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Abstract
The primary method of data analysis in applied behavior analysis is visual analysis. However, few investigations to date have taught
the skills necessary for accurate visual analysis. The purpose of the present study was to evaluate computer-based training on the
visual analysis skills of adults with no prior experience. Visual analysis was taught with interactive computer-based training that
included written instructions and opportunities for practice with textual feedback. Generalization of participant skills from simulated
to handwritten and authentic data graphs was programmed for and assessed during the study. A multiple-baseline design was used
across visual analysis properties (i.e., variability, level, and trend), with continuous overall intervention effect generalization probes,
replicated across 4 participants to evaluate computer-based training for accurate visual analysis of A-B graphs. The results showed
that all participants accurately visually analyzed A-B graphs following the computer-based training for variability, level, trend, and
overall intervention effect. These visual analysis skills generalized to handwritten and authentic data graphs and maintained approx-
imately 1 day, 1 week, 2 weeks, and 1 month following mastery of each property for all participants. Implications of the results
suggest that computer-based training improved accurate visual analysis skills for adults with no prior experience.
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The field of applied behavior analysis (ABA) relies heavily on
single-subject research designs, and the primary method of data
analysis is visual analysis (Baer, 1977). Visual analysis is based
on examining graphed data to reach a decision about the consis-
tency and reliability of intervention effects (Baer, 1977; Cooper,
Heron, & Heward, 2007). This method of analysis depicts inter-
vention effects powerful enough to produce clinically, socially,
and educationally meaningful results (Baer, 1977; Parsonson &
Baer, 1992). Specifically, Parsonson and Baer (1992) indicate

that visual analysis of graphs is based on the inspection of data
paths, estimation of the stability of the data, and direction of the
data-path changes, within and between conditions over time. The
visual analysis properties that are systematically examined are
changes in level, trend, and variability (Cooper et al., 2007;
Parsonson, 1999). Collectively, these visual analysis properties
determine overall treatment effect (Cooper et al., 2007).

Visual analysis and interpretation of single-subject designs
are vital skills for staff and critical to the successful evaluation
of interventions based on the principles of ABA (Fisher, Kelley,
& Lomas, 2003). Although visual analysis of data is a corner-
stone of ABA, previous literature has demonstrated low agree-
ment across raters when visually analyzing graphed data pre-
sented in single-subject designs (e.g., Wolfe, Seaman, &
Drasgow, 2016). Wolfe et al. (2016) evaluated visual analysis
agreement of 52 behavior-analytic experts on 31 multiple-
baseline graphs at the individual-tier and functional-relation
levels. They found that overall agreement between raters was
minimally acceptable at the individual-tier level and belowmin-
imally acceptable at the functional-relation level. However, few
investigations to date have targeted approaches to teach individ-
uals to accurately analyze and interpret single-subject graphs,
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especially A-B graphs. For instance, Fisher et al. (2003) taught
participants to identify a reliable change in behavior in A-B
graphs. They sought to increase both the reliability and validity
of visual analysis by creating a refinement of the split-middle
method that is used to estimate trend lines. Drawing split-middle
lines is accomplished by superimposing criterion lines from the
baseline phase mean into the treatment phase (Cooper et al.,
2007). However, Fisher et al. (2003) found that the split-
middle method resulted in unacceptably high type I errors.
Thus, the dual-criteria (DC) method was created by adding a
second criterion line superimposed from the baseline mean onto
the treatment phase along with the split-middle line. The partic-
ipants, who were experienced clinicians, were also given a vi-
sual aid in the form of a data sheet with a table indicating the
number of data points required to be above both criterion lines to
conclude that a treatment effect was present. Although partici-
pants’ correct interpretations increased from baseline to treat-
ment using the DC lines, the participants were not directly edu-
cated on the visual analysis properties of variability, level, and
trend. Instead, the participants learned to visually analyze A-B
graphs through the use of a visual aid.

Stewart, Carr, Brandt, andMcHenry (2007) expanded on this
potential limitation and included a 12-min visual analysis video
lecture on the components of visual analysis to teach inexperi-
enced college students the properties of level, trend, and vari-
ability. After the students correctly answered a minimum of 8
out of 10 questions on the video lecture material, they were
asked to determine whether A-B graphs (without superimposed
criteria lines) demonstrated a behavior change. Accurate inter-
pretations did not increase following the lecture, as compared to
baseline responding. Therefore, Stewart et al. (2007) taught stu-
dents to interpret graphs based on the conservative-dual criteria
(CDC; Fisher et al., 2003)method, a variation of the DCmethod
used by Fisher et al. (2003). In the CDCmethod, the positions of
the mean and split-middle lines were raised by 0.25 standard
deviations from the mean baseline data (Fisher et al., 2003;
Stewart et al., 2007). Although these procedures resulted in
successfully training students to analyze A-B graphs in the pres-
ence of the CDCmethod, the students did not maintain accurate
visual analysis skills after the mean and split-middle lines were
removed (Fisher et al., 2003; Stewart et al., 2007). Therefore, it
is necessary to evaluate procedures for interpreting A-B graphs
that produce skills that are resistant to extinction and that main-
tain in the absence of visual aids.

Recent evaluations have examined methods to train inex-
perienced university students to visually analyze and interpret
A-B graphs. Notably, Jostad (2011) examined the effective-
ness of a visual aid paired with a teaching condition compared
to a video traditional lecture condition. The visual aid included
four parts: (a) instructions to evaluate trend, level, and vari-
ability; (b) sample graphs depicting trend, level, and variabil-
ity; (c) exceptions to be noted; and (d) information to make a
final decision on overall intervention effect. Participants in the

visual aid condition experienced an experimenter-led session
enriched with a Microsoft PowerPoint® presentation in which
they followed along with sample graphs by writing on
worksheets and drawing on sample graphs as the experimenter
provided instructions and answered questions. An experi-
menter administered the Microsoft PowerPoint® presentation
in the traditional lecture condition that included basic infor-
mation on visual analysis from Cooper et al. (2007) and sim-
ulated data graphs depicting variations in variability, level,
and trend within and across phases. In both conditions, partic-
ipants were taught to draw split-middle lines to estimate trend.
Prior to and following the intervention, participants were
asked to interpret five effect and noneffect graphs across 10
different graph types. Participants were asked to determine
whether each graph demonstrated an observable effect by
checking “yes” or “no” at the bottom of the graph. The accu-
racy of visual analysis improved significantly from pre- to
posttest in both the visual aid and lecture conditions.
Although 55% of participants in the visual aid condition met
80% accuracy on the first posttest compared with 35% in the
lecture group, there was no statistically significant difference
between conditions. Additionally, as the visual aid was
developed and validated, correct responding did not
maintain once the visual aid was faded.

Wolfe and Slocum (2015) compared computer-based train-
ing, a video lecture, and a control condition on the accurate
visual analysis of A-B graphs across trend and level changes.
Although variability was not targeted, instruction on how var-
iability influences level and trend was provided. In the
computer-based training, visual analysis was segmented into
three module subcomponents of level, trend, and level and
trend change. Each module assessed participant response
through a pretest of each specific property. Then participants
were provided with multiple self-paced opportunities to prac-
tice visual analysis regarding the presence or absence of level
and trend change. Feedback was included for correct and in-
correct responses within each module. Correct responses re-
sulted in immediate textual praise (e.g., “That’s right.”), and
incorrect responses resulted in error correction and remedial
loops that provided extra practice. Participants were required
to meet a 90% or higher mastery criterion at the end of each
module to advance to the next module. In the lecture condi-
tion, participants were required to read a textbook chapter on
visual analysis and view a recorded lecture of the computer-
based content. The control condition consisted of no treat-
ment. A pre- and posttest measure was used, which contained
40 A-B graphs with questions on level and trend for which
participants were required to circle “yes” or “no” to property-
change questions. Results indicated that both interventions
improved student accuracy of visual analysis compared to
the control condition. However, the computer-based training
did not result in significantly higher accurate responding com-
pared with the traditional lecture group.
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Furthermore, Wolfe and Slocum’s (2015) study was the first
to use expert consensus on A-B graphs as the measure to eval-
uate participant responses, whereas Jostad (2011) and past in-
vestigations used mathematically generated comparison mea-
sures. Expert ratings for participant responses may serve as an
additional measure of accuracy because visual analysis of
graphs is common in clinical practice. Also, Wolfe and
Slocumwere the first to teach andmeasure visual analysis prop-
erties separately (i.e., trend, level, and trend and level) through
mastery-based computer software, whereas in past studies par-
ticipants were taught global interpretation of effect or noneffect.
However, there are several limitations in the Wolfe and Slocum
(2015) study: (a) although separate properties (i.e., trend and
level) were taught, participants were not taught to identify an
overall intervention effect; (b) two separate visual analysis prop-
erties were targeted (i.e., trend and level), whereas the third
property of visual analysis (i.e., variability) was omitted; and
(c) following any incorrect response within a module, partici-
pants engaged in the same remedial loops of practice graphs
before returning to the original practice graph without additional
instruction specific to the nature of the error.

Although past studies targeted accurate visual analysis of
A-B graphs, no study to date has evaluated generalized visual
analysis skills from targeted and/or simulated graphs to hand-
written and/or authentic data graphs. Additionally, no visual
analysis training study to date has programmed for or assessed
maintenance of accurate visual analysis following mastery.
Furthermore, past studies in which visual analysis skills were
taught omitted a thorough evaluation of social validity (Fisher
et al., 2003; Jostad, 2011; Wolfe & Slocum, 2015) and proce-
dural integrity analyses (Fisher et al., 2003; Jostad, 2011).

Thus, an evaluation of computer-based training with feed-
back on visual analysis of A-B graphs in terms of variability,
level, trend, and overall intervention effect is necessary (with
the understanding that experimental control of intervention
effects cannot be concluded from A-B graphs).

The purpose of the current study was to extend the work of
Jostad (2011) and Wolfe and Slocum (2015). Specifically,
Jostad’s (2011) visual aid was modified to an interactive
computer-based training program. The training included three
visual analysis properties (i.e., variability, level, and trend),
taught separately until mastery while assessing and/or teach-
ing overall intervention effect across simulated A-B graphs,
which were validated using expert consensus and mathemat-
ically derived comparison measures. The computerized soft-
ware allowed participants to progress through the training at
their own pace, engage in several opportunities to practice
visual analysis, and receive textual feedback with specific re-
mediation loops exclusive to the nature of the error. The pres-
ent study further contributes to the literature by measuring
generalization of visual analysis skills from assessment graphs
to authentic (rather than simulated) data and handwritten
graphs, maintenance of visual analysis skills over time, social

validity, and procedural integrity. This structured, objective,
and consistent method decreased the need for a trainer and
facilitated generalization and maintenance of skills in the ab-
sence of contrived training tools.

Method

Participants

Twenty participants (undergraduate, graduate, and postgradu-
ate students) were selected for this study. Exclusion criteria
included adults that have completed a research methods
course or worked as a research assistant during which exten-
sive exposure to A-B graphs was obtained. Their average age
was 25.42 (range 19–58 years). Thirteen were female (62%),
and of the 17 adults that reported their GPA, the average was
3.46 (range 3–3.91). Various majors were reported, spanning
from psychology, music therapy, and education to chemical
engineering, digital media technology, and environmental
business. Fifteen participants who scored greater than 70%
accuracy on level, trend, variability, or overall intervention
effect were excluded from the study. One participant, who
met inclusion, left the study following baseline sessions.

Four participants who did not have experience in ABA,
psychology, or special education completed the training. Of
these participants, all were male. Cody was 30 years old and
received a bachelor’s degree in accounting with a 3.0 GPA.
Herbie was 22 years old and received a bachelor’s degree in
criminal justice with a 3.49 GPA. Kasey was 23 years old and
received a bachelor’s degree in music education with a 3.5
GPA. Finally, Oliver was 58 years old and received a master’s
in business administration.

Setting

The study was conducted in living rooms and a kitchen of
residential homes and in a private classroom of a university.
The living rooms and kitchen all had a large table, several
chairs, and at least two laptop computers. The classroom had
three personal desktop computers and several chairs.

Materials

GraphsA subset of graphs created by Jostad (2011) were used
in the current study. Jostad created 500 various A-B graphs
using simulated data in Microsoft Excel® and the Resampling
Stats® plug-in. These graphs contained simulated data, vary-
ing possibilities of data in clinical and research settings across
level, trend, and variability properties, with half demonstrating
an intervention effect and the other half demonstrating a
noneffect. All graphs had the same number of data points
(i.e., 10 data points) in the baseline and treatment conditions.
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To create these graphs, Jostad first programmed effect sizes
into the computer program, specifically 0 for noneffect graphs
and 0.25–1.0 for effect graphs. Second, the CDC method
(Fisher et al., 2003) was applied to the graphs to indicate an
effect or noneffect graph. Ten types of graphs were created.
Specifically, (a) no effect with increasing trends in baseline
and treatment; (b) no effect with zero trend, no observable
change in level, and low variability; (c) no effect with zero
trend, no observable change in level, and high variability; (d)
no effect with zero trend, no observable change in level, and
moderate variability; (e) no effect with decreasing trends in
baseline and treatment; (f) effect with changes in direction of
trend (e.g., zero trend to increasing) and level; (g) effect with
changes in steepness of slope (e.g., descending with steeper
slope to descending with flatter slope); (h) effect with changes
in variability; (i) effect with moderate change in level between
baseline and treatment; and (j) effect with changes in level,
trend, and variability (for a detailed description of graph
creation, see Jostad, 2011). The accuracy of these graphs
was assessed with experienced raters (i.e., faculty and gradu-
ate students in behavior analysis) to determine whether they
depicted the qualities theywere created to exhibit, with a mean
agreement of 91.4% (range 75%–100%) for each graph type.

In the current study, graphs across the 10 types (i.e., 8 graphs
from each type) were selected from Jostad’s (2011) 500 graphs
such that various exemplars within each graph type were repre-
sented. This increased the external validity of the selected graphs.
Each graph packet to be rated contained an equal number of
effect and noneffect graphs (i.e., five each) that were arbitrarily
ordered within each packet. Each graph was presented as a hard
copy (i.e., on paper) and included questions on variability, level,
trend, and overall intervention effect at the bottom of the graph.
The questions per property were “Is there a convincing and
overall change in [visual analysis property] between baseline
and treatment conditions?” and the overall intervention effect
question was “Did behavior change from baseline to treatment?”
Next to each question, a “yes” and “no” was included.
Additionally, 20 graphs presented in ABA journal articles (i.e.,
the Journal of Applied Behavior Analysis, summer 2014) and
from learners’ programs (i.e., learners’ skill acquisition and be-
havior reduction graphs obtained from a university-based autism
center) were used. These graphs displayed various level, trend,
and variability properties. Half of the graphs displayed an overall
intervention effect and half did not. Authentic data graphs had
varying numbers of data points in the baseline and treatment
conditions, with a minimum of three data points in the baseline
condition. For example, one graphmay have had five data points
in baseline and nine data points in the treatment condition,
whereas another graphmay have had four data points in baseline
and eight data points in the treatment condition.

After the graphs were obtained, a group of nine BCBA-Ds
(Board Certified Behavior Analyst-Doctoral) and one BCBA
(Board Certified Behavior Analyst), who were productive

researchers, editorial review board members, and/or clinicians,
aided in the selection of graphs used in the study. Each rater
received 100 graphs presented on the computer, to mimic the
format of the computer-based training. Graphs included 80 sim-
ulated data graphs (i.e., 60 graphs presented on computer paper
and 20 graphs presented on graph paper) from Jostad (2011) and
20 authentic data graphs with the questions “Is there a convinc-
ing and overall change in [visual analysis property] between
baseline and treatment conditions?” and “Did behavior change
from baseline to treatment?” Graphs that had the highest agree-
ment across raters, relative to Jostad’s (2011) parameters, were
retained. Specifically, the final graphs with the highest agree-
ment across graph categories (i.e., simulated data graphs, hand-
written graphs, and authentic data graphs) were selected. These
graphs were arbitrarily selected across graph types and made
into graph packets (i.e., preexperimental assessment graphs, as-
sessment graphs, handwritten graphs, and authentic data graphs;
more details to follow).

Preexperimental Assessment Graphs The preexperimental as-
sessment graphs were composed of Jostad’s (2011) simulated
data graphs and were presented on computer paper. To select
the simulated data graphs (i.e., preexperimental assessment
graphs and assessment graphs), two graphs, out of the six
graphs in each graph type, with the lowest agreement were
discarded; if there was a tie, a graph was selected arbitrarily.
Ten types of A-B graphs (Jostad, 2011) with different level,
trend, variability, and effect size characteristics (across the 10
graph types) were selected and made into one graph packet.

Assessment Graphs The assessment graphs were also com-
posed of Jostad’s simulated data graphs presented on comput-
er paper. Thirty graphs from Jostad (2011) were retained and
arbitrarily selected into three packets of 10 A-B graphs (see
Appendix for a sample graph). As in Jostad, each packet
contained different graphs; however, the makeup of the
packets was consistent in the 10 types of A-B graphs included
(Jostad, 2011).

Handwritten Graphs The handwritten graphs were composed
of simulated data graphs from Jostad (2011) and were tran-
scribed by hand onto graph paper. To select the handwritten
graphs, one graph out of the two graphs in each graph type
with the lowest means was discarded; if there was a tie, a
graph was selected arbitrarily. Ten A-B graphs were retained
and made into one graph packet.

Authentic Data Graphs The authentic data graphs were com-
posed of A-B graphs selected from ABA journal articles (i.e.,
the Journal of Applied Behavior Analysis, summer 2014) and
from learners’ programs and were presented on computer paper.
To select the authentic data graphs, multiple exemplars of effect
and noneffect graphs, with varying examples and nonexamples
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of properties, were selected; when possible, the graphs with the
lowest means were discarded. The packet comprised 10 various
types of graphs, with an equal number of effect and noneffect
graphs, which are representative of skill acquisition and behav-
ior reduction programs in clinical settings. Ten A-B graphs were
retained and made into one graph packet.

Computer-Based Training The computer-based training was
created using the Adobe Captivate 8® software program
(http://www.adobe.com/products/captivate.html). This
interactive software allowed the experimenter to supplement
Microsoft PowerPoint® slides with written instructions,
interactivity, quizzes, and textual feedback. Once the modules
were finalized, they were uploaded from the Adobe Captivate®
files to the online course-management system, Blackboard®.
The Adobe Captivate® and Blackboard® programs recorded
data on participant responses. The content for the modules
was based on chapters of a textbook on ABA describing visual
analysis of graphs (i.e., Cooper et al., 2007) and the lectures of
Jostad (2011). Specifically, Module 1 included basic informa-
tion on single-subject designs, visual analysis, and graph analy-
sis and pretraining on the skills necessary for the training. Each
visual analysis property (i.e., variability, level, and trend) train-
ing module (Modules 2, 3, and 4) included written instructions
providing information on the properties and changes from base-
line to treatment responses. Multiple exemplars of A-B graphs
and property effects with necessary steps to visually analyze the
graphs were provided. Participants followed along with (i.e.,
clicked to the next slides) and engaged in embedded sample
practice graphs based on the information presented in the mod-
ule until correct responding occurred. Each training module
progressed the participant through four levels of prompting (full
to no prompting), adapted from Ray and Ray (2008), and vary-
ing textual feedback.

Prompts were systematically faded contingent on participant
performance. In Level 1, the answers were bolded to increase
the salience of the important information without requiring a
response to specific questions. In Level 2, the answers were
bolded and the participant was required to emit a response by
selecting the bolded answer. In Level 3, the answers were not
bolded and the participant was required to independently select
an answer. Finally, in Level 4, participants were required to
independently emit a response across two questions depicting
an effect and noneffect graph per property and overall interven-
tion effect. Immediate text-based feedback (i.e., within Adobe
Captivate®) was provided for accurate and inaccurate visual
analysis for Levels 2 through 4. Specifically, for Levels 2 and
3, praise was provided for correct responses and another oppor-
tunity was provided for incorrect responses (e.g., “Try again.”).
For Level 4, contingent on correct responses, praise was provid-
ed (e.g., “That’s right! There is an observable change in level!”)
and, contingent on incorrect responses, corrective feedback was
provided (e.g., “The level of the treatment phase is the same as

the level of the baseline phase. Here’s somemore information.”)
with remedial loops, additional information (i.e., examples of
property changes or a stepwise guideline for determining overall
change from baseline to treatment), and extra practice.

The remedial loops in Level 4 were exclusive to the nature of
the error. Specifically, each remediation loop included feedback
on the correct answer, why the participant’s response was incor-
rect, additional information, and a single practice graph (contin-
gent on accurate response; from Jostad’s, 2011 graphs) before
the participant was presented with a graph similar to the original
question (from Jostad’s [2011] graphs). For example, if the orig-
inal graph depicted a level change between baseline and treat-
ment, the participant was directed to non-level-change graphs
until an accurate response was obtained, then was presented
with a similar graph that depicted a level change. Each time a
participant entered into a module, the content was identical ex-
cept for the two original questions in prompt Level 4. This was
accomplished by creating three different modules per property;
this allowed for a manual arbitrary rotation of original questions,
as a random draw from a question pool of graphs was not
available in the Adobe Captivate® software. If a participant
entered the module a fourth time, the first file would again be
presented. Memorization of graphs and answers was minimized
by including three module files with different original questions,
an average of eight remedial loop questions, and questions that
were similar to original questions per question type (i.e.,
Original Question #1 andOriginal Question #2) in eachmodule.

If participants successfully completed all modules but did
not accurately interpret overall intervention effects, measured
through continuous probes, Module 5 was introduced to teach
interpreting an intervention effect. Module 5 contained the
same components as training Modules 2, 3, and 4. However,
Module 5 taught participants to make a decision regarding the
presence of an intervention effect per graph, using a summary
of all three properties.

After the computer-based training was created, the training
content was emailed to a group of 10 BCBAs to score for
content validity. Refer to the social validity section for more
information. Feedback from the BCBAs led to the finalization
of the computer-based training content. After the training con-
tent was inserted into Adobe Captivate® and made into the
five modules, one advanced PhD student in ABA and one
BCBA-D reviewed the modules to ensure the accuracy of
the material presented.

Experimenter and Assistants

The experimenter was a graduate student in the master of arts
program in ABA. At the start of the study, the primary exper-
imenter had worked in the field of ABA for 4 years. The
assistants were also graduate students in the master of arts
program in ABA. Assistants collected interobserver agree-
ment (IOA) and procedural integrity data.
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Dependent Variables and Response Definitions

Percentage of Accurate Visual Analysis The primary dependent
variable was the percentage of accurate visual analysis responses
across three visual analysis properties (i.e., variability, level, and
trend). Participants answered the question “Is there a convincing
and overall change in [visual analysis property] between baseline
and treatment conditions?”with a “yes” or “no.”The accuracy of
visual analysis was analyzed based on the number of correct
responses to the question about the specific property (i.e., level,
variability, trend) out of the total number of response opportuni-
ties per packet (i.e., 10 graphs per packet). A response was
scored as correct if the participant’s response matched the expert
raters’ responses. A response was scored as incorrect if the par-
ticipant answered the question differently than expert raters did
or did not answer the question. Data were summarized as the
percentage of accurate visual analysis per graph packet.

Total Training Time Total training timewas defined as the total
duration of training time in minutes across all visual analysis
property modules per participant and, if applicable, the overall
intervention effect module. The Blackboard® software cap-
tured and analyzed the duration of each participant’s training
time per module. A session began when the participant
opened the computer-based training file and ended when the
participant completed the module.

Total Testing Time Total testing time was defined as the total
duration of testing time in minutes across all assessment
graphs. At the beginning of each assessment (following com-
pletion of a training module session), a timer was started. An
assessment began when the participant turned over the first
graph. An assessment ended when the participant turned over
the last graph.

Assignment of Stimuli

Graph Presentation The order of the assessment graphs (i.e.,
three-graph packets) following each module presentation was
created using a computer-based random-sequence generator to
create a unique running order for each participant. This was
done to decrease the possibility that the order of graph presen-
tations may have differently affected the results. The experi-
menter assigned each graph packet a number and put the num-
bers into the random number generator until the order for 45
graph packets was determined. If a participant required more
than 45 graph packets, additional graph packet running orders
would have been obtained.

Training AssignmentAll participants were trained across three
visual analysis properties. Training modules consisting of var-
iability, level, and trend were counterbalanced across and
within participants to decrease the possibility that the order

of training may have differently affected the results. A modi-
fied Latin square was used.

Experimental Design

Amultiple-baseline design across visual analysis properties (i.e.,
variability, level, and trend), with continuous overall intervention
effect generalization probes, replicated across four participants,
was used. Participants were required to score 90% or higher on
three out of four consecutive assessment graph packets (i.e., three
different A-B graph packets) to complete each visual analysis
property and advance to the next property. The mastery criterion
was determined following a pilot of the procedures.

Procedure

General Format Participants were given one graph packet (10
A-B graphs per packet) and were told, “Analyze the data as
best you can and please flip the packet over when you are
done,” by answering questions on the visual analysis proper-
ties (i.e., trend, level, and variability) and overall intervention
effect (i.e., behavior change from baseline to treatment).
Specifically, participants were asked to determine whether
each graph depicted a convincing and overall change between
the visual analysis properties from baseline to treatment and
whether an overall intervention effect or noneffect occurred by
indicating “yes” or “no” for each question. Participants were
not provided with guidance or feedback. At the completion of
the assessment, the experimenter thanked the participants.

Preexperimental Assessments Prior to conducting the proce-
dure, all participants were given a packet of 10 graphs. Any
participants scoring higher than 70% on any property or over-
all intervention effect were excluded from the study.

Baseline Participants independently completed graph packets
until stable responding was observed.

Computer-Based Training Participants were given paper and
pen to use if needed throughout the training and asked to sit in
front of a computer to start the computer-based training on
Module 1 (i.e., basic visual analysis). After one completion
of Module 1, all participants began Module 2 (i.e., first
specific-property module). Participants followed along with
the computer training and answered the sample practice-
graph questions. Immediately following the completion of a
module (except Module 1), an assessment session was con-
ducted that consisted of one of three packets of 10 various A-
B graphs from Jostad’s (2011) simulated data. If a participant
scored above 90% on the specific property, then another as-
sessment graph was presented. However, if a participant
scored below 90%, then the participant was required to repeat
the module. This continued until the mastery criterion (i.e.,
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three out of four consecutive sessions at 90%) was met on the
assessment graphs per property. After a participant met the
mastery criterion on the assessment graphs, the participant
advanced to the next module until he or she met the criterion
across all visual analysis properties. If a participant success-
fully completed Modules 2–4 but did not accurately interpret
overall intervention effect, the participant completed Module
5 (i.e., overall intervention effect) until the mastery criterion
was met on the assessment graphs.

Ongoing Generalization ProbesOngoing generalization probes
of overall treatment effect were programmed through the use of
multiple exemplars of A-B graphs. Ongoing generalization
probes assessed participant responding to overall intervention
effect. Participants indicated whether an overall intervention ef-
fect was demonstrated in the graph by answering the question,
“Did behavior change from baseline to treatment?”with a “yes”
or “no.” If participant responding did not meet the criterion for
ongoing generalization probes following mastery of all visual
analysis properties, then overall intervention effect was taught.
The same data-collection procedures used during assessment
graphs were used during ongoing generalization probes. Data
were summarized as the percentage of accurate visual analysis.

Pre- and Posttest Generalization ProbesGeneralization of sim-
ulated data on computer paper was programmed and assessed
during two pre- and posttest generalization probes. Responding
to simulated data on handwritten graphs and to actual data on
computer paper was assessed during two sessions prior to the
intervention and two sessions following mastery. The same
data-collection procedures used during assessment graphs was
used during generalization probes. Data were summarized as the
percentage of accurate visual analysis.

Maintenance Maintenance of visual analysis skills was
assessed at approximately one day, one week, two weeks,
and one month following mastery. Maintenance sessions were
conducted across all properties taught and overall intervention
effect using the same packets of 10 A-B graphs as in baseline
conditions. The same data-collection procedures and data
summary used during assessment graphs were used during
maintenance sessions.

Social Validity Measures

The acceptability of the study’s goals (i.e., to train adults to
visually analyze A-B graphs), procedures (i.e., computer-based
training with feedback), and outcomes (i.e., accurate visual anal-
ysis of A-B graphs following training) was assessed in different
ways. To assess the study’s goals, a group of 10 BCBAs (i.e.,
two doctoral-level and eight master’s-level BCBAs) were sur-
veyed prior to the study. Each BCBA was provided with the
computer-based training instructional content through e-mail.

They were given a 6-item questionnaire using a 5-point Likert
rating scale of 1 (strongly disagree) to 5 (strongly agree) to rate
the clarity and importance of the computer-based training. These
datawere summarized asmeans and ranges per question. Results
suggested that the BCBAs strongly agreed that training adults to
visually analyze A-B graphs is an important instructional area
(mean 5) and that the computer-based training is an acceptable
method (mean 4.1, range 4–5) that is clear (mean 4.6, range 4–6)
and easy to follow (mean 4.6, range 4–6). In addition, the
BCBAs strongly agreed or agreed that they would use this pro-
cedure to train individuals (mean 4.5, range 4–5). To further
assess the study’s goals, the same group of BCBAs scored the
computer-based training on the validity of the content using the
Fidelity Checklist modified from Jostad (2011). The computer-
based training was modified based on these assessments. These
datawere summarized as the percentage of included components
per question. Results indicated that most of the components were
included in the training at 100% agreement, with minimum
mean agreement of 90% and 95% across two questions.
Additionally, 100 hard copies of A-B graphs were analyzed by
raters to ensure the accuracy of the mathematically generated
graphs, specifically, to determine whether the graphs depicted
property and overall effect or noneffect across baseline to treat-
ment conditions they were chosen to exhibit. As previously not-
ed, 60 graphs with the highest mean agreement were retained.

To assess the acceptability of the procedures, each participant
completed a modified version of the Treatment Acceptability
Rating Form-Revised (Reimers & Wacker, 1988). Participants
were given a 5-item questionnaire using a 5-point Likert rating
scale of 1 (strongly disagree) to 5 (strongly agree) to rate the
acceptability of the procedures. These data were summarized as
means and ranges per question. The results of the survey indi-
cate that most participants enjoyed the training (mean 4, range
2–5) and the training had a positive impact on performance
(mean 4, range 2–5). Additionally, all participants agreed or
strongly agreed that the training was clear to them (mean 4.5,
range 4–5) and that it was easy to visually analyze graphs fol-
lowing training (mean 4.25, range 4–5). To assess the outcomes,
participant scores on the first baseline measure and last interven-
tion measure, across all measures, were converted to relevant
letter grades used in university courses by using the following
conversion: 100% = A, 90% = A−, 80% = B−, 70% = C−, 60%
= D, and below 60% = F (Fienup & Critchfield, 2010; Schnell,
Sidener, DeBar, Vladescu, & Kahng, 2014). These data were
summarized as the percentage of letter grades per measure. All
participants increased at least one letter grade for each visual
analysis property (see Fig. 1).

Interobserver Agreement

Point-by-point agreement was used to determine the interob-
server agreement score. This was calculated by dividing the
number of agreements by the number of agreements and
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disagreements and multiplying by 100. The IOA mean across
all participants was 100% across all phases of the study.

Procedural Integrity

Two procedural integrity measures were conducted. First, one
of the research assistants scored the functioning of the
computer-based training software to ensure that the program
opened, presented the correct module, and delivered appropri-
ate feedback. Data were scored in vivo one time during the
study and scoring was completed with 100% accuracy. Data
were summarized as the percentage of correctly implemented
components. Second, the assistants scored the experimenter’s
implementation of the procedures during sessions (i.e.,
preexperimental assessment, baseline, assessment, pre- and
postgeneralization probes, and maintenance). Procedural in-
tegrity was collected for 88.5% across all assessments, specif-
ically 100% for Cody, 60% for Herbie, 97% for Kasey, and
97% for Oliver across all sessions. Data were summarized as
the percentage of correctly implemented components. The
implementation of the procedures by the experimenter was
completed with 100% integrity. IOA data were also collected

on procedural integrity for all sessions in which procedural
integrity data were videotaped (86%). IOA data for procedural
integrity were also 100%.

Results

Figure 2 shows the percentage of accurate visual analysis prop-
erties for all participants. For Cody (top-left panel), responding
remained stable and between 40% and 80% in baseline for all
visual analysis properties. Following the introduction of the
computer-based training on all properties, an immediate in-
crease in percentage of accurate visual analysis occurred for
Cody, whereas the subsequent properties remained stable and
below criterion. Specifically, once computer-based training was
implemented on variability, responding increased to a mean of
97% (range 90%–100%); on trend, responding increased to a
mean of 87.5% (range 80%–90%); and finally, on level,
responding increased to 100%. For Herbie (top-right panel),
baseline responding remained stable and below criterion for all
visual analysis properties. After computer-based training was
introduced on trend, accurate responding increased from amean
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right) for all participants
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of 47.5% (range 30%–60%) to 64% (range 40%–90%); on lev-
el, responding increased to 90%; and on variability, responding
increased to a mean of 82% (range 60%–90%). For Kasey (bot-
tom-left panel), responding remained stable in baseline for all
visual analysis properties. Following the introduction of training
on all properties, an immediate increase in percentage of accu-
rate visual analysis occurred for Kasey, whereas the other prop-
erties remained stable and below criterion. Once training was
implemented on level, accurate responding increased to a mean
of 87% (range 70%–100%); on trend, responding increased to a
mean of 97% (range 90%–100%); and on variability,
responding increased to a mean of 87.5% (range 80%–90%).
Finally, for Oliver (bottom-right panel), baseline responding
remained stable and between 40% and 70% for all visual anal-
ysis properties. After the introduction of the computer-based
training on all properties, an immediate increase in percentage
of accurate visual analysis occurred for Oliver, whereas succes-
sive properties remained stable and below criterion. Once
computer-based training was implemented on level, accurate
responding increased to a mean of 90%; on variability,
responding increased to a mean of 93% (range 90%–100%);

and on trend, responding increased to a mean of 86% (range
80%–90%).

Furthermore, total training time was approximately 20 min
for Cody, 1 h 5 min for Herbie, 33 min for Kasey, and 52 min
for Oliver. The average training time was 42 min 25 s (range
20 min 3 s–1 h 4 min 57 s). The total testing time was approx-
imately 40 min for Cody with a mean time per graph packet of
4 min (range 3–6 min), 2 h 29 min for Herbie with a mean of 6
min (range 4–8 min), 1 h 24 min for Kasey with a mean of 4
min (range 3–7 min), and 1 h 9 min for Oliver with a mean of
6 min (range 5–8 min). The average testing time per graph
packet was 5 min 12 s (range 3 min 57 s–6 min 15 s).

Figure 2 depicts the percentage of accurate responding for all
participants on overall intervention effect, demonstrated at the
bottom of each panel. Responding remained stable for all par-
ticipants prior to training. For Cody (top-left panel) and Oliver
(bottom-right panel), as each property’s training was introduced,
accurate responding to these probes increased and the mastery
criterion was met. However, for Herbie (top-right panel) and
Kasey (bottom-left panel), as each property’s training was intro-
duced, accurate responding remained constant; therefore,
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overall intervention effect had to be trained, and they quickly
mastered this. Additionally, Fig. 2 depicts the results for the pre-
and posttest generalization probes of handwritten and authentic
data graphs during two sessions prior to intervention and two
sessions following mastery. Before training, participants did not
meet criterion on the handwritten graphs; however, following
the intervention, average responding increased for all but one
measure, in which Cody’s average responding remained con-
stant at 80% for trend. For the authentic graphs, before training,
participants did not meet the mastery criterion. Following train-
ing, average responding to authentic data graphs increased for
most measures.

Figure 2 depicts the results for maintenance probes for each
participant following mastery of each property and overall in-
tervention effect. All skills maintained at 90% or higher for
Cody and Oliver at approximately one day, one week, two
weeks, and one month following mastery. For Herbie, skills
maintained at 90% or higher for level and variability; however,
trend responding decreased to 80% at 1-week and 2-week
probes and increased to 100% at 9-week probe. Similarly, over-
all responding decreased to 70% at 2-week probe but increased
to 90% at 8-week probe. For Kasey, skills maintained at 90% or
higher for variability and overall; however, level and trend
responding deceased to 80% at 2-week and 9-week probes.

Discussion

Prior to receiving training, participants’ percentage of ac-
curate visual analysis was below criterion. With the intro-
duction of the computer-based training, each participant
accurately visually analyzed A-B graphs on the three main
visual analysis properties (i.e., variability, level, and trend)
and overall intervention effect. This procedure allowed for
exclusive reliance on computer-based training and, there-
fore, may potentially reduce the cost and time associated
with hiring clinicians while simultaneously promoting ac-
curate and consistent training on visual analysis.
Furthermore, accurate visual analysis of A-B graphs is nec-
essary for the successful implementation of ABA (Fisher et
al., 2003) and client outcomes (Cooper et al., 2007).

This study was the first, to the authors’ knowledge, to
use computer-based training to teach individuals accurate
visual analysis of A-B graphs on all visual analysis prop-
erties, sequentially to mastery, while assessing overall in-
tervention effect responding. This study contributes to pre-
vious research that successfully used a mastery-based com-
puter software program to teach adults to accurately visu-
ally analyze graphs on two properties (i.e., trend and level;
Wolfe & Slocum, 2015) and that taught students to inter-
pret intervention effect or noneffect based on visual anal-
ysis properties (i.e., level, trend, and variability; Jostad,
2011) simultaneously. It was hypothesized that the

mastery-based design of the computer-based training was
successful in increasing individuals’ accurate visual anal-
ysis of A-B graphs because this training incorporated most
of the components typical of behavioral skills training (i.e.,
written instructions, behavior rehearsal, and feedback;
Nosik & Williams, 2011; Sarokoff & Sturmey, 2004). All
of these components have been found to be effective indi-
vidually and in combination. Furthermore, past studies
used either mathematically generated comparison mea-
sures (Jostad, 2011) or expert consensus (Wolfe &
Slocum, 2015) as the measure to evaluate participant re-
sponses. This study combined these methods by using ex-
pert responses as they compared to Jostad’s (2011) statis-
tical parameters per graph. This allowed for an additional
way of measuring participant responses compared to using
one method alone. Additionally, as in Wolfe and Slocum
(2015), feedback was provided for correct and incorrect
responses during training. However, in the current study,
remediation loops were specific to the nature of the error.
Particularly, each remediation loop included feedback on
the correct answer, an explanation why the participant’s
response was incorrect, and a single additional practice
graph before the participant was presented with a similar
graph (contingent on accurate response). This format may
have decreased the redundancy of the repetitive practice
graphs, increased effectiveness of the computer-based
training, and led to maintenance of visual analysis skills.

Wolfe and Slocum (2015) used a successive (i.e., level
then trend until mastery) and simultaneous (i.e., level and
trend until mastery) training approach; however, they did
not assess overall intervention effect responding. The cur-
rent study expanded on this potential limitation by using
successive training to evaluate effectiveness while
assessing generalization probes of overall intervention ef-
fect to observe if and when overall intervention effect was
learned. Moreover, this allowed determination if one prop-
erty exerted more control on overall effect responding. In
the current study, two out of four participants’ responding
generalized to analysis of overall intervention effect. It is
hypothesized that order of training may have influenced
responding. Specifically, both participants received train-
ing on their final property of trend or level (not variability)
when overall intervention effect responding generalized.
Interestingly, Cody received training on trend (second
property) and level (third property) and mastery criterion
was missed by one session during training on trend. Future
studies may evaluate which order of training leads to rapid
generalization of overall responding, as trend and level
seemed to influence overall intervention effect responding
the most. Additionally, while piloting the study, carry-over
effect was noted and addressed by varying the order in
which the participants received the training and editing
the content within the modules to ensure there was no
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overlap across properties. Although these efforts were
made to prevent carry-over effect, for Herbie, when train-
ing began on trend, level responding remained stable at
80%. This could be corrected by teaching the properties
simultaneously. Future studies may evaluate simultaneous
training compared to successive training, as simultaneous
may be more efficient and likely to obtain generalization
(Saunders & Green, 1999).

Moreover, no study to date has programmed or assessed
generalization of accurate visual analysis skills. Therefore,
this study further extended previous research by demonstrat-
ing that individuals’ visual analysis skills generalized from
simulated data to handwritten and authentic data graphs (as
evidenced by the pre- and posttest generalization probes).
Furthermore, studies that taught visual analysis and interpre-
tation of A-B graphs either did not target teaching directly
(Fisher et al., 2003) or did not assess maintenance of interven-
tion effects following the removal of the teaching aid and over
time (Fisher et al., 2003; Jostad, 2011; Stewart et al., 2007;
Wolfe & Slocum, 2015). During the current study, two partic-
ipants (i.e., Cody and Oliver) maintained gains at 90% or
higher at approximately one day, one week, two weeks, and
one month following mastery. Because of scheduling con-
flicts, two participants were assessed closer to a two-month
probe (in place of a one-month probe). For Herbie, gains
maintained at 90% or higher for all four properties, and for
Kasey, gains maintained at 90% for two properties. Therefore,
the current study directly contributes to the existing literature
by demonstrating that computer-based training led to accurate
visual analysis of A-B graphs that maintained up to 2 months
following mastery. Additionally, this study was the first to
assess full social validity of the goals, procedures, and out-
comes, which validated the importance and effectiveness of
this training to trainers and consumers.

While conducting the current study, feedback was obtained
from several of the raters that assessed the A-B graphs. The
overwhelming concern was with the last question (i.e., “Did
behavior change from baseline to treatment?”). Teaching vi-
sual analysis skills on A-B graphs is the simplest way to train
the type of graph that most clinicians will likely come into
contact with; however, experimental control cannot be deter-
mined fromA-B graphs (Cooper et al., 2007). Although it was
expected that the raters would use the combined principles of
visual analysis to answer this question, many of the raters took
the question literally, at face value, which yielded a different
answer. Suggestions were shared from BCBA-Ds as to how to
make this last question clearer. Several included rephrasing
the question to one of the following: (a) “Using visual analysis
only, does the behavior appear to have changed from baseline
to treatment?” (b) “Although no conclusions can be drawn
from an A-B design, does the behavior appear to have
changed from baseline to treatment?” or (c) “Before possibly
testing for functional control, did the behavior change from

baseline to treatment?” Future investigations may take this
information into consideration when formulating questions
targeted to evaluate overall intervention effect when training
on A-B graphs. Additionally, several raters expressed concern
with some of the graphs created by Jostad (2011), which did
not have stable baselines prior to implementing treatment.
Pluchino (1998) indicated that when teaching visual analysis
skills, graphs should not have a slope in baseline. Future re-
search may take this feedback into consideration when
obtaining graphs.

Interestingly, while developing materials used in the cur-
rent study, it was found that many of the participants who
pretested out of the study (n = 15; i.e., obtained 70% or higher
on any of the measures) scored higher on graphs than the
expert raters (i.e., nine BCBA-Ds and one BCBA). The aver-
age age of the participants that did not meet inclusion criteria
was 23.73 (range 19–56 years) and average reported GPA
from 12 participants was 3.56 (range 3–3.91). Most of these
participants reported psychology (n = 7) or education (n = 2)
as their majors. Because naïve participants (i.e., adults that did
not have extensive experience in ABA or special education)
were used in the study, it is hypothesized that individuals with
advanced experience in the field of ABAmay view the graphs
in terms of learner behavior whereas naïve individuals may
view graphs in terms of data points. Additionally, most partic-
ipants that pretested out developed rules for themselves that
influenced responding; for example, one participant stated her
rule for evaluating trend as similar to “trending” on Twitter,
which means you are going up. Another participant indicated
that for level, he thought of people being tall or short in
stature.

Furthermore, the software developed included written
instructions, interactivity, quizzes, and textual feedback.
The written instructions may have caused an increase in
accurate responding as this component was similar to a
lecture, and past research found lecture conditions alone
increase accurate responding (Jostad, 2011; Wolfe &
Slocum, 2015). Future research may conduct a component
analysis to determine which components of the training
procedure lead to accurate responding. Other avenues for
future research include assessing generalization to non- A-
B graphs, such as reversal and multiple-baseline designs.
Future research could also include development of a fully
automated computer-based training program leading to a
streamlined training that may reduce total testing time.
This could allow for learner-paced instruction (Skinner,
1958), especially as online ABA programs continue to in-
crease (Lee, 2017). Also, future studies may evaluate if
brief written instructions in baseline influence responding
of individuals without prior experience in visual analysis.
Furthermore, this study was conducted in an academic set-
ting; perhaps future research could investigate conditions
in which experimenters could simulate a clinical setting by
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evaluating training in a more generic way. For example,
participants could be asked to describe a novel graph in
vivo (e.g., “Tell me about this graph.”), to vocally state
the rules they were taught while visually analyzing a novel
graph, or to analyze actual unfinished data from a learner’s
programming binder. This would provide meaningful in-
formation on participants’ actual performance in a natural
context, rather than a training context.

Overall, the present study taught adults with no prior
experience to visually analyze A-B graphs on the visual
analysis properties of variability, level, and trend and over-
all intervention effect. The training was expedited in nature
as it took 20 min for Cody to learn all visual analysis
components and under one hour for 75% of the partici-
pants. This was the first known study to demonstrate gen-
eralization and maintenance of visual analysis skills.
Therefore, a computer-based training approach that leads
to accurate visual analysis, while simultaneously expedit-
ing the training process, may be of great value to clini-
cians, staff, and organizations.

Implications for Practice

& This extends previous research on training individuals to
analyze baseline-treatment graphs.

& This research is the first investigation to evaluate the ef-
fects of computer-based training on the visual analysis

skills of variability, level, and trend while assessing gen-
eralization to overall intervention effect.

& Computer-based training led to successful analysis of
baseline-treatment graphs.

& Visual analysis skills generalized to untrained graph for-
mats and maintained up to 2 months following the con-
clusion of the training.
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Appendix

A sample of an assessment graph presented to participants.
This graph demonstrates a baseline-to-treatment change in
level, trend, and overall intervention effect, but no change in
variability.
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