain Ratio of the actual saccadic amplitude over the intended saccadic amplitude. 
Main sequence Relationship among saccadic peak velocity, duration and amplitude.

Gait/balance parameters3

Step length Distance between initial ground contact of one foot and initial ground contact of the opposite foot.
Step time Time in seconds between initial ground contact of one foot and initial ground contact of the opposite foot.
Step width Lateral distance between the centers of the heels when both feet are on the ground (i.e., double stance).
Stride length Distance between initial ground contact of one foot and initial ground contact of the same foot, constituting the distance of one gait 

cycle.
Stride time Time between initial ground contact of one foot and initial ground contact of the same foot, constituting the time of one gait cycle.
Postural sway Horizontal movement of the center of gravity while standing still.
Swing phase Remaining 40% of the gait cycle, when the foot no longer is in contact with the ground, spanning from initial swing phase to initial 

contact. 
Cadence Steps per minute.
Stance phase Initial 60% of the gait cycle, when the foot is in contact with the ground, spanning from initial contact to terminal double stance. 
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Mesencephalic Locomotor Region/ 
Mesencephalic Reticular Formation

The pedunculopontine nucleus (PPN) and the cu-
neiform nucleus (CNF) make up the mesencephalic 
locomotor region (MLR),6 also known as the mesen-
cephalic reticular formation (MRF). The MLR/MRF 
is involved in eye movement-related activity.7-9 In ad-
dition, it promotes locomotion through the reticulo-
spinal pathways10 and influences postural tone and 
locomotor rhythmicity.11-13 In animal studies, stimu-
lation of the CNF has been found to be associated 
with locomotor initiation, while stimulation of the 
PPN was associated with locomotor suppression.14 
The PPN contains cholinergic, glutaminergic and 
GABAergic neurons; the cholinergic neurons are 
those closely associated with locomotion.15 PPN 
cholinergic neurons are also associated with rapid 
eye movements in sleep.15 The PPN directly inner-
vates the motor neurons involved in eye movements 
and receives direct projections from the frontal and 
supplementary eye fields in the cortex.16-20 Neuronal 
recordings of the PPN in primates have shown differ-
ent firing patterns during fixations and saccades.21,22 

The PPN receives input from the cerebral cortex and 
has reciprocal connections with components of the 
basal ganglia, namely, the substantia nigra [both the 
substantia nigra pars reticulata (SNr) and the sub-
stantia nigra pars compacta (SNc)], globus pallidus 
and subthalamic nucleus (STN).23-28

Superior colliculus
The superior colliculus (SC) receives inputs from 

the retina and visual cortex (VC).29-32 Neurons in the 
SC have projections to saccade generators in the 
brainstem.33 The SC has been reported to be associ-
ated with fixation- and saccade-related activity.34-36 
There is no evidence for locomotor function related to 
the SC; however, the SC does receive afferents from 
various subcortical structures common to the loco-
motor network, such as the SNr, pretectum, and oth-
er nuclei in the pons and medulla. SC efferents proj-
ect to the thalamus, MLR/MRF, paramedian pontine 
reticular formation (PPRF), cerebellar locomotor re-
gion and cerebellar vermis.37 The PPRF is important 
for coordinating horizontal saccadic eye move-
ments, but its role in locomotion has not yet been ex-

Locomotor circuitry Saccadic eye movement circuitry

Figure 1. Brain areas involved in saccades/fixations and locomotor activities. Possible integration areas are shad-
ed in orange. PFC: prefrontal cortex, PMA: premotor cortex, SMA: supplementary motor cortex, PMC: primary mo-
tor cortex, PPC: posterior parietal cortex, PT: putamen, CN: caudate nucleus, GP: globus pallidus, STN: subtha-
lamic nucleus, SN: substantia nigra, SC: superior colliculus, MLR: mesencephalic locomotor region, PMRF: 
pontomedullary reticular formation, MRF: mesencephalic reticular formation, FN: fastigial nucleus, NPH: nucleus 
prepositus hypoglossi, MedRF: medullary reticular formation, PPRF: paramedian pontine reticular formation, VC: 
visual cortex, VA: ventral anterior, VL: ventrolateral nucleus, PPN: pedunculopontine nucleus.
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plored. The PPRF receives input from the frontal eye 
fields (FEF) through the contralateral SC38 and con-
tains burst neurons that generate horizontal sac-
cades.39-41

Pontomesencephalic reticular formation
Reticulospinal neurons in the pontomesencephal-

ic reticular formation are involved in controlling 
and maintaining head movements and in generating 
the quick phase of vestibular and optokinetic head 
nystagmus toward the same side.42 Omnidirectional 
pause neurons (OPNs) are inhibitory interneurons 
in the pontomesencephalic reticular formation that 
are thought to stabilize fixations and saccades in the 
horizontal, vertical and oblique directions. OPNs 
are tonically active during fixations and are silent (i.e., 
“paused”) during saccades.43 Dysfunction in OPNs is 
thought to result in fixational instability, with reports 
of macrosaccadic oscillations, saccadic dysmetria, 
ocular flutter, and opsoclonus.44,45 The pontomesen-
cephalic reticular formation is also involved in trans-
mitting locomotor signals to central pattern gener-
ators in the spinal cord46 and in controlling balance, 
locomotion and posture.47,48

Cerebellar vermis
The cerebellum is involved in both locomotion49-54 

and saccades.55-65 The fastigial nucleus (FN) of the 
cerebellum receives input from the vermis, which in 
turn receives input from the SC through the nucleus 
reticularis tegmenti pontis.55,66,67 Brainstem saccade 
generators are driven by the FN and the vermis.41 
Studies of transcranial magnetic stimulation direct-
ed toward the cerebellar vermis have demonstrated 
that this area coordinates saccades ipsilateral to the 
side of stimulation.68 Neuronal discharge in the FN, 
also known as the cerebellar locomotor region, is 
linked to coding of proximal movement during lo-
comotion.55,69 The FN is thought to act as a pace-
maker during locomotion70 and projects to the pon-
tomedullary reticular formation in the brainstem.

Thalamus
The thalamus serves as the major relay between 

cortical and subcortical saccadic generators.71-73 The 
internal medullary lamina, a myelinated area that 
divides the thalamus into the anterior, medial and 
lateral masses, contains nuclei that relay information 
among multiple areas that control saccades, namely, 

the frontal and parietal eye fields, SC, PPRF, stria-
tum, cerebellum and the lateral geniculate nuclei.71

The lateral geniculate nuclei and pulvinar are two 
thalamic nuclei in the ventrolateral area that specif-
ically process visual input. The lateral geniculate nu-
cleus projects information from the retina to the VC. 
Connections between the SC and the lateral genicu-
late nucleus contribute to saccades that are involved 
in foveating objects of interest with a high degree of 
resolution (e.g., facial recognition).74 The pulvinar 
has connections between the SC and visual cortices 
and is involved in visuospatial attention to areas in 
the visual field.75 The pulvinar is an important relay 
for generating saccades toward visual targets or re-
flexive saccades toward or away from stimuli, and 
this nucleus influences visually guided behavior, in-
cluding locomotion. It has been speculated that visu-
al and motor information may be integrated in the 
pulvinar, allowing a distinction between changes in 
the visual environment caused by external sources 
versus self-generated visual motion (caused by eye 
movements or locomotion).74

The ventrolateral nucleus (VL) receives all major 
saccade-generating afferents in the brainstem and 
cerebellum and projects to the frontal eye field and 
the supplementary eye field.76 Similar to the pulvinar, 
the VL is closely involved in visually guided sac-
cades.77 The VL is also a major afferent to the pri-
mary motor cortex, and it is not surprising that this 
region is important for locomotion.78,79

The thalamic reticular nucleus is a thin capsule 
of inhibitory GABAergic neurons that surrounds 
the dorsolateral thalamus and functions to modu-
late thalamocortical and corticothalamic signals for 
a multitude of functions.80 In terms of saccadic and 
locomotor networks, this region functions as an in-
hibitory modulator. The thalamic reticular nucleus 
sends reciprocal inhibitory signals to the lateral ge-
niculate nucleus in response to saccade-related vi-
sual perturbations to maintain a stable image.81 Re-
cordings have revealed phasic bursts of activity in 
reticular neurons within the receptive field of distal 
limbs during walking tasks that are thought to fine 
tune ongoing locomotor activity.82

Basal ganglia
The basal ganglia refers mainly to the caudate and 

the putamen, which consist of the striatum, globus 
pallidus, substantia nigra and STN. The nigrostria-
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tal pathway modulates the striatum, affecting all 
motor output, and is not specific to saccadic or loco-
motor control, though its influence over these func-
tions is considerable.83-87 The STN receives inputs 
from the cortex via the striatum and the globus pal-
lidus externa (GPe) through the indirect pathway 
and direct connections from the cortex through the 
hyperdirect pathway.88 The STN receives inputs 
from the brainstem, thalamus and cortex. Efferents 
from the STN travel mainly to the GPi and SNr.89-91 
There is evidence that patients with Parkinson disease 
(PD) who receive deep brain stimulation (DBS) of 
the STN experience a significant improvement in 
both saccadic performance92,93 and locomotion93-95 
compared to patients that receive other DBS targets, 
such as the globus pallidus interna (GPi). GPi DBS 
has been shown to improve locomotion,96 but there 
is less evidence supporting an improvement in sac-
cadic performance,97 though one study found im-
provement in antisaccades.98

Animal studies exploring 
the integration between 
eye movement and 
locomotor circuitry

Thus far, we have identified brain areas that are 
common to both saccades and gait in humans. Ani-
mal studies have provided much of the direct evi-
dence for the integration of networks controlling sac-
cades and gait.

Semi-intact experiments in lampreys undergoing 
electrical stimulation of the optic tectum have dem-
onstrated a stimulus-dependent coordination of eye 
movements with steering and goal-directed behav-
ior. Saitoh et al.99 showed that, with increasing stim-
ulation of the lateral optic tectum, there is a stepwise 
recruitment of eye movements, followed by a coor-
dinated lateral bending of the body, and then by co-
ordinated locomotor movements. Stimulating other 
areas, such as the caudomedial tectum, elicits dif-
ferent behaviors, such as struggling behavior, char-
acterized by undulating body movements with anti-
phasic eye movements. These experiments have lent 
support for the role of the optic tectum (SC in primates) 
as a stepwise integrating interface for patterned vi-
suomotor and locomotor behavior.99

The coordination between eye movements and 
spinal locomotor patterns is also preserved and adapt-

able at different stages of development. Uckerman 
et al.100 demonstrated how the Xenopus laevis (XL) 
frog adapts visuomotor control to maintain image 
stabilization when swimming as it transitions from 
a tadpole to an adult frog. In the tadpole, propulsion 
is achieved with undulating tail movements, requir-
ing conjugate left-right eye rotations to maintain a 
stable binocular image. In the frog, forward accel-
eration is achieved with rhythmic bilateral leg kick-
ing that requires nonconjugate, convergent-diver-
gent, eye movements. In fixed-head preparations, a 
strict 1:1 relationship was found between eye move-
ments and spontaneous fictive swimming move-
ments. Vestibular and visual input were controlled 
for by transecting the optic nerves and ablating the 
vestibular end organs. In tadpoles, the eyes rotate lat-
erally, countering each lateral tail movement, while in 
frogs, the eyes converge or diverge in phase with the 
kick cycle. This experiment provided evidence for 
multimodal integration between spinal central pat-
tern generators and eye movements during loco-
motion in XL. More importantly, the ability of vi-
suomotor and locomotor networks to change in a 
coordinated fashion at different stages of develop-
ment in XL suggested that they are integrated. This 
adaptability is probably evolutionarily preserved in 
other forms of locomotion, such as quadrupedal 
and bipedal ambulation. The OPN, as mentioned 
earlier, coordinates horizontal, vertical and oblique 
fixations and saccades. It is possible that the omni-
directional stabilizing capability of these interneu-
rons provides a mechanism for the adaptability of 
reflexive saccades to different locomotive head per-
turbations across species.

Schwarz et al.101 performed microelectrode re-
cordings of nondopaminergic SNr neurons in cats as 
they received different sensory stimuli, such as me-
chanical skin stimulation, passive and active limb 
movement, and visual and vestibular stimuli. Neu-
rons within the receptive field of each limb showed 
regular discharge patterns that were in phase with 
the step cycle during locomotion. Avoiding or navi-
gating around an obstacle had the greatest effect on 
neuronal firing rates. Objects moving within the 
contralateral visual field modulated the firing rates of 
a small population of neurons related to saccades. 
Similar findings of saccades and neuronal discharge 
in the SNr have been found in monkeys.102 The au-
thors concluded that the SNr functions as an output 
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station that processes convergent multimodal sen-
sory input (e.g., joint position, limb movement, di-
rection and amplitude of saccades) and fine tunes 
spinal motor output to adequately address changing 
environments.

The PPN has also been suggested to serve as a 
multimodal integrative interface.103 Suppression of 
spontaneous locomotion and rhythmic eye move-
ments was observed with stimulation of the ventral 
PPN in anesthetized and acutely decerebrated cats.14

Saccade-related104-106 and locomotion-related107-109 
neuronal activity has been reported in Purkinje cells 
in the cerebellar vermis in various studies using mi-
crostimulation and optogenetic techniques in non-
human primates and other mammals.

The SC and PPRF110,111 have been shown in rhe-
sus monkeys to influence coordinated head-eye 
movements, an important component of steering 
during locomotion.112

Saleem et al.113 showed that, in order for mice to 
accurately gauge their speed when navigating their 
environment, visual speed, derived from optic input, 
and running speed, derived from proprioceptive in-
put, are integrated and encoded with weighted sums 
within the neurons of the V1 area of the occipital 
cortex. While this does not pertain to eye movements 
per se, it at least provides more evidence linking vi-
sual sampling (which requires adequate saccades 
and fixations) and locomotion.

While numerous studies have suggested a multi-
modal integration between saccades and locomo-
tion, the challenge of establishing a neural basis for 
this interaction, especially in humans, is hindered by 
the technical limitations related to studying the cir-
cuitry of eye movements during the act of walking. 
Therefore, the level at which these circuits interact 
with each other in real time and how activating or in-
activating various nodes within one neural circuit may 
affect the functions of the other are not yet known.

Behavioral studies in 
healthy individuals 
exploring the relationship 
among saccades, fixations 
and locomotion

During ambulation, the limbs, body, head and 
eyes move in a coordinated manner.112,114,115 Saccadic 
eye movements allow the fovea to maintain fixations 

on relevant objects in the environment in a dynamic 
manner to allow guidance of locomotion. Any prob-
lems in this fixation-saccade strategy may lead to vi-
sual and gait impairments.

The visuomotor and locomotor systems influence 
each other via a continuous feedback loop, though 
the exact network is not well delineated.116-118 Sever-
al studies have focused on gaze fixations and sacca-
dic eye movements during stepping119-125 to describe 
how eye movements influence gait parameters. In 
one study, visual information gathered during the lat-
ter half of the preceding step was shown to influence 
the step length of the following step.126 It has also been 
suggested that, while walking on uneven ground or 
terrain, visual information from two steps is required 
to direct foot placement.127

Marigold and Patla128 found that, when walking 
on a varying terrain, participants visually fixated on 
areas of the ground where they eventually stepped. 
Additionally, fixations were frequently guided to the 
transition zones between the varying surfaces (e.g., 
solid to compliant, rocky to slippery, tilted to irreg-
ular, etc). Hollands and Marple-Horvat129 studied 
the eye movements of healthy participants who were 
made to walk in different conditions that varied in 
terms of the amount visual information available to 
the participants as they stepped onto stepping stones. 
The time interval between saccadic onset and foot-
lift was similar in all conditions, but the interval be-
tween saccadic onset and footfall onto the stepping 
target differed significantly depending on the amount 
of visual information present. Patla and Vickers130 

found that healthy participants fixated on footfall 
targets that were an average of two steps ahead. El-
derly participants with a history of falls tended not 
to look two steps ahead but instead fixated more on 
the imminent footfall target.131 This finding may be 
the result of impaired central processing of visually 
guided information in that group, as suggested in 
another study, in which elderly participants with a 
high risk of falling had longer latencies from sacca-
dic initiation to foot-lift than elderly individuals 
with a low risk of falling.132

Saccades were also studied in individuals during 
turning maneuvers. These studies supported a “top-
down” model, in which saccadic initiation precedes, 
and possibly influences, turning of the head, trunk 
and legs.112,114 Imai et al.114 observed that when par-
ticipants were asked to move in a straight line and 
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turn 90 degrees, a saccade was made in the direction 
of the turn. A similar observation was made by Hol-
lands et al.,133 in which healthy participants made 
saccades in order to position their gaze in line with 
the endpoint of the required travel path.

Anxiety can influence the interplay between gait 
and saccades. It has been suggested that early gaze 
transfer due to anxiety over impending obstacles is 
correlated with stepping inaccuracies. Investigators 
observed the visual and stepping behavior of an 
87-year-old female when she was directed to walk 
along a stepping path before and after an obstacle. At 
the beginning of the experiment, she fixated on the 
stepping path before the obstacle. After falling twice, 
she stopped fixating on the stepping path, and in-
stead fixated on the obstacle itself.134 In a similar 
study, elderly participants with a high risk of falling 
were more likely to transfer their gaze early from a 
stepping target along a path to an impending obsta-
cle.135 One study indirectly showed a relationship 
between saccades and gait during an episode of anxi-
ety/fear, in which participants with a fear of heights 
made more vertical than horizontal saccades when 
walking on a fire escape 20 meters above ground 
compared to the saccades of the controls.136 The 
amygdala plays an important role in anxiety and has 
been found to be involved in saliency coding when 
scanning a visual scene.137 States of increased anxi-
ety may disrupt fixations and saccades through this 
pathway.

The relationship between saccades and gait was 
observed in healthy participants as they moved 
along a pathway with irregularly placed stepping 
stones, both with and without an alcohol dose. Gait 

impairments were observed in terms of increased 
step cycle durations and missed footfall targets. In 
terms of saccadic impairments, a large proportion 
of the saccades of the successive stepping stones 
were inaccurate and were accompanied by correc-
tive saccades.138 Alcohol has been shown to cause 
saccadic dysmetria.139 The combination of impaired 
saccadic control and stepping accuracy implicates 
the cerebellum [See Supplementary Table 1 (in the 
online only Data Supplement) for summary of the 
studies of this section].

Saccades and gait in 
neurodegenerative 
diseases

While saccadic and gait abnormalities have been 
studied separately in various neurodegenerative dis-
orders (Table 2),140-174 simultaneous recordings of eye 
movements and gait in these disorders have rarely 
been reported.

PD is well known as having both saccadic151 and 
gait abnormalities.175 In PD, both saccades and step 
length can be hypometric. Side-to-side asymmetry, 
in terms of step length and saccadic amplitude, is of-
ten seen in PD. Nemanich and Earhart reported that, 
in PD, freezing of gait is associated with increased 
saccadic latency and variability.176 The researchers 
found that PD patients with freezing of gait were 
slower in initiating pro- and antisaccades. Saccadic 
velocity and gain variability were also increased in 
PD with freezing of gait. Performance of antisac-
cades was impaired in PD patients with freezing of 
gait compared to patients without freezing.177 In an-

Table 2. Separate studies showing saccadic abnormalities or gait abnormalities in essential tremor, PD, PSP, Huntington disease and cerebellar ataxia

Disorder Saccadic abnormalities Gait abnormalities
Essential tremor Slow saccades and increased square-wave jerks140 Tandem gait difficulty141-149

PD Hypometric saccades and prolonged saccadic latency150,151 Freezing of gait, falls, turning impairment, and decreased stride 

length152,153

PSP Fixational saccades that are abnormally large. Square wave 

jerks more frequent, larger, and markedly more horizontal154

Vertical saccades (slow and hypometric, both up and down)155

Hypokinetic gait characteristics: decreased velocity and step length156

Interstep variability and asymmetry during gait. Slower cadence. 

Freezing of gait and frequent falls157

Huntington disease Slow saccades158-161

Increased variability in saccadic reaction times and occurrence 

of errors162,163

Hypometric primary saccades164 

Gait characteristic variation in each walk, with mean decreases in 

velocity, stride length, and cadence. Decreased gait velocity165-167

Disordered regulation of footstep timing; reduced stride length168

Cerebellar ataxia Square-wave jerks, saccadic dysmetria, and reduced saccadic 

velocity169-171

Decreased step length, stride length, and gait speed172-174

PD: Parkinson disease, PSP: progressive supranuclear palsy 
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other study, saccadic frequency was found to increase 
in both patients with PD and their age-matched con-
trols when approaching a turn, but the PD patients 
made fewer preparatory saccades than the controls 
before the turn.178,179 During the turn, the PD pa-
tients made more saccades, and the saccadic veloci-
ty was slower than that of the controls.180

The likely neural components affecting both sac-
cades and locomotion in PD include the STN, the 
SNr, and the MLR/MFR.175 In PD, degeneration of 
dopaminergic neurons in the SNc affects the direct 
and indirect pathways, resulting in bradykinetic 
movements that affect locomotion and saccades. 
More specifically, there is increased excitation of the 
STN, causing an increased inhibitory effect of the 
GPi and SNr through the indirect pathway. As men-
tioned earlier in the current review, DBS of the STN 
affects both saccadic and locomotor performance 
when compared to DBS of the GPi.92-95 In terms of 
eye movements, the effect on these pathways in PD 
results in increased excitation of the SNr, which leads 
to abnormal saccade generation in the SC. There is 
also increased excitation of the PPN, which, as men-
tioned previously, has projections that are related to 
saccades and locomotion. In a recent imaging study, 
PPN alterations were suggested to be related to both 
saccadic and postural impairments in patients with 
PD.181 It was observed that functional connectivity 
involving the PPN and FEF correlated with antisac-
cadic latencies in healthy participants but not in PD 
patients with postural instability. Additionally, sacca-
dic impairment correlated with gait initiation im-

pairment in patients.
Additional examples of neurological disorders 

with abnormal saccades and postural instability oth-
er than PD182,183 include progressive supranuclear 
palsy,184 cerebellar ataxia,185 essential tremor,186 and 
Huntington disease.187,188 Some studies have report-
ed that abnormalities in saccadic eye movements are 
correlated with body sway, even in healthy individu-
als.189,190 These findings of these studies reflect an in-
tegration between postural dynamics and eye move-
ments.

Patients with cerebellar ataxia have ataxic gait and 
dysmetric saccades. Dysmetric saccades consist of 
hypometric or hypermetric initial saccades, followed 
by a corrective saccade. TMS studies have implicated 
the ipsilateral cerebellar vermis in saccadic dysmet-
ria.68 Studies of visual fixation in patients with cere-
bellar ataxia have discovered the presence of dysmet-
ric saccades. During locomotor tasks with visually 
guided stepping, both dysmetric saccades and atax-
ic gait were detected.191,192 Other studies have found 
correlations between efficient footfalls and oculo-
motor function127,129,130 in healthy subjects.

Studies of saccadic performance in patients with 
gait impairment could provide insight into how eye 
movements affect motor abnormalities such as freez-
ing of gait, imbalance, turning difficulties and falls. 
Beyond that, saccadic eye movement training as a 
gait rehabilitation strategy could be an important 
therapeutic option. Some studies have reported sac-
cadic eye movement training as a strategy for alleviat-
ing gait abnormalities in terms of improvement in 

Table 3. Eye movement training and gait

Authors Year Participants Method Main findings
Eye movement training and gait

Zampieri and Di Fabio193 2008 19 moderately affected 

progressive supranuclear 

pals patients

Balance training and eye movement 

exercises

Eye movement training: eye movement 

practice on the computer screen with 

randomly appearing arrows on the 

screen

Improvements in stance time and 

walking speed in the treatment group

Crowdy et al194 2002 2 cerebellar patients Foot placement (stepping task)

Eye movement training: rehearsal of 

saccades for footfall targets in a 

stationary standing condition

Improvements in oculomotor and 

locomotor performance following 

eye-movement rehearsal

Kang and Yu195 2016 14 stroke patients Foot placement (stepping task)

Eye movement training:  visual scanning 

of the picture cards, fixating gaze on a 

moving baton

Improvements in walking speed, step 

length and cadence
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stance time and accuracy in stepping in patients (Ta-
ble 3).193-195

Conclusions and future 
directions

Eye movements and locomotion share common 
neural substrates and potentially have interlinked 
neural circuitries. The mesopontine tegmentum and 
cerebellar vermis are the most likely areas to have 
specific neural connections between these parallel 
networks. Physiological studies in animals and be-
havioral studies in healthy individuals have sup-
ported the hypothesis that these connections are 
preserved and adaptable across species. Many neu-
rodegenerative disorders demonstrate coexisting 
eye movement and gait abnormalities. Correlations 
have been made in these disease states, further pro-
viding evidence of interlinked neural circuitry. As 
the technology of mobile eye-tracking improves, fu-
ture studies exploring eye movement abnormalities 
in real time with simultaneous gait recording will 
further elucidate the interplay between these two 
networks. In addition, such studies may potentially 
serve to develop new diagnostic or disease severity 
markers.
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