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Abstract

Particle picking is a crucial first step in the computational pipeline of single-particle cryo-electron 

microscopy (cryo-EM). Selecting particles from the micrographs is difficult especially for small 

particles with low contrast. As high-resolution reconstruction typically requires hundreds of 

thousands of particles, manually picking that many particles is often too time-consuming. While 

template-based particle picking is currently a popular approach, it may suffer from introducing 

manual bias into the selection process. In addition, this approach is still somewhat time-

consuming. This paper presents the APPLE (Automatic Particle Picking with Low user Effort) 

picker, a simple and novel approach for fast, accurate, and template-free particle picking. This 

approach is evaluated on publicly available datasets containing micrographs of β-galactosidase, 

T20S proteasome, 70S ribosome and keyhole limpet hemocyanin projections.
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1. Introduction

Single-particle cryo-electron microscopy (cryo-EM) aims to determine the structure of 3D 

specimens (macromolecules) from multiple 2D projections. In order to acquire these 2D 

projections, a solution containing the macromolecules is frozen in vitreous ice on either 

carbon or gold film, thus creating a sample grid. An electron beam then passes through the 

ice and the macromolecules frozen within, creating 2D projections.

Unfortunately, due to radiation damage only a small number of imaging electrons can be 

used in the creation of the micrograph. As a result, micrographs have a low signal-to-noise 

ratio (SNR). An elaboration on the noise model can be found in (Sigworth, 2004).
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Since micrographs typically have low SNR, each micrograph consists of regions of noise 

and regions of noisy 2D projections of the macromolecule. In addition to these, micrographs 

also contain regions of non-significant information stemming from contaminants such as 

carbon film.

Different types of regions have different typical intensity values. The intensity values of the 

micrograph are determined by the number of electrons that have passed through the sample 

grid, and are influenced by the microscope’s contrast transfer function. Due to these factors, 

regions of the micrograph that contain only noise will typically have higher intensity values 

than other regions. In addition, regions containing a particle typically have higher variance 

than regions containing noise alone (Nicholson and Glaeser, 2001; van Heel, 1982). Thus, 

two cues that can be used for projection image identification are the mean and variance of 

the image.

In order to determine the 3D structure at high resolution, many projection images are 

needed, often in the hundreds of thousands. Thus, the first step towards 3D reconstruction of 

macromolecules consists of determining regions of the micrograph that contain a particle as 

opposed to regions that contain noise or contaminants. This is the particle picking step.

A fully manual selection of hundreds of thousands of 2D projections is tedious and time-

consuming. For this reason, semi-automatic and automatic particle picking is a much 

researched problem for which numerous frameworks have been suggested. Solutions to the 

particle picking problem include edge detection (Harauz and Fong-Lochovsky, 1989), deep 

learning (Ogura and Sato, 2004; Wang et al., 2016; Zhu et al., 2016), support vector machine 

classifiers (Aebeláez et al., 2011), and template matching (Frank and Wagenknecht, 1983).

Template matching is a popular approach to particle picking. The input to template matching 

schemes consists of a micrograph and images containing 2D templates to match. These 

templates can be, for example, generated from manually selected particle projections. The 

aim is to output the regions in the micrograph that contain the sought-after templates.

The basic idea behind this approach (Chen and Grigorieff, 2007; Frank and Wagenknecht, 

1983; Langlois et al., 2014; Ludtke et al., 1999; Scheres, 2015) is that the cross-correlation1 

between a template image and a micrograph is larger in the presence of the template. An 

issue with this method is the high rate of false detection. This issue stems from the fact that 

given enough random data, meaningless noise can be perceived as a pattern. This problem 

was exemplified in (Henderson, 2013; Shatsky et al., 2009), where an image of Einstein was 

used as the template and matched to random noise. Even though the image was not present 

in the noise images, a reconstruction from the best-matched images yielded the original 

Einstein image.

One example of a template-based framework is provided in RELION (Scheres, 2015; 

Scheres, 2012; Scheres, 2012). In this framework, the user manually selects approximately 

one thousand particles from a small number of micrographs. These particle images are then 

1Cross-correlation is not the only possible function to use for template matching methods. For a review of other possibilities see 
(Nicholson and Glaeser, 2001).
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2D classified to generate a smaller number of template images that are used to automatically 

select particles from all micrographs. These particle images are then classified in order to 

identify non-particles. Additional examples of template-based frameworks include 

SIGNATURE (Chen and Grigorieff, 2007) which employs a post-processing step that 

ensures the locations of any two picked particles cannot overlap, and gEMpicker (Hoang et 

al., 2013) which employs several strategies to speed up template matching.

Template matching can also be performed without the input of template images. One 

example of this is the DoG picker (Voss et al., 2009), which is based on difference of 

Gaussians and is suitable for identifying blobs of a certain size in the micrograph. Another 

templatefree particle picking framework is gautomatch (Zhang, 2017). In addition, RELION 

allows the use of a Gaussian blob as a template.

In this paper we propose a particle picking framework that is data-adaptive in the sense that 

no manual selection is used and no templates are involved. Instead, the APPLE picker uses a 

set of automatically selected reference windows to detect the existence of a particle 

projection. This set includes both particle and noise windows. We show that it is possible to 

determine the presence of a particle in any query image (i.e., region of the micrograph) 

through cross-correlation with each window of the reference set. Specifically, in the case 

where the query image contains noise alone, since there is no template to match, the cross-

correlation coefficients should not indicate the presence of a template regardless of the 

actual content of each reference window. On the other hand, in the case where the query 

image contains a particle, the coefficients will depend on the content of each reference 

window.

Our cross-correlation based procedure can provide a determination of content for each 

window in the micrograph. However, in the interest of reducing runtime, we select a subset 

of windows as our query images. Once their content is determined, the query images most 

likely to contain a particle and those most likely to contain noise can be used to train a 

classifier. The output of this classifier is used for particle picking.

We note that our formulation can ignore the contrast transfer function (CTF). This is because 

the CTF is roughly the same throughout the micrograph and our particle selection procedure 

performs on the individual micrograph level. Thus, while CTF-correction is not strictly 

necessary, we discuss the advantage of applying our framework to CTF-corrected 

micrographs in Section 2.6.

We test our framework on publicly available datasets of β-galactosidase (Chen et al., 2013; 

Scheres, 2015; Scheres and Chen, 2012), T20S proteasome (Danev and Baumeister, 2016), 

70S ribosome (Fischer et al., 2016) and keyhole limpet hemocyanin (Zhu et al., 2003; Zhu et 

al., 2004). Some sample results are presented in Fig. 1. Code for our framework is publicly 

available.2

2https://www.github.com/PrincetonUniversity/APPLEpicker
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2. Material and methods

In Section 2.1 we detail our method for determining the content of a single query image g ∈ 
ℝn×n, where the query image is a window extracted from the micrograph and n is chosen 

such that the window size is slightly smaller than the particle size (which we assume is 

known).3This method necessitates the use of a reference set f m ∈ ℝn × n
m = 1
B

 selected from 

the micrograph in the automatic manner detailed in Section 2.2. We generalize our method 

to particle picking from the full micrograph in Section 2.3. Section 2.4 improves localization 

through the use of a fast classification step. The complete method, known as the APPLE 

picker, is described in Section 2.5. We discuss the advantage of CTF correction in Section 

2.6.

2.1. Determining the content of a query image

The idea behind traditional template matching methods is that the cross-correlation score of 

two similar images is high. Specifically, a template image known to contain a particle can be 

used in order to identify similar patterns in the micrograph using cross-correlation. In this 

section we show that the same idea can be used to determine the content of regions of the 

micrograph even when no templates are available. To this end we use the cross-correlation 

between a query image g and a set of reference images f m m = 1
B . The cross-correlation 

function is (Nicholson and Glaeser, 2001)

c f m, g(x, y) = ∑
x′

∑
y′

f m x′, y′ g x + x′, y + y′ . (1)

This function can be thought of as a score associated with fm, g and an offset (x y, ).

The cross-correlation score at a certain offset does not in itself have much meaning without 

the context of the score in nearby offsets. For this reason we define the following 

normalization on the cross-correlation function

c f m, g(x, y) = c f m, g(x, y) − 1
n2 ∑

x′
∑
y′

c f m, g x′, y′ , (2)

where the second term is the mean of c f m, g ∈ ℝn × n. We call (2) a normalization since it 

shifts all cross-correlations to a common baseline.

Consider the case where query image g contains a particle. The score c f m, g(x, y) is expected 

to be maximized when fm contains a particle with a similar view. In this case there will be 

3The notation g ∈ ℝn×n simply means that the size of a query image is n × n and its content is real-valued.
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some offset (x, y) such that the images fm and g match best, and c f m, g(x, y) > c f m, g x′, y′  for 

all other offsets (x′, y′). Thus,

c f m, g(x, y) > 1
n2 ∑

x′
∑
y′

c f m, g x′, y′ . (3)

In other words, c f m, g(x, y) is expected to be large and positive. In this case, we say g has a 

strong response to fm.

Next, consider the case where query image g contains no particle. In this case there should 

not exist any offset (x, y) that greatly increases the match for any fm. Thus typically 

c f m, g(x, y) is comparatively small in magnitude. In other words, g has a weak response to fm.

We define a response signal sg such that

sg(m) = max
x, y

c f m, g(x, y), m = 1, …, B . (4)

This signal is associated with a single query image g. Each entry sg(m) contains the maximal 

normalized cross-correlation with a single reference image fm. Thus, the response signal 

captures the strength of the response of the query image to each of the reference images.

We suggest that sg can be used to determine the content of g. If the query image contains a 

particle, sg will show a high response to reference images containing a particle with similar 

view and a comparatively low response to other images. As a consequence, sg will have 

several high peaks. On the other hand, if the query image contains noise alone, sg will have 

relatively uniform content. This idea is shown in Fig. 2.

The above is true despite the high rate of false positives in cross-correlation-based methods. 

This is due to the comparison of each query image to multiple reference windows. The 

redundancy causes robustness to false positives.

2.2. Reference set selection

The set of reference images f m m = 1
B  could contain all possible windows in the micrograph. 

However, this would lead to unnecessarily long runtimes. Thus, we suggest to choose a 

subset of B windows from the micrograph, where each of these windows is either likely to 

contain a particle or likely to contain noise alone.

In order to automatically select this subset, we first divide the micrograph into B/4 non-

overlapping containers. A container is some rectangular portion of the micrograph. Each 

container holds many n × n windows. Fig. 3a is an example of the division of a micrograph 

into containers.
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As mentioned in Section 1 (fourth paragraph), regions containing noisy projections of 

particles typically have lower intensity values and higher variance than regions containing 

noise alone. Thus we find that the window with the lowest mean intensity in each container 

likely contains a particle and the window with the highest mean intensity likely does not. We 

extract these windows from each container and include them in the reference set. We do this 

also for the windows that have the highest and lowest variance in each container. This 

procedure provides a set of B reference windows. Fig. 3b presents the reference windows 

extracted from a single container. We suggest setting B to approximately 300.

The set of reference windows must contain both windows with noise and windows with 

particles. It may seem counter-intuitive to include noise windows in a reference set. 

However, for roughly symmetric particles (i.e., particles with similar projections from each 

angle), any query image will have a similar response to every reference image which 

contains a particle. Thus, if noise images were not included in the reference set, the response 

signal sg would be uniform regardless of the content of g.

2.3. Generalization to micrographs

We extract a set of M query images from the micrograph. These images should have some 

overlap. In addition, their union should cover the entire micrograph. For example, we can 

choose windows on a grid with step size n/2. In order to determine the content of each query 

image g, we examine the number of entries that are over a certain threshold, i.e.,

k sg = i such that sg(i) > t , (5)

where the threshold t is determined according to the set of response signals and is 

experimentally set to

t =
max
g, i

sg(i) − min
g, j

sg( j)

20 + min
g, i

sg( j) . (6)

Any query image g that possesses high k (sg) is known to have had a relatively strong 

response to a large amount of reference windows and is thus expected to contain a particle. 

On the other hand, a query image g that possesses low k (sg)is expected to contain noise. In 

this manner we may consider k (sg) as a score for g. The higher this score, the more 

confident we can be that g contains a particle.

The strength of the response, and thus the score of a query image, is determined by the 

threshold t. Instead of checking the uniformity of the response signal for a single query 

image as was done in Section 2.1, we use the response signals of the entire set to determine 

a threshold above which we consider a response to be strong.

For visualization of our suggested framework, we turn to a micrograph of β-galactosidase 

(Scheres, 2015; Chen et al., 2013; Scheres and Chen, 2012). We select B = 324 reference 
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images in the manner detailed in Section 2.2, and aim to classify 21904 query images. The 

query images are selected from locations throughout the micrograph in a way that ensures 

some overlap between images. For each query image we compute the corresponding 

response signal according to (4). The threshold t is then computed from all the response 

signals according to (6). Once this is done, the value k (sg) is computed for each query 

image. We present in Fig. 4 a visualization of the results. Since we expect query images that 

contain particles to be associated with high-valued k (sg), we present the 1000 query images 

with highest k (sg). Fig. 4b shows that, as expected, these regions do contain particles. In 

addition, we present the 9000 query images with highest k (sg). The regions not contained in 

any of these query images are associated with low-valued k (sg) and can be seen in Fig. 4c to 

contain no particle.

We note that for the sake of reducing the computational complexity of our suggested 

framework, the cross-correlation score is computed using fast Fourier transforms. This is a 

well-established method of reducing complexity (Nicholson and Glaeser, 2001).

2.4. APPLE classification

A particle picking framework should produce a single window containing each picked 

particle. It is possible to use the output of the cross-correlation scheme introduced in 

Sections 2.1, 2.2, 2.3 as the basis of a particle picker. This is done by defining the query set 

to be the set of all possible n × n windows contained in the micrograph. The content of each 

query window is determined according to its score. Specifically, if the score is above a 

threshold we determine that it contains a particle. This determination can be applied to the 

location of the central pixel in that window to provide a classification of each pixel in the 

micrograph (except for boundary pixels that are not in the center of any possible n × n 
window). Unfortunately, the cost of such an endeavor, both in runtime and in memory 

consumption, is prohibitive.

In order to improve performance, the APPLE picker does not define the set of query images 

as all possible n × n windows in the micrograph. Instead, the set of query images hm m = 1
C

is defined as the set of all n × n windows extracted from the micrograph at n/2 intervals. 

However, applying a determination to the center pixel of each query window will no longer 

allow for successful particle picking. Indeed, where two overlapping query windows are 

determined to contain a particle, it is unknown whether they both contain the same particle 

or whether each contains a distinct particle. It is possible that the interval of n/2 between the 

query windows caused us to skip over windows that would have been classified as noise. In 

other words, in order to get a good localization of the particle, the content of each possible 

window of the micrograph should be determined.

To achieve this, the APPLE picker determines the content of all possible windows in the 

micrograph via a support vector machine (SVM) classifier. This classifier is based on the 

mean and variance of windows, which are simple and easily calculated features known to 

differ between particle regions and noise regions. In this manner we achieve fast and 

localized particle picking. The classifier is trained on the images whose classification (as 

particle or as noise) is given with high confidence by our cross-correlation scheme.
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To train the classifier, we need a training set. This is composed of a set of examples for the 

particle images, S1, and a set of examples for the noise images, S2. The complete training set 

is S1 ∪ S2. The choice of S1 and S2 depends on two parameters, τ1 and τ2. These parameters 

correspond to the percentage of training images that we believe do contain a particle (τ1) 

and the percentage of training images that we believe may contain a particle (τ2).

The selection of τ1 and τ2 can be made according to the concentration of the particle 

projections in the micrograph. This information can be estimated visually at the time of data 

collection from a set of initial acquired micrographs.

To demonstrate the selection of τ1 and τ2, we consider a micrograph with M = 20, 000 query 

images. If it is known that there is a mid to high concentration of projected particles, we can 

safely assume that, e.g., 1000 images with highest k (shm
) contain a particle. Thus we set τ1 

= 5%. In addition, it is possible that out of 20000 query images 15,000 may contain some 

portion of a particle. We can therefore safely assume that the regions of the micrograph that 

are not contained in any of the τ2 = 75% images with highest k (shm
) will be regions of 

noise.

When the concentration of particle projections is unavailable, the selection of τ1 and τ2 can 

be done heuristically. For instance, τ1 = 5% and τ2 = 75% is often a good selection for τ1 

and τ2. We note that when the concentration of macromolecules is not high, the value of τ2 

is less important than that of τ1.

Once τ1 is selected, the set S1 is determined. Due to the overlapping nature of query images, 

there is no need to use all τ1 percent of images with highest k (shm
) for training. Instead, we 

note that these images form several connected regions in the micrograph (see Fig. 4). The set 

S1 is made of all non-overlapping windows extracted from these regions.

The τ2 percent of query images with highest k (shm
) form the regions in the micrograph that 

may contain particles. An example of these regions can be seen in Fig. 4c. The set S2 is 

made of non-overlapping windows extracted from the complement of these regions. The 

reason for the difference between the determination of S1 and S2 is that the query images 

overlap, and we do not want to train the noise model from any section of the τ2 percent of 

query images with moderate to high k (sg).

The training set for the classifier consists of vectors x1, …, x
S1 ∪ S2

∈ ℝ+
2  and labels 

y1, …, y
S1 ∪ S2

∈ {0, 1}. Each vector xi in the training set contains the mean and standard 

deviation of a window hi ∈ S1 ∪ S2, and is associated with a label yi, where

yi =
1, if hi ∈ S1 .

0, if hi ∈ S2 .
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We note that while training the classifier on mean and variance works sufficiently well, they 

are not necessarily optimal and other features can be added. This is the subject of future 

work.

The training set is used in order to train a support vector machine classifier (Schölkopf and 

Smola, 2001; Cortes and Vapnik, 1995). We propose using a Gaussian radial basis function 

SVM. Once the classifier is trained, a prediction can be obtained for each window in the 

micrograph. This classification is attributed to the central pixel of the window, thus 

classifying each pixel in the micrograph as either a particle or a noise pixel. This provides us 

with a segmentation of the micrograph. Fig. 1b presents such a segmentation for the 

micrograph depicted in 1a. For convenience, we summarize our framework in Fig. 5.

2.5. APPLE picking

The output of the classifier is a binary image where each pixel is labeled as either particle or 

as noise. Each connected region (cluster) of particle pixels may contain a particle. On the 

other hand it may contain some artifact. Thus, we disregard clusters that are too small or too 

big. This is done through examining the total number of pixels in each cluster, and 

discarding any that are above or below a reasonable number of pixels. This number is 

selected based on the true particle size.

Alternatively, this can be done through use of morphological operations. An erosion (Efford, 

2000) is a morphological operation preformed on a binary image wherein pixels from each 

cluster are removed. The pixels to be removed are determined by proximity to the cluster 

boundary. In this way, the erosion operation shrinks the clusters of a binary image. This 

shrinkage can be used to determine the clusters that contain artifacts. Large artifacts will 

remain when shrinking by a factor larger than the particle size. Small artifacts will disappear 

when shrinking by a factor smaller than the particle size. We use this method of artifact 

removal in the results presented in Section 3. We note that a similar method for contaminant 

removal was used in AutoPicker (Langlois et al., 2014).

Beyond these artifacts, it is possible that two particles are frozen very close together. This 

will distort the true particle projection and should be disregarded. For this reason it is good 

practice to disregard pairs of clusters of pixels that were classified as particle if they are too 

close. We do this by disregarding clusters whose centers are closer than some distance, for 

example the particle diameter. We then output a box around the center of each remaining 

cluster of pixels that were classified as particle. The size of the box is determined according 

to the known particle size. The pixel content of each box is a particle picked by our 

framework. See Fig. 1c.

After all particles are picked, it is possible to create templates out of them and use a template 

matching scheme to pick additional particles, as in (Frank and Wagenknecht, 1983; Ludtke 

et al., 1999; Scheres, 2015).
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2.6. CTF correction

In the process of acquiring the micrograph each particle projection is convolved with a point 

spread function. This function is the inverse Fourier transform of a function called the 

contrast transfer function (CTF), which is defined as follows (Mindell and Grigorieff, 2003)

CTF(g) = − 1 − A2sin(χ) − Acos(χ)

χ = πλg2Δ f − π
2 Csλ

3g4,

(7)

where Δf is the defocus, λ is the wavelength, g is the radial frequency, Cs is the spherical 

aberration and A is the amplitude contrast.

A well-known effect of the CTF is increasing the support size of the projection image. This 

effect may cause nearby particle projections to become difficult to distinguish. Another issue 

is that the CTF decreases the contrast of the projection images, which makes them harder to 

find. Due to the above, while there is no strict necessity to apply the APPLE picker to CTF-

corrected micrographs, it is good practice to do so. The problems of CTF estimation (Rohou 

and Grigorieff, 2015) and CTFcorrection (Downing and Glaeser, 2008; Turoňová et al., 

2017) are well-researched problems. We use CTFFIND4 (Rohou and Grigorieff, 2015) for 

CTF estimation.

One method of CTF-correction is phase-flipping, which preserves the statistics of the noise, 

while effectively preventing the CTF from changing sign. While this method does not 

correct for the amplitude of the CTF, the phase correction already brings the support size 

close to its true value. It also slightly increases the particle contrast.

Fig. 6 contains a comparison between our particle picking framework when applied to the 

micrographs with and without phase-flipping. We mark all particles picked from the 

micrograph both before and after CTF correction by red squares. We mark the selections 

made only from the CTF corrected micrograph by green squares. We mark the selections 

made only from the non CTF corrected micrograph by blue squares. We note that, while 

most of the picked particles appear in both micrographs, there are slight differences around 

some of the near-by particles. In particular, Fig. 6 contains a blue square flanked on both 

sides by green squares. The blue square contains portions of two adjacent particles since the 

APPLE picker did not successfully separate between both particles. However, after CTF 

correction each of these particles is selected separately since the APPLE picker was able to 

distinguish between them. Thus, we recommend this method when applying CTF correction 

to micrographs before particle picking.

3. Experimental results

We present experimental results for the framework presented in this paper. We apply our 

framework to datasets of β-galactosidase, T20S proteasome, 70S ribosome and keyhole 

limpet hemocyanin (KLH) particles.

Heimowitz et al. Page 10

J Struct Biol. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The β-galactosidase dataset we use is publicly available from EMPIAR (the Electron 

Microscopy Public Image Archive) (Iudin et al., 2016) as EMPIAR-10017.4 It consists of 84 

micrographs of β-galactosidase. The T20S proteasome dataset is publicly available as 

EMPIAR-100575 (Danev and Baumeister, 2016). It contains 158 micrographs. The 70S 

ribosome dataset is available as EMPIAR-10077 (Fischer et al., 2016) and contains 

thousands of micrographs. The KLH dataset we use (Zhu et al., 2004; Zhu et al., 2003) 

contains 82 micrographs.

The experiments are run on a 2.6 GHz Intel Core i7 CPU with four cores and 16 GB of 

memory. Our method has also been implemented on a GPU. It is evaluated using an Nvidia 

Tesla P100 GPU.

3.1. β-galactosidase

We ran the suggested framework on a β-galactosidase dataset (Scheres, 2015). We compare 

the performance of the APPLE picker to the semi-automated particle picker included in 

RELION. For this comparison, we input the locations of our picked particles into RELION 

and obtain a 3D reconstruction. We then compare this to the reconstruction obtained by the 

full RELION pipeline in (Scheres, 2015).

The β-galactosidase micrographs are obtained using a FALCON II detector. Thus, each 

micrograph is of size 4096 × 4096 pixels. The outermost pixels in these micrographs do not 

contain important information. In light of this, when running the APPLE picker on these 

micrographs, we discard the 100 outermost pixels. In addition, for runtime reduction, each 

dimension of the micrograph is reduced to half its original size, bringing the micrograph in 

total to a quarter of its original size. This is done by averaging adjacent pixels, also known as 

binning.

Each query and reference image extracted from the reduced micrograph is of size 26 × 26 

and each container is of size 225 × 225. For classifier training we suggest to use τ1 = 3% 

and τ2 = 55% to determine the training set. We set the bandwidth of the kernel function for 

the SVM classifier and its slack parameter both to 1. Examples of results for the APPLE 

picker are presented in Fig. 7.

For the purpose of evaluating our framework, we perform a 3D reconstruction of the particle 

and compare to the reconstruction of (Scheres, 2015) where the particle picking was done 

based on 2555 manually selected particles. From these particles, 25 class averages were 

computed and 10 were manually chosen. The RELION particle picker then picked 52495 

particles. Of these, 4185 particles were discarded according to Z-scores. After the class 

averaging step 42,755 particles were selected. The reported resolution in (Scheres, 2015) is 

4.2 Å.

4This dataset was obtained by the FALCON II direct detector. Another β-galactosidase dataset is EMPIAR-10061 (Bartesaghi et al., 
2015), which was obtained using the K2 direct detector. We note the APPLE picker is effective for this dataset as well. For a 
comparison between FALCON II and K2 direct detectors see (McMullan et al., 2014).
5This dataset was obtained using the K2 direct detector.
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In contrast, we use 32997 particles selected by the APPLE picker. We enter them into the 

RELION pipeline and begin the reconstruction from our particles. After the 2D class 

averaging step 15198 particles were selected. The 3D reconstruction using RELION 

(including CTF correction using the wrapper for CTFFIND4 (Rohou and Grigorieff, 2015)) 

reached a gold-standard FSC resolution of 4.5 Å.6

We present a comparison of surface views from the model reconstructed from particles 

selected by the APPLE-Picker (in red) and the reconstructed model by (Scheres, 2015) in 

Fig. 8. These renderings were done in UCSF Chimera7(Pettersen et al., 2004). In addition, 

we present the FSC curve produced by RELION’s post-processing task in Fig. 11.

Runtime for a single micrograph is approximately two minutes when running on the CPU. 

Thus, the entire dataset can be processed in under 3 h. The GPU implementation, on the 

other hand, takes approximately 8 s. In other words, the APPLE picker processes all 84 

micrograph in under 15 min. This is significantly faster than manual picking.

3.2. T20S proteasome

The T20S proteasome (Danev and Baumeister, 2016) dataset is publicly available as 

EMPIAR-10057. Its micrographs were acquired using a K2 direct detector. Thus, they are 

sized 3838 × 3710 pixels. Unlike the dataset presented in Section 3.1, this dataset contain 

elongated particles. In addition, this set was collected using a Volta phase plate at focus. The 

boost in phase contrast makes particles in these datasets more readily identifiable.

Once again, we use binning to reduce the size of the micrographs. Each query and reference 

image extracted from the reduced micrograph is of size 24 × 24. We use the same container 

size, τ1, τ2 and SVM classifier parameters as reported in Section 3.1. Examples of results for 

the APPLE picker are presented in Figure 9.

We first corrected for motion using unblur (Grant and Grigorieff, 2015). We applied the 

APPLE picker to the motion-corrected micrographs and extracted 21791 particles. These 

particles were entered into the RELION pipeline. After the class averaging step 15252 

particles were selected. The 3D reconstruction of RELION reached a gold-standard FSC 

resolution of 3.4 Å.

We present a comparison of surface views from the model reconstructed from particles 

selected by the APPLE picker (in red) and the reconstructed model by (Danev and 

Baumeister, 2016) in Fig. 10. These renderings were done in UCSF Chimera (Pettersen et 

al., 2004). In addition, we present the FSC curve produced by RELION’s post-processing 

task in Fig. 11.

runtime is approximately 90 s per micrograph when running on a CPU, or 7s per micrograph 

when running on the GPU.

6We repeated this experiment for CTF-corrected micrographs and achieved the same resolution. Another experiment we performed 
was 3D reconstruction from the manually selected particles available with the β-galactosidase dataset. While the accuracy of this was 
reported in (Scheres, 2015) to be 4.2 Å, we achieve an improvement of 0.05 Å resolution over the 3D reconstruction from the APPLE 
picked particles.
7http://www.rbvi.ucsf.edu/chimera.
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3.3. 70S ribosome

We examine the EMPIAR-10077 (Fischer et al., 2016) dataset. The micrograph are of size 

4096 × 4096 and contain large particles. Each query and reference box is of size 40 × 40 

pixels in the reduced micrograph. For this reason the container size we use is 500 × 500. 

This reduces the number of containers and thus causes the number of reference windows to 

be smaller.

For classifier training we suggest to use τ1 = 7% and τ2 = 7% to determine the training set 

(see Section 4.2 for a discussion about the choice of parameters.) We set the bandwidth of 

the kernel function for the SVM classifier and its slack parameter both to 1. Examples of 

results for the APPLE picker are presented in Figure 12. runtime is approximately 2 min per 

micrograph on the CPU, or approximately 14 s per micrograph on the GPU.

3.4. KLH

The micrographs in the KLH dataset (Zhu et al., 2004; Zhu et al., 2003) are of size 2048 × 

2048. To lower runtime we once again perform binning. Following this reduction in size, we 

use query and reference images of size 30 × 30 and containers of size 115 × 115. The 

training set for the SVM classifier is determined using the thresholds τ1 = 16% and τ2 = 

70%. We use the same configuration of the classifier (bandwidth and slack parameter) as in 

the previous experiments.

We present in Figs. 13 and 14 some results for the APPLE picker on the KLH dataset. We 

note these figures show two types of isoforms of KLH. These isoforms are identified in 

(Roseman, 2004) as KLH1 (short particles) and KLH2 (long particles). We aim to find the 

KLH1 particles.

As detailed in Section 2.4, we use only mean and variance for classifier training. An issue 

with this practice is exemplified by the hollow KLH particles. A window containing some 

regions of the particle and some regions of noise that are internal to the hollow particle is 

indistinguishable from a window containing some regions of the particle and some regions 

of noise that are external to the particle. This leads the classifier to identify a ring of pixels 

around the particle as belonging to the particle. Depending on the concentration of particles 

in the micrograph, particles may merge together in the output of the classifier.

We use morphological erosion to address this problem. This process, detailed in Section 2.5, 

will discard all connected components with maximum diameter smaller than 132 pixels and 

larger than 184 pixels (where the diameter of the KLH particles are approximately 160 

pixels). In addition, it will separate adjacent particles connected by a narrow band of pixels. 

This practice is useful in cases where particle projections are close enough that the rings of 

pixels around each particle will merge, but distant enough that the merging is restricted to a 

narrow region between the particles.

Fig. 13 contains micrographs where the particles are either completely isolated or distant 

enough that the morphological erosion can separate the pixels that were identified as 

belonging to each of the particles. This is the case in which the APPLE picker is successful 

despite the hollow particles. Fig. 14 contains micrographs where the particles are clustered 

Heimowitz et al. Page 13

J Struct Biol. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



closely together, causing the APPLE picker to treat many particles as a single region and 

thus discard them. It is clear that the APPLE picker is not suited to pick hollow particles that 

appear with a high concentration. We leave it to future work to solve this issue through 

addition of more discriminative features to the SVM classifier.

Another issue with the KLH dataset is that different micrographs have vastly different 

concentrations of particles. This makes it difficult to select a single value of τ1 that works 

well on all the micrographs. An example of this is shown in the last row of Fig. 14. When 

using τ1 = 5% the APPLE picker performs well on this micrograph.

Our suggested framework processes all 82 micrographs in under 30 min on the CPU and in 4 

min on the GPU.

4. Discussion

4.1. A comparison between the APPLE picker and existing particle pickers

Traditionally, cross-correlation based particle pickers can be divided into two groups (Voss 

et al., 2009). The first of these groups consists of methods that assume templates of the 

particle are known a priori. This knowledge may exist due to user provided information, 

projections from some predetermined initial model, etc. The second group imposes 

mathematical assumptions on the particle.

Obtaining user-provided templates is high in user effort. RELION (Scheres, 2015), for 

example, necessitates a user to choose 1000–2000 particle projections from several 

micrographs. This process is costly in both effort and time. Furthermore, user-provided 

picking introduces a manual bias into the process of particle picking. This bias may cause 

the templates to be corrupted by bad particle selections. In addition, inexperienced pickers 

may miss rare views as it is natural for a user to select similar-looking projections. This will 

exclude certain orientations from the picked particles and adversely affect the achievable 

resolution.

Beyond the possible issue of manual bias, using templates (userprovided or otherwise) 

introduces a template bias into the picking process. This was exemplified in (Henderson, 

2013), where an image of Einstein was used as the template and matched to random noise. 

Even though the image was not present in the noise, a reconstruction from the best-matches 

yielded the original Einstein image. Thus, the template itself may bias the process of particle 

picking.

The use of mathematical functions as templates can produce good results so long as these 

functions are a good description of the particle. It should be noted that these mathematical 

functions are vulnerable to template bias.

In contrast, the APPLE picker does not make assumptions on the structure of the particle. As 

the APPLE picker uses no templates, requires no manual selection and imposes no 

assumptions on the particle it is not vulnerable to manual or template bias. We note that, 

while no assumptions are made on the particle structure, we do assume that the size of the 

particle is known. In addition, we use the well-established fact that projection images and 
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noise regions differ in their mean intensity and variance. We allow, but do not require, tuning 

of the parameters τ1 and τ2 which are necessary to achieve particle picking in seconds per 

micrograph. We also allow tuning of maximum and minimum allowed particle size, 

container size and minimal distance between two projection images.

Another advantage of the APPLE picker is that its reference set contains redundancy (see 

Section 2.1). This adds a robustness to false positives that is missing from traditional cross-

correlation methods.

Thus, the APPLE picker is a simple, robust and fast particle picker which requires low user 

effort and assumes no prior knowledge of the particle other than its size. The APPLE picker 

does impose an assumption on the artifacts that may be violated, namely the assumption that 

the artifact has a different size than the particle projections. If this size assumption is 

violated, regions containing artifacts can be mistaken for particle projections. However, this 

can easily be corrected in the 2D classification step.

In recent years there has been increasing interest in the use of deep neural networks for 

particle picking (Bepler et al., 2018; Tegunov and Cramer, 2018). These networks are in 

essence classifiers, trained through optimization of a loss (cost) function over a set of 

positive and negative examples. Typically, the optimization fails to find the global optimum 

and reaches a local optimum. Despite this, neural networks have proven to be a powerful 

tool.

Training a deep neural network is a computationally intensive process. Indeed, the training 

set chosen by the APPLE picker (Section 2.4) could be used for training a deep network. 

However, our choice of an SVM classifier reduces the complexity of the APPLE picker.

Some deep-learning based particle pickers necessitate manually provided examples for the 

training. Since the training then proceeds to optimize over these examples, this method is 

vulnerable to manual bias. In addition this method necessitates high user effort. Other such 

particle pickers train the neural network on some prior data and then apply it to new datasets. 

These methods are vulnerable to dataset bias (Torralba and Efros, 2011).

Another advantage of the APPLE picker is that the mathematical theory behind it is simple 

and clear. On the other hand, the mathematical foundation for deep networks is an active 

area of study with many open problems.

4.2. Selection of τ1 and τ2

In Section 3 we present several datasets with different values of τ1 and τ2. For the β-

galactosidase and T20S proteasome datasets we use the same values. In this section we 

explain the difference in values from the 70S ribosome and KLH dataset.

The value of τ1 determines the percentage of query images that we believe contain a 

particle. While this value is different between the datasets, the actual number of query 

images determined by τ1 is similar for all datasets, and around 500–800. The difference is 

that the 70S ribosome dataset uses larger query images which causes each micrograph to 
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contain less of them. The KLH micrographs are much smaller than the micrographs of the 

other datasets and thus, once again, each micrograph contains less query images.

The value of τ2 is a different matter. Where the query images are large, they tend to cover 

more of the micrograph.8 This may not leave many areas large enough to extract training 

windows of noise. Thus, we must use smaller values of τ2. An example of this is presented 

in Fig. 15 which shows (in white) the locations of the 50% of windows that possess the 

higher values of k(·) for the β-galactosidase and for the 70S ribosome datasets.

In conclusion, for micrographs of size 4k × 4k where particles are small and their 

concentration is similar to that of the micrographs we presented in Section 3, we suggest 

using τ2 = 50%−55%. For larger particles we suggest using τ1 ≈ τ2. In the future, the 

APPLE picker’s code will automatically lower τ2 until a minimal amount of noise training 

windows are extracted, in which case this issue will no longer be a consideration for the 

user.

5. Conclusion

In this paper we have presented the APPLE picker, a simple and fast particle picker inspired 

by template matching. The APPLE picker necessitates no manual particle selection and 

imposes no assumptions on the particle other than its size. Thus, this framework is 

unhindered by manual or template bias.

The APPLE picker has two main classification steps. The first step determines the content of 

query images according to their response to a set of automatically chosen references. While 

this process is sufficient for particle picking, we achieve a speed-up of our suggested 

framework when using these results to train a simple classifier.

We presented experimental results on four datasets, and showed the type of particles for 

which this framework is well suited and the reason our classifier may encounter difficulty. 

We leave it to future work to solve these issues. We believe that the APPLE picker brings us 

one step closer towards a fully automated computational pipeline for high throughput single 

particle analysis using cryo-EM (Baldwin et al., 2018).
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Fig. 1. 
Result of our suggested framework. The left column contains micrographs. The middle 

column contains the output of the classifier. The right column contains the picked particles. 

Top row contains a β-galactosidase micrograph. Bottom row contains a KLH micrograph.
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Fig. 2. 
Response signal (sg) vs index of reference window (m) of a particle image (top) and a noise 

image (bottom). The left column contains the response signals (see (4)). The right column 

contains histograms of the response signals.
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Fig. 3. 
(a) Containers of a micrograph of the β-galactosidase dataset. (b) Single container with four 

windows of interest.
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Fig. 4. 
Result of our cross-correlation scheme. (a) Micrograph of β-galactosidase. (b) The 1000 

regions contained in boxes have high k(sg) and are thus regions with a high probability of 

containing a particle. (c) There are 9000 regions contained in boxes. These regions have high 

or intermediate k(sg). Consequently, the regions not contained in boxes have low k(sg) and 

thus are likely to be pure noise.
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Fig. 5. 
Overview of APPLE picker
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Fig. 6. 
Illustration of picking with and without CTF correction. (a) A CTF-corrected β-

galactosidase micrograph. CTF estimation was done using CTFFIND4 (Rohou and 

Grigorieff, 2015) followed by phase-flipping. (b) Results. Particles picked in both 

micrographs are surrounded by a red box. Selections unique to the phaseflipped micrograph 

are surrounded by a green box. Selections unique to the original micrograph are surrounded 

by a blue box. Defocus value for the micrograph is 4191.1 nm.
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Fig. 7. 
Picked particles of sample β-galactosidase micrographs (without CTF correction). The 

micrographs are presented in the left column. Classification results are presented in the 

center. The picked particles are on the right. Defocus values are 4191.1, 4859.1 and 4224.8 

nm for the top, middle and bottom micrographs, respectively. All defocus values were 

calculated with ctffind4 from the RELION wrapper.
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Fig. 8. 
Comparison between the APPLE picker and the RELION semi-automatic particle picker. On 

the top are surface views of the 3D reconstruction of the β-galactosidase macromolecule 

created in RELION from the APPLE picks (when picking from CTF corrected micrographs) 

and obtained in UCSF Chimera. On the bottom are surface views of the 3D views detailed in 

(Scheres, 2015). We use the reference volume published on EMDB (EMD-2824) and obtain 

the views in UCSF Chimera.
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Fig. 9. 
Picked particles of sample T20S proteasome micrographs without CTF correction. The 

micrographs are presented in the left column. Classification results are presented in the 

center. The picked particles are on the right.
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Fig. 10. 
Comparison between the APPLE picker and the particles picked in (Danev and Baumeister, 

2016). On the top are views of the 3D reconstruction of the T20S proteasome 

macromolecule created in RELION from the APPLE picks and obtained in UCSF Chimera 

(when picking from micrographs without CTF correction). On the bottom are views of the 

3D reconstruction detailed in (Danev and Baumeister, 2016). We use the reference volume 

published on EMDB (EMD-3347) and obtain the views in UCSF Chimera.
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Fig. 11. 
FSC curves as produced by RELION after B-factor sharpening and masking. (a) Curve for 

the β-galactosidase dataset. (b) curve for the T20S proteasome dataset.
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Fig. 12. 
Picked particles of sample 70S ribosome micrographs without CTF correction. The 

micrographs are presented in the left column. Classification results are presented in the 

center. The picked particles are on the right. Defocus values are 1671.8, 1643.2 and 1595.6 

nm for the top, middle and bottom micrographs, respectively.
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Fig. 13. 
Result on KLH dataset. The left column contains micrographs without CTF correction. The 

middle column contains the windows classified as particle by our classifier. The right 

column contains the picked particles. Defocus values are 4103.6, 1970.2 and 1862.6 nm for 

the top, middle and bottom micrographs, respectively.
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Fig. 14. 
Result on KLH dataset. The left column contains micrographs without CTF correction. The 

middle column contains the windows classified as particle by our classifier. The right 

column contains the picked particles. Defocus value of the top micrograph is1785.9 nm, 

middle micrograph1699.3 nm is and bottom micrograph is 1634.3 nm.
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Fig. 15. 
Selection of τ2 for a β-galactosidase sample micrograph (left) and a 70S ribosome sample 

micrograph (right). The white regions contain the 50% of query images with the highest 

k(sg). The black regions are the regions from which the training windows of noise are 

extracted. We note that while the β-galactosidase sample will have plenty of training 

windows for noise, the 70S ribosome sample will not.
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