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ABSTRACT Data below detection limits, left-censored data, are common in environ-
mental microbiology, and decisions in handling censored data may have implica-
tions for quantitative microbial risk assessment (QMRA). In this paper, we utilize sim-
ulated data sets informed by real-world enterovirus water data to evaluate methods
for handling left-censored data. Data sets were simulated with four censoring de-
grees (low [10%], medium [35%], high [65%], and severe [90%]) and one real-life
censoring example (97%) and were informed by enterovirus data assuming a lognor-
mal distribution with a limit of detection (LOD) of 2.3 genome copies/liter. For each
data set, five methods for handling left-censored data were applied: (i) substitution
with LOD/�2, (ii) lognormal maximum likelihood estimation (MLE) to estimate mean
and standard deviation, (iii) Kaplan-Meier estimation (KM), (iv) imputation method
using MLE to estimate distribution parameters (MI method 1), and (v) imputation
from a uniform distribution (MI method 2). Each data set mean was used to esti-
mate enterovirus dose and infection risk. Root mean square error (RMSE) and bias
were used to compare estimated and known doses and infection risks. MI method 1
resulted in the lowest dose and infection risk RMSE and bias ranges for most censor-
ing degrees, predicting infection risks at most 1.17 � 10�2 from known values un-
der 97% censoring. MI method 2 was the next overall best method. For medium to
severe censoring, MI method 1 may result in the least error. If unsure of the distribu-
tion, MI method 2 may be a preferred method to avoid distribution misspecification.

IMPORTANCE This study evaluates methods for handling data with low (10%) to se-
vere (90%) left-censoring within an environmental microbiology context and demon-
strates that some of these methods may be appropriate when using data containing
concentrations below a limit of detection to estimate infection risks. Additionally,
this study uses a skewed data set, which is an issue typically faced by environmental
microbiologists.

KEYWORDS left censored, limit of detection, quantitative microbial risk assessment

Methodologies for handling data below limits of detection (LOD) have been a
long-recognized issue in many scientific disciplines, and it is a frequent reality for

environmental health and exposure scientists. Data below a LOD for which the true
value is unknown are often referred to as “left-censored.” If data are above a particular
value but the true value is unknown, these are referred to as “right censored.” For
example, in microbiology, a left-censored data point may be one for which nothing was
detected with a particular method or assay, but it is unknown whether there are truly
zero organisms of interest in the sample. An example of a right-censored data point in
microbiology might be a plate count of “TNTC” (too numerous to count), where the
lower bound of the possible value may be known but the true value of the count is
unknown.

The issue of left-censored data is familiar in environmental microbiology. Virus
recovery efficiency challenges and needs for adjustments to viral concentration data to
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more closely reflect reality have been acknowledged (1). Additionally, more recent
environmental microbiological studies have addressed that substitution is not an
appropriate method for handling LOD data. In 2015, Pouillot et al. (2) used methods
from survival analysis and Bayesian inference models to characterize distributions of
norovirus and male-specific coliphage concentrations due to these methods’ ability
to handle left-censoring (2). The distributions were then used to model viral
concentrations and log reductions due to various water treatment steps (2). In 2016,
Vergara et al. used nondetects (left-censored values) and data analysis (NADA)
methods developed by Helsel et al. in fitting distributions to norovirus and human
adenovirus concentration data utilized in a quantitative microbial risk assessment
(QMRA) (3, 4).

The method chosen for handling data below LOD has important implications for
estimating risks within QMRA. In several sensitivity analyses for exposure models,
pathogen concentration was found to be one of the biggest drivers, if not the number
one driver, of infection risk (5–8). For pathogenic viruses for which there are low
infectious doses relative to those of other microorganisms, the method for handling
data at or below LOD may have notable impacts on predicted health outcomes.
Interpreting data below the LOD within an environmental health context is particularly
important, as data may be used to determine health risks associated with exposures.
Substituting values below the LOD with a constant, such as the LOD, LOD/2, or
LOD/�2, has been a common approach (9). However, it is well recognized that these
substitution methods may introduce error (observed values � actual values), especially
when large portions of a data set are below the LOD (9–11). Helsel (11) went as far as
to say that manuscripts should be rejected from publication if substitution methods
have been used to address data below LOD. Despite warnings against the implemen-
tation of substitution methods, they are still heavily used in some disciplines (11, 12).
Among the common substitution values, LOD/�2 has been favored for lognormal
distributions (10). Instead of using substitution methods, some have suggested ap-
proaches including maximum likelihood estimation (MLE) for parametric data and the
Kaplan-Meier (KM) method when the underlying distribution of a data set is unknown.
Some have regarded the MLE method as the “gold standard” for handling data below
LOD (13). However, others have acknowledged that if there is “severe” censoring or if
the data are highly skewed, then the use of a nonparametric means, such as the KM
method, is recommended over the MLE method, because a distribution is not assumed
in using the KM method (14). Although methods beyond substitution have been
acknowledged as mathematically intensive and perhaps impractical to implement,
affordability of the necessary computing power and the availability of programs or
tools to allow for broader adoption have altered this reality (12).

In 2014, the U.S. EPA published a document recognizing that substitution methods
may not be appropriate for microbial field data, especially considering computing
advances that allow for the use of more rigorous methods, such as MLE, KM, and
multiple imputation (MI) (15). However, multiple options for handling censored data
were discussed (15). With many available and recommended methods existing in
current and previous literature surrounding LOD issues in environmental sciences, there
is a need for the exploration of these methods within a QMRA context to demonstrate
the potential impact of LOD methodology on estimated risk and to identify superior
methods that support accurate risk assessments. Additionally, previous simulation
studies comparing LOD methods often have not incorporated highly right-skewed data,
which is common in environmental microbiology (16–19). The purpose of this study
was to evaluate substitution, MLE, KM, and two MI methods for lognormal highly
right-skewed data sets with low, medium, high, and severe censoring, as defined by the
U.S. Army Public Health Command in 2015 (14), in addition to a real-life example in
which 97% of samples were left-censored (20). Left-censoring in microbial data has
been shown to occur at all of these censoring levels (20–23), making these censoring
degrees relevant to the field of QMRA. The effects of LOD methods applied to simulated
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data on viral concentrations in drinking water on estimated viral doses and infection
risks were then quantified and compared.

RESULTS

For medium, high, and severe degrees of censoring, MI method 1 (which used MLE
methods to estimate parameters of the lognormal distribution and imputing censored
data points with values from this distribution below the LOD) estimated mean viral
concentrations and predicted infection risks closest to those of the known, unmasked
data sets (Tables 1 and 2). Additionally, this method resulted in the smallest root mean
square errors (RMSEs) and biases in dose and infection risk for medium to severe
degrees of censoring (Tables 3 and 4). MI method 2 (which assumed that all data below
the LOD followed a uniform distribution and imputed values from this distribution for
censored values) was the next overall best method for estimating the mean viral
concentration of the data set (Table 1). MI method 2 resulted in the lowest RMSEs and
biases in dose and infection risk for low censored data (Tables 3 and 4). As degrees of
censoring increased, ranges of dose and infection risk biases and RMSEs increased,
meaning that performance of the methods became more variable.

Biases for low to severe censoring for MI method 1 were positive, indicating that it
overpredicts risk. However, with 97% censoring, MI method 1 began to underpredict
some doses and infection risks. The MLE method underpredicted some doses and
infection risks for all degrees of censoring. The infection risk bias with the smallest
magnitude (1.14 � 10�4) was observed under 90% censoring using MI method 1. The
bias greatest in magnitude (9.93 � 10�1) was observed for the MLE method with 97%
censoring. This means that a predicted risk value of 0.01 could be incorrectly estimated
to be as large as approximately 1.00 using an MLE method with 97% censored data. The
MLE method had some bias values on the order of 10�1 for all censoring degrees,
meaning that at any censoring degree, it is possible that the MLE method could result
in a predicted risk that is 0.1 larger or smaller than the true infection risk. When
comparing the distributions of predicted infection risks with 90% censored data sets,
the MLE method predicted a maximum infection risk of 1 where the actual maximum
infection risk was 0.21 (Table 2).

In the real-life example in which 97% of data were below the LOD, MI method 1
produced the lowest dose and infection risk biases. Using this method, the largest bias
for dose was 3.14 viral particles, while the smallest bias was �0.058 viral particles (Table
4). For infection risk, the largest bias measured using MI method 1 was 1.17 � 10�2,
while the smallest bias was �2.14 � 10�4 (Table 4). This means that, at worst, this
method may overpredict risk by 1.17 � 10�2 or may underpredict risk by 2.14 � 10�4.

Most of the methods, aside from the MLE method, performed well in estimating the
mean, minimum, and maximum infection risks. The substitution method performed well
under low, medium, and high censoring (Table 2). Under severe censoring, the mean and
maximum infection risks were closely estimated, but the minimum infection risks were

TABLE 1 Descriptive statistics of simulated data sets per degree of censoring category for known data sets and after implementation of
censored data methodsa

Data set or
censored data
method

Viral concn (genome copies/liter) (mean � SD) for indicated degree of censoring

Low Medium High Severe Real-life example

Known 25.93 � 88.35 18.87 � 77.52 10.16 � 56.97 2.93 � 31.59 0.88 � 16.66
Substitution LOD/�2 26.09 � 88.30 19.43 � 77.38 11.20 � 56.79 4.38 � 31.46 2.44 � 16.58
MLEb 18.56 � 44.31 15.51 � 68.25 11.44 � 225.24 49.15 � 100 � 1.62 � 108 1.47 � 108 � 2.36 � 1026

KMb 26.17 � 77.32 19.68 � 65.06 11.70 � 44.87 5.28 � 19.25 5.06 � 8.20
MI method 1 26.06 � 88.31 19.21 � 77.44 10.54 � 56.90 3.14 � 31.57 1.01 � 16.66
MI method 2 26.05 � 88.32 19.27 � 77.42 10.90 � 56.84 3.95 � 31.49 1.98 � 16.62
aData sets comprised simulated data sets with low (10%), medium (35%), high (65%), and severe (90%) degrees of censoring and a real-life censoring example (97%);
censored data methods included substitution LOD/�2, MLE, KM, MI method 1, and MI method 2. Bold values indicate those that were the closest to the known
values for that degree of censoring.

bFor the MLE and KM methods, where a summary statistic is estimated for the entire data set as opposed to accounting for individual values in place of censored
data, standard deviations represented for all data sets at a degree of censoring are equal to the mean of the estimated standard deviations for each data set.
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overestimated. A similar pattern was observed for KM and MI method 2 (Table 2). MI
method 1 consistently estimated an infection risk that was, at most, 1.17 � 10�2 from the
actual value (Table 4), and minimum and maximum infection risks were closely predicted,
even when the level of censoring was severe (Table 2).

All infection risks resulting from uncensored simulated data sets resulted in risks
greater than the risk target, 1/10,000 (Table 2). This demonstrates that even when the
50th percentile of a distribution would result in a risk target, using the mean concen-
tration of highly right-skewed data sets could result in risk predictions roughly 1- to
2-log10 larger than the risk target.

The sensitivity analysis demonstrated that 25% increases or decreases in the as-
sumed geometric mean, geometric standard deviation, and LOD used to inform the
assumed distribution for simulated data sets did not affect the conclusions that MI
method 1 was overall superior in handling medium, high, and severe degrees of
censoring and the real-life example of censoring while MI method 2 was superior in
handling low degrees of censoring (see Tables S1 to S4 in the supplemental material).

DISCUSSION

In a comparison of all measures of performance, MI method 1 was overall the most
superior method, because it resulted in the smallest biases and RMSEs and captured
distributions of infection risk well for the largest number of censoring categories
(medium, high, and severe censoring) and for the real-life example. Aside from being
useful in providing accurate estimations of censored data, this method slightly over-
predicted the true risk for most censoring levels, making it a conservative tool in
assessing risk and preferred over a method that may underestimate the true risk.

MI method 2 consistently performed the best for low censoring. However, it is
possible that other methods may have been superior if a different parameter estimate,
aside from the mean, had been used as a point of comparison. Within a QMRA context,
means are typically used in deterministic modeling because this parameter is more
conservative than the median, as it is sensitive to high exposure concentrations that
may be experienced (16, 18).

The MLE method did not perform as well as other methods in these simulations.
Although the MLE method has performed well in other simulation studies, other work
has noted that the MLE method does not perform as well for highly skewed data,
producing larger mean square errors (24). The substitution method did not perform as
poorly as expected, as this method outperformed the MLE and KM methods. However,
because R statistical software packages exist that make the implementation of multiple-
imputation methods accessible, substitution methods should not be the first approach
in handling left-censored data (25).

This study did not consider a scenario in which distribution misspecification occurs.
If the assumed distribution is not the distribution by which the true data abide, this
could lead to poor performance of methods that assume a particular distribution (24).
If one is unsure of the distribution of the data for data sets with medium to severe
degrees of censoring, MI method 2 may be more reliable than MI method 1, as
distribution misspecification could result in poor performance of MI method 1. How-
ever, if one is confident that the distribution of the data has been accurately identified
or if the assumption is strongly informed, then MI method 1 may be more appropriate
to use. A source of uncertainty in this study was assumptions regarding microbial
distribution characteristics that informed simulated data sets. Although real-life values
from a microbial data set were used, future studies should evaluate these methods for
other anticipated or observed microbial data set distributions.

Both MI methods are easily applicable within QMRA, as opposed to the MLE or KM
methods, because they allow for the use of the full data set and are not restricted to
using summary statistics for the data set. Use of the full data set is helpful if the
intention is to utilize it in stochastic exposure modeling. MI method 1 could be used to
fit distributions to data sets containing left-censored data so that these distributions
could later be randomly sampled to represent a variety of expected concentrations. MI
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method 2 could be used to create a mixed distribution, where the uniform distribution
would be sampled for a certain percentage of the time to represent the proportion of
censored data in the data set. The uncensored data could then be sampled from
discretely, or one could sample from a distribution fit to these uncensored concentra-
tions (26). This study identifies methods for handling highly skewed, left-censored
microbial concentration data and quantifies the impact of various methods on accuracy
in calculating summary statistics and estimating infection risks with concentration data.
Adoption of more mathematically intensive methods that offer better accuracy in
handling left-censored data, such as the MI methods suggested in this study, are
becoming more practical, as free software packages are available. Methods evaluated
in this study can be used to predict infection risks associated with quantified microbial
concentrations. There are a number of previous microbiological and QMRA studies that
could have benefited from these methods in handling left-censored data due to various
levels of left-censoring (21, 27, 28). In a study conducted by Herzog et al., the LOD was
one of the most sensitive factors for health risk estimation in multiple modeled
scenarios (29). As efforts continue to develop or modify current microbial detection
methods with greater sensitivity, statistical methods, such as the ones in this study, can
be utilized to bridge the current gap in addressing commonly experienced LOD issues
in microbiology.

MATERIALS AND METHODS
Simulating quantitative PCR drinking water virus concentration data. R statistical software was

used for all simulations and evaluations in this study (25). A distribution that would be used to simulate
the known data sets was first created by calculating an enterovirus concentration (genome copies/liter)
that would be needed to result in an annual 1/10,000 infection risk, based on assumed parameters for
the equations used to estimate dose and infection risk.

A lognormal distribution for virus concentrations was assumed, as this distribution has been applied
to microbial water quality data, specifically for enteric viruses, and for other types of environmental
concentration data (1, 21, 30). The concentration that would result in a 1/10,000 annual infection risk, the
tolerable risk established by the U.S. EPA, using the following equations was set equal to the geometric
mean of the lognormal distribution (3.66 � 10�5 genome copies/liter) used to create the “known”
simulated data set (31). The geometric standard deviation of detected enterovirus in water samples (78.2
genome copies/liter) from a study conducted by Pearce-Walker in 2017 was used to represent the
expected variability of viral concentrations in drinking water samples (20). The LOD for simulated data
sets (2.3 genome copies/liter) was calculated using methods described by Pearce-Walker, assuming a
filtered sample volume of 1,000 liters. Although not the processed sample volume utilized by Pearce-
Walker (20), we used this larger sample volume, sometimes used when sampling water samples for
viruses (32), in order to create a scenario in which LOD may be relatively close to infectious doses of
viruses. In the case of this scenario, the LOD (2.3 genome copies/liter) was 2 orders of magnitude lower
than the enterovirus infectious dose estimated by the QMRA wiki (http://qmrawiki.canr.msu.edu/index
.php/Quantitative_Microbial_Risk_Assessment_(QMRA)_Wiki). However, some viruses, such as poliovirus
and rotavirus, have infectious doses estimated to be as low as 1.41 and 6.17 viral particles, respective-
ly (http://qmrawiki.canr.msu.edu/index.php/Quantitative_Microbial_Risk_Assessment_(QMRA)_Wiki). In
this study, it was assumed that all detected viruses were viable, as this has been a recommended
conservative approach in other enteric virus QMRA contexts (33). Equation 1 was used to estimate
enterovirus exposures, equivalent to dose in this case, and has been used by the World Health
Organization for microbial drinking water exposure estimates (34):

dose � V · C (1)

where dose is the number of infectious, viable virus particles, V is the volume of water consumed per day
(liters), and C is the virus concentration (viral particles/liter).

It was assumed that a person drinks 2 liters of water per day, as this value has been recommended
in other drinking water QMRA contexts (35). To represent an organism with a low infectious dose, the
exponential dose-response model for enterovirus was used, as this has been recommended by the QMRA
wiki (http://qmrawiki.canr.msu.edu/index.php/Quantitative_Microbial_Risk_Assessment_(QMRA)_Wiki):

Pinfect, daily � 1 � e�k·dose (2)

where Pinfect, daily is the daily infection risk from drinking water and k equals 3.74 � 10�3, a constant
recommended by the QMRA wiki (http://qmrawiki.canr.msu.edu/index.php/Quantitative_Microbial_Risk
_Assessment_(QMRA)_Wiki). The parameter k represents the probability of a single organism surviving
and infecting the host (36). The annual infection risk was estimated as follows:

Pinfect, annual � 1 � (1 � Pinfect, daily)
365 (3)

where Pinfect, annual is the annual infection risk.
Four degrees of censoring—low (10%), medium (35%), high (65%), and severe (90%)—within defined

ranges stated by the U.S. Army Public Health Command (14) were considered. Additionally, 97%
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censoring was investigated as a “real-life example,” informed by an enterovirus data set in which
approximately �96% (183/190) samples were censored (20). For each degree of censoring, 1,000
simulated data sets, assumed as “true” known data for our purposes, were created. Each individual data
set included 100 viral concentrations, and this data set was then saved such that all data points were
known, including concentrations below the theoretical LOD. A copy of this data set was then altered so
that either 10%, 35%, 65%, 90%, or 97% of the concentrations were below the theoretical LOD
concentration assumed in this study. Methods for handling left-censored data were applied to these
censored data sets, and outcomes were compared to our “true” outcomes.

Substitution methods. Although multiple substitution values (0, LOD/�2, LOD/2, LOD) have been
used for replacing data below LOD, LOD/�2 was utilized as the substitution method in this study, as it
has been recommended over other substitution methods (10, 37). Although it has been recognized that
substitution methods are only appropriate, if at all, with low-degree censoring data, this method was
used on all-degree censoring data sets to demonstrate how misuse of LOD methods may impact QMRA
results and to evaluate its performance for highly skewed data (9, 10).

Maximum likelihood estimation and Kaplan-Meier methods. Using the NADA package in R, MLE
and KM methods were used. The NADA package uses methods by Helsel (25, 38, 39). In using the cenmle
and cenfit functions, inputted data were labeled as censored or uncensored. For censored values, the
LOD was used as a placeholder for these values. As MLE and KM are not imputation methods, censored
values were not replaced with a value. Rather, summary statistics were estimated for the entire data set,
including censored concentrations. More information regarding the MLE and KM methods implemented
by the NADA package can be found at https://cran.r-project.org/web/packages/NADA/NADA.pdf.

Multiple-imputation methods. Two distribution-based multiple-imputation methods were used in
this study. This method involves assuming that the entire data set, including values that fall below the
LOD, follows a particular distribution. This distribution is then used to impute values for censored data.
This approach has been used in other left-censoring methodology studies, and its use within an
environmental context has been encouraged (9).

The first multiple-imputation method (MI method 1) used MLE methods to estimate the parameters
of a lognormal distribution fit to the full simulated data set, including censored concentrations. Values
lower than the LOD were then imputed from this distribution for all censored values. To estimate the
parameters of the lognormal distribution, the function fitdistcens from the R package fitdistRplus was
used (40). This method has performed well in other simulation studies addressing environmental
censored data (9).

The second multiple-imputation method (MI method 2) assumed a uniform distribution (minimum �
0, maximum � LOD) for all values less than the LOD. Left-censored values were then replaced with a
number randomly selected from this uniform distribution (26).

Comparing estimated doses. RMSEs were calculated to compare estimated doses and infection
risks with known values, where a lower RMSE value indicates closer estimation to the known value. This
method has been utilized in other studies to evaluate methods for handling left-censored data (41, 42).
Biases were also calculated to evaluate the direction of error for each LOD method. A smaller magnitude
of bias indicated a closer estimation to the true value.

Sensitivity analysis. To address uncertainty in the geometric mean, geometric standard deviation,
and LOD used to define the distribution for creating simulated data sets, a sensitivity analysis was
conducted. The geometric mean, geometric standard deviation, and LOD were individually decreased
and increased by 25%. The dose and infection risk biases and RMSEs for each method were calculated
and compared to baseline values.
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