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Abstract
Blood–brain barrier (BBB) destruction is associated with a variety of neurological diseases. Brain microvascular endothe-
lial cells (BMECs) are the key constituent of BBB. Both matrix metalloproteinases-2/9 (MMP-2/9) and toll-like receptor-2 
(TLR2) are coexpressed in BMECs and have been shown to play important roles in BBB breakdown. It is unknown whether 
TLR2 can regulate MMP-2/9 in BMECs. In this study, Pam3CSK4 was used to activate TLR2, and the expression of MMP-
2/9 and tight junctions (TJs) in BBB was measured by quantitative real-time PCR and western blotting. Phosphoproteins 
were determined by western blotting. The inhibitors of mitogen-activated protein kinases (MAPKs) and NF-κB were used 
to identify the signaling pathways by which TLR2 regulates the expression of MMP-2/9 in BMECs. This study showed that 
Pam3CSK4 upregulated the mRNA and protein expression of MMP-9 and downregulated MMP-2 and TJ expression in 
BMECs simultaneously. Pam3CSK4 also induced the phosphorylation of MAPKs and NF-κB signaling pathways in BMECs. 
MMP-9 expression was found to decrease by pretreatment with inhibitors of ERK1/2 and JNK but not p38. However, the 
mRNA and protein expression of MMP-2 and MMP-9 increased after addition of a NF-κB inhibitor. Our results indicated 
that Pam3CSK4 was able to upregulate MMP-9 expression through ERK1/2 and JNK signaling pathways, but the NF-κB 
signaling pathway negatively regulated the effect of TLR2 on MMP-2 and MMP-9 expression in BMECs. The finding pro-
vides novel insight into the molecular mechanism of MMP-2/9 expression in BMECs.

Keywords  Toll-like receptor-2 · Matrix metalloproteinase · Pam3CSK4 · Mitogen-activated protein kinases · Brain 
microvascular endothelial cells

Introduction

Toll-like receptors (TLRs) are transmembrane pattern rec-
ognition receptors (PRRs) that are involved not only in 
systemic bacterial infection but also in cerebral injury [1]. 
TLRs are expressed in mammalian innate immune cells 

and non-immune cells, such as epithelial and endothelial 
cells [1]. Almost all cell types in the central nervous system 
(CNS), including microglia, neurons, astrocytes [2], and 
endothelial cells [3], express TLRs. Thirteen murine and 10 
human TLRs are currently known [4, 5]. TLR2 is one TLR 
that is expressed on the cell surface [2]. A previous study 
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showed that the mRNA expression of TLR2 was upregulated 
in a mouse model of cerebral ischemia [6]. Compared with 
that in wild-type mice, the infarct size of TLR2-deficient 
mice was reduced following cerebral focal ischemia injury 
[6].

The blood–brain barrier (BBB) plays a pivotal role in 
maintaining the homeostasis of the CNS microenviron-
ment. BBB is formed by brain microvascular endothelial 
cells (BMECs) linked by tight junctions (TJs) and adherens 
junctions (AJs) [7]. TJs and AJs between endothelial cells 
maintain the integrity of the BBB [3]. BBB disruption is 
related to a series of CNS diseases, such as multiple sclerosis 
[7], hypoxia, and ischemia [8].

Matrix metalloproteinases (MMPs) are a family of 
zinc-dependent enzymes that disrupt the BBB integrity 
by degrading TJs of endothelial cells (ECs) [9]. MMP-2/9 
degrade the main constituents of the basal lamina, including 
type IV collagen, lamin, and fibronectin, around the cer-
ebral blood vessels [9]. Recent reports have shown that both 
MMP-2/9 and TLR2 [3] are expressed in BMECs. TLR2 
can activate the mitogen-activated protein kinase (MAPK) 
pathway [3]. Other studies have shown MMPs are regulated 
by the MAPK signaling pathway [10]. However, the molecu-
lar mechanism has not been studied before. We speculate 
that TLR2 activation may induce MMP-2/9 expression by 
MAPK and NF-κB signaling pathways in BMECs, result-
ing in BBB disruption. Therefore, we used TLR2 synthetic 
analogue ligand Pam3Cys–Ser–Lys4 (Pam3CSK4) to activate 
TLR2 and explore whether and how Pam3CSK4 regulates 
MMP-2/9 expression in BMECs.

Materials and Methods

Reagents

TLR2 agonist Pam3CSK4 was purchased from InvivoGen 
(San Diego, CA, USA). U0126 (ERK1/2 inhibitor) was 
purchased from Cell Signaling Technology (Beverly, MA, 
USA). SB203580 (p38 MAPK inhibitor), SP600125 (JNK 
inhibitor), and BAY11-7082 (NF-κB inhibitor) were pur-
chased from Calbiochem (San Diego, CA, USA).

For western blot analysis, anti-TLR2 (catalog 
ab108998; 1:1000), anti-MMP-9 (catalog ab76003; 
1:1000), anti-MMP-2 (catalog ab37150; 1:1000), and 
anti-occludin (catalog ab167161; 1:1000) were purchased 
from Abcam (Shanghai, China). Anti-claudin 5 (catalog 
#ABT45; 1:1000) and anti-collagen IV (catalog ab6586; 
1:2000) were purchased from Merck Millipore (Billerica, 
MA, USA) and Abcam (Shanghai, China), respectively. 
Anti-ZO-1 (catalog 61-7300; 1:4000) was purchased 
from Invitrogen (Carlsbad, CA, USA). β-actin was from 
Proteintech (Rosemont, IL, USA). Antibodies against 

phospho-ERK1/2 (catalog #4377), pJNK (catalog #4668), 
pP38 MAPK (catalog #4511), and pNF-κB p65 (catalog 
#3033) were purchased from Cell Signaling Technology.

Primary Brain Microvascular Endothelial Cell (BMEC) 
Culture

All experiments were performed in accordance with the 
National Institutes of Health (USA) Guide for the Care 
and Use of Laboratory Animals and approved by the 
Animal Care Committee of Kunming University of Sci-
ence and Technology, China. BMECs were cultured from 
Sprague–Dawley neonatal rat cerebral cortices as pub-
lished previously [11]. Endothelial cells were cultured in 
DMEM/high glucose with 20% fetal bovine serum (FBS) 
for 24 h and selected with 4 µg/mL puromycin (Amresco, 
Ohio, USA). BMECs were identified by immunofluores-
cence staining with von Willebrand factor (vWF, 1:50, 
Proteintech, Rosemont, IL, USA).

Quantitative Real‑Time Polymerase Chain Reaction

Total RNA was isolated from BMECs using Eastep™ 
Total RNA Extraction Kit (Promega, Shanghai, China). 
The quality and quantity of isolated RNA were measured 
by NanoDrop2000 (Thermo Fisher Scientific, Waltham, 
MA, USA). First-strand cDNA was synthesized with the 
GoScript™ Reverse Transcription System (Promega) 
according to the manufacturer’s protocol. Quantitative 
real-time polymerase chain reaction (qRT-PCR) was con-
ducted with 1 uL cDNA products using SYBR® Premix 
Ex TaqTM II (TliRNaseH Plus, Takara, Dalian, China) on 
a Roche LightCycler 480.

Primers. β-actin, MMP-2, and MMP-9 rat primers were 
designed as follows:

β-actin (forward: 5′-GGA​GAT​TAC​TGC​CCT​GGC​
TCCTA-3′, reverse: 5′-GAC​TCA​TCG​TAC​TCC​TGC​TTG​
CTG​-3′);

MMP-2 (forward: 5′-ACC​TTG​ACC​AGA​ACA​CCA​
TCGAG-3′, reverse: 5′-CAG​GGT​CCA​GGT​CAG​GTG​
TGTA-3′);

MMP-9 (forward: 5′-CAT​GCG​CTG​GGC​TTA​GAT​
CA-3′, reverse: 5′-GAG​GCC​TTG​GGT​CAG​GTT​TAGAG-
3′). The PCR conditions were as follows: one cycle of ini-
tial denaturation (95 °C for 30 s), amplification cycles (40 
cycles of 95 °C for 5 s, 55 °C for 30 s, and 72 °C for 30 s), 
and one cycle of amplification curve analysis (95 °C for 
5 s, 60 °C for 60 s, and 95 °C). Each reaction was repeated 
three times. The comparative mRNA expression level was 
expressed as 2−ΔΔCt.
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Western Blot Analysis

Cell lysates were harvested with RIPA lysis buffer (Beyo-
time Biotechnology, Shanghai, China) containing Protease 
Inhibitor Cocktail (Calbiochem, San Diego, CA, USA) and 
PhosSTOP (Roche Applied Science, Rockford, IL, USA). 
Protein concentrations in supernatant were detected by 
the bicinchoninic acid (BCA) assay (Beyotime Biotech-
nology). Proteins were separated by western blot and 
then transferred to polyvinylidene difluoride membranes 
(Merck Millipore), which were then blocked with Tris-
buffered saline (TBS; Sangon Biotech, Shanghai, China) 
containing 0.1% Tween 20 with 5% (w/v) non-fat milk. 
Membranes were incubated overnight at 4 °C with the 
primary antibody and then incubated for 2 h at room tem-
perature with horseradish peroxidase (HRP)-conjugated 
secondary antibody (1:5000, Proteintech). Antibody 
dilution ratios were as follows: TLR2 antibody (1:1000), 
MMP-9 antibody (1:1000), MMP-2 antibody (1:1000), 
occludin antibody (1:1000), claudin 5 antibody (1:1000), 
collagen IV antibody (1:2000), ZO-1 antibody (1:4000), 
β-actin antibody (1:5000), and p-ERK1/2, p-JNK, p-p38, 
and p-NF-κB p65 antibody (1:1000). Bands were visual-
ized with enhanced chemiluminescence (Proteintech) and 
photographed using a membrane imaging system (Bio-
Rad, Hercules, CA, USA). Band intensity was semi-quan-
titatively measured by ImageJ software (NIH, Bethesda, 
MD, USA).

Statistical Analysis

The results were expressed as means ± standard error (SE). 
Statistical analyses were performed using one-way analysis 
of variance (ANOVA) followed by the least significant dif-
ference test. p ≤ 0.05 was considered statistically significant.

Results

Pam3CSK4 Upregulated MMP‑9 Expression 
But Downregulated MMP‑2 Expression in BMECs

It has been reported that BMECs can express both MMPs 
[12] and TLR2 [3]. To investigate the effect of TLR2 activa-
tion on MMP-2/9 in BMECs, we treated cells with 1 µg/mL 
Pam3CSK4 for 1, 2, 3, 6, and 24 h. The mRNA and protein 
expression of MMP-9 increased at 3 and 6 h, respectively 
(p < 0.05, Fig. 1b, d). The mRNA level of MMP-2 signifi-
cantly decreased at 1, 2, and 3 h (p < 0.05, Fig. 1a). However, 
MMP-2 protein levels decreased at 2 h (p < 0.05, Fig. 1c).

Pam3CSK4 Downregulated TJ Expression in BMECs

MMPs degrade TJ proteins (e.g., claudin 5 and occludin) 
and basal lamina proteins (e.g., laminin and collagen) in 
BMECs, leading to the disruption of the BBB [13, 14]. To 
observe whether TLR2 stimulation can destroy the TJs in 

Fig. 1   The mRNA and protein 
expression levels of MMP-2 and 
MMP-9 in BMECs stimulated 
with Pam3CSK4. BMECs were 
stimulated with Pam3CSK4 
(1 µg/mL) for 1, 2, 3, 6, and 
24 h. The mRNA expression 
levels of MMP-2 (a), MMP-9 
(b), and β-actin were analyzed 
by qRT-PCR. Cells were col-
lected for detection of MMP-2 
(c) and MMP-9 (d) protein 
expression by western blot, and 
protein levels were quanti-
fied by ImageJ software and 
normalized with β-actin protein 
levels. *p < 0.05, **p < 0.001 as 
compared with control group, 
in which cells were treated with 
PBS
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BMECs, claudin 5, occludin, ZO-1, and collagen IV protein 
levels were measured by western blot after adding TLR2 
agonist Pam3CSK4. It was found that levels of claudin 5 
(Fig. 2a) and collagen IV (Fig. 2c) decreased at 2 h, and 
levels of ZO-1 (Fig. 2d) decreased at 3 h in BMECs after 
treatment with Pam3CSK4 (all p < 0.05). However, occludin 
levels did not change (Fig. 2b).

Pam3CSK4 Induced the Phosphorylation of MAPK 
and NF‑κB in BMECs

After treating BMECs with 1 μg/mL Pam3CSK4 for 1, 2, 3, 
6, and 24 h, we detected MAPK and NF-κB phosphoryla-
tion by western blotting. The phosphorylation of ERK1/2 
(Fig. 3a), JNK (Fig. 3c), and p38 (Fig. 3b) MAPK was 
detected at 1 h (p < 0.05). The phosphorylation of ERK1/2 
and JNK tended to remain for up to 3 h, though there was 
no statistical significance at 2 and 3 h (p > 0.05, Fig. 3a, c). 
NF-κB phosphorylation was induced at 3 and 6 h (p < 0.05, 
Fig. 3d).

Pam3CSK4 Regulated the Expression of MMP‑2/9 
via ERK1/2, JNK, and NF‑κB pathways

To investigate the signaling pathways by which TLR2 regu-
lates MMP-2/9 expression in BMECs, cells were pretreated 
with ERK1/2 inhibitor (20 µM U0126), p38 MAPK inhibi-
tor (20 µM SB203580), JNK inhibitor (20 µM SP600125), 
and NF-κB inhibitor (10  µM BAY11-7082) or DMSO 
(0.1% vehicle control) for 1 h and then treated with 1 µg/
mL Pam3CSK4 for 6 h. The expression of MMP-2 and 
MMP-9 was detected by qRT-PCR and western blotting. 
As shown in Fig. 4b, d, U0126 and SP600125 significantly 
inhibited MMP-9 expression, which was upregulated by 
Pam3CSK4 (all p < 0.05). Compared with that in the vehi-
cle + Pam3CSK4 group, the upregulation of MMP-9 was 
not suppressed by SB203580 and BAY11-7082 (Fig. 4b, 
d). However, after pretreating cells with BAY11-7082, the 
mRNA and protein expression of MMP-2 (p < 0.001, Fig. 4a, 
c) and the mRNA of MMP-9 increased compared with that 
in the vehicle control and vehicle + Pam3CSK4 groups, 
respectively (p < 0.001, Fig. 4b).

Fig. 2   The protein expres-
sion levels of TJs in BMECs 
stimulated with Pam3CSK4. 
BMECs were stimulated with 
Pam3CSK4 (1 µg/mL) for 1, 2, 
3, 6, and 24 h. Cells were col-
lected for detection of claudin 
5 (a), occludin (b), collagen 
IV (c), and ZO-1 (d) protein 
expression by western blot, and 
protein levels were quanti-
fied by ImageJ software and 
normalized with β-actin protein 
levels.*p < 0.05, **p < 0.001 as 
compared with control group, 
in which cells were treated with 
PBS
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Discussion

There are three principal barriers between the blood and 
brain in CNS: the BBB, the blood–cerebral spinal fluid 
(CSF) barrier, and the arachnoid barrier [15]. BBB dysfunc-
tion is correlated with the pathophysiology of several neu-
rological disorders [15], such as stroke, multiple sclerosis 
(MS), and Alzheimer’s disease (AD). BBB breakdown is 
also associated with cytokines, chemokines, and other sub-
stances, including MMPs [16].

The MMPs family includes more than 20 proteolytic 
enzymes [17]. They are commonly classified into four cat-
egories: collagenases, gelatinases (MMP-2 and MMP-9), 
stromelysins, matrilysins, and membrane-type MMPs [18]. 
The MMPs family is involved in tissue remodeling, cancer 
metastasis, chronic inflammation, and neurological disorders 
[19]. MMPs are also able to degrade several proteinases, 
growth factors, cell surface receptors, and cell–cell adhesion 
molecules [20]. In injured brain tissues, various cells express 
MMPs, including resident cells (endothelial cells, astrocytes, 
and neurons) and infiltrating inflammatory cells [9]. MMP 
expression is normally very low in the adult brain, but many 
studies have shown that several MMPs are activated and 
their levels increase after ischemic stroke [21, 22]. MMP 

activity is stringently modulated at four different levels: gene 
expression at the transcription level; compartmentalization; 
pro-enzyme activation; and inhibition of proteolysis [23].

When an agonist ligand binds to a TLR, adapter mol-
ecules will activate TLR signaling pathways. There are two 
types of TLR signaling pathways: myeloid differentiation 
factor 88 (MyD88)-dependent pathways and TIR-domain-
containing adapter-inducing interferon-β (TRIF)-depend-
ent (MyD88-independent) pathways [2]. TLR2 activates 
MAPKs [3] and transcription factors (NF-κB) through a 
MyD88-dependent signaling pathway, leading to the expres-
sion of proinflammatory cytokines such as interleukin(IL)-1, 
IL-6, and tumor necrosis factor (TNF)-α as well as MMP 
production. MAPKs include three major members: the extra-
cellular signal-related kinases (ERKs), the c-Jun N-terminal 
kinases (JNKs)/stress-activated protein kinases, and p38 
[24].

Recent studies have shown that MMP-2/9 are highly 
involved in CNS disorders. Previous researchers have 
revealed that MMP-9 expression is regulated by MAPKs 
in different cell types [25–27]. Additionally, transcription 
factor NF-κB participates in regulating the expression of 
MMPs in several cell types. Several TLR agonists can acti-
vate NF-κB and modulate MMP expression [26]. However, 

Fig. 3   Pam3CSK4 induced 
ERK, JNK, p38, and NF-κB 
phosphorylation in BMECs. 
After the cells were treated 
with 1 µg/mL of Pam3CSK4 
for different time periods, the 
expression of phosphorylated 
ERK (a), p38 (b), JNK (c), 
and NF-κB (d) was analyzed 
by western blot and normal-
ized with β-actin protein 
levels. *p < 0.05, **p < 0.001 as 
compared with control group, 
in which cells were treated with 
PBS
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the molecular mechanism has not been clarified in BMECs 
of the BBB. Our study showed that TLR2 ligand Pam3CSK4 
can upregulate MMP-9 expression significantly and down-
regulate MMP-2 in BMECs. Meanwhile, the stimulation of 
TLR2 led to downregulation of claudin-5, collagen IV, and 
ZO-1, which coincides with a study of the human cerebral 
endothelial cell line hCMEC/d3 [3]. MMP-2/9 are key medi-
ators of inflammatory reactions, which possibly contribute 
to TJ degradation in BMECs and lack of BBB integrity in 
CNS disorders. A previous study showed that MMP-9 can 
damage TJ proteins [28]. It was reported that active MMP-9 
induced the decrease of ZO-1 expression [29] and degra-
dation of ZO-1 was attenuated in MMP-9 knock-out mice 
after ischemia [30]. It is reasonable to conclude that TLR2 

activiation may degrade ZO-1 by increasing MMP-9 pro-
tein levels in BMECs. However, the time for MMP-9 pro-
tein induction is 3–6 h whereas the decrease in claudin-5 
or collagen IV is observed only after 2 h treatment in this 
study. We only measured the amount of MMP-9 in cells 
by western blot and qRT-PCR. Therefore, it is speculated 
that the secreted MMP-9 in supernatant or other substances 
lead to the decrease of claudin-5 and collagen-IV after 2 h 
treatment.

Pam3CSK4 is the specific ligand of TLR2 [31] In this study, 
Pam3CSK4 induced the phosphorylation of ERK, JNK, and 
p38 MAPK in BMECs at 1 h and NF-κB phosphorylation at 
3 and 6 h. Furthermore, to investigate the signaling pathways 
by which Pam3CSK4 affects the expression of MMP-2/9, we 

Fig. 4   Pam3CSK4 influenced the expression levels of MMP-2 and 
MMP-9 via MAPK/NF-κB signaling pathways in BMECs. BMECs 
were pretreated with ERK1/2 inhibitor (U0126), p38 MAPK inhibi-
tor (SB203580), JNK inhibitor (SP600125), and NF-κB inhibi-
tor (BAY11-7082) or DMSO for 1 h and then treated with 1 µg/mL 
Pam3CSK4 for 6  h. The mRNA expression levels of MMP-2 (a), 

MMP-9 (b), and β-actin were analyzed by qRT-PCR. Cells were col-
lected for detection of MMP-2 (c) and MMP-9 (d) protein expres-
sion by western blot, and protein levels were quantified by ImageJ 
software and normalized with β-actin protein levels. *p < 0.05, 
**p < 0.001 as compared with vehicle control group, in which cells 
were treated with PBS
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pretreated BMECs with inhibitors for 1 h and then treated cells 
with Pam3CSK4 for 6 h. ERK1/2 inhibitor (U0126) and JNK 
inhibitor (SP600125) significantly blocked MMP-9 expression 
induced by Pam3CSK4 at 6 h. Compared with that in the vehi-
cle control, the upregulation of MMP-9 was not inhibited by 
p38 MAPK inhibitor (SB203580). It is concluded that TLR2 
may regulate MMP-9 expression by ERK1/2 and JNK signal-
ing pathways in BMECs. Conversely, after pretreating cells 
with NF-κB inhibitor (BAY11-7082), the mRNA and protein 
expression of MMP-2/9 obviously increased compared with 
that in the vehicle control, but only the mRNA expression of 
MMP-9 was significantly increased compared with that in the 
vehicle + Pam3CSK4 group. The results indicated that TLR2 
negatively regulates the expression of MMP-2 and MMP-9 
through the NF-κB signaling pathway in BMECs. A previ-
ous study demonstrated that TLR2 activated two downstream 
pathways, including the IKK complex and MAPK family, and 
then activated NF-κB and activator protein-1 (AP-1), resulting 
in expression of proinflammatory cytokines [32]. However, a 
study reported that phosphoinositide 3-kinase (PI3K) nega-
tively regulated TLR2 signaling [33]. Therefore, it is inferred 
that regulation of MMP-2 expression by Pam3CSK4 involved 
a balance between the NF-κB signaling pathway and other 
signaling pathways, such as PI3K pathways. However, this 
experiment has a limitation. It was inappropriate to select 
Pam3CSK4 to stimulate BMECs for 6 h to investigate the 
signaling pathways by which TLR2 regulated MMP-2 expres-
sion, because there was no change in mRNA and protein levels 
of MMP-2 after Pam3CSK4 stimulation for 6 h in BMECs 
(Fig. 1a, b).

In conclusion, TLR2 regulated the expression of MMP-9 
through ERK1/2 and JNK signaling pathways and negatively 
regulated the expression of MMP-2/-9 through the NF-κB 
signaling pathway in BMECs. The finding may provide novel 
insight into the molecular mechanism of MMP-2/-9 expres-
sion in BMECs.
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