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Disease-Modifying Treatments for Progressive Supranuclear Palsy

Maria Stamelou,"?%* Adam L. Boxer?

ABSTRACT: In recent years, research has focused on the development of disease-modifying treatments for
PSP, targeting mainly at tau dysfunction. However, the glycogen synthase kinase 3 inhibitor, tideglusib, and
the microtubuli stabilizer, davunetide, both failed to show efficacy in recent double-blind, placebo-controlled
studies. Despite these results, further agents targeting tau dysfunction, tau post-translational modifications,
or aiming at mictorubuli stabilization are currently being investigated. Further approaches under development
include agents to reduce tau levels extracellularly by active or passive immunization, antisense
oligonucleotides to reduce tau concentrations, and small interfering RNAs to suppress human tau expression.
However, the major limitation on the way to find disease-modifying treatments for PSP still remains the lack
of biomarkers. Indeed, for all of these potential therapeutic modalities, a well-designed human trial would
require validated biomarkers, without which the results of negative efficacy trials will be difficult to interpret.
In this regard, PET imaging using tau-specific ligands may be proven useful in the near future. There is great

hope that the next decade will bring the first effective therapy for PSP.

Fifty years after the first description of PSP, and although our
knowledge on genetics, pathophysiology, and clinical spectrum
of PSP has expanded,'” there are still no effective treatments
available. For almost four decades, treatment approaches focused
on neurotransmitter replacement strategies.” Despite the poor
methodology of most of these studies, it is widely accepted that
symptomatic drugs targeting dopaminergic, cholinergic (physo-
stigmine, donepezil, and rivastigmine), or gamma-aminobutyric
acid-ergic (gabapentin) deficits are not effective in PSP.>"

As in most sporadic neurodegenerative conditions, research has
focused in recent years on the development of disease-modifying
treatments.® In PSP, the targets of such treatments have been
aimed mainly at tau dysfunction.” ' Tau-related neurodegenera-
tion may occur by gain of function when tau aggregates, which
may be toxic for cells. Tau hyperphosphorylation may promote
aggregation of insoluble tau species and decrease microtubule
binding, leading to loss of function. Thus, treatment strategies
have targeted inhibition of aggregation and/or phosphorylation,
reduction of tau levels, and microtubule stabilization.!'™'*
Glycogen synthase kinase 3 (GSK-3) is a kinase important
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in tau hyperphosphorylation and its inhibition has

been found to reduce tau phosphorylation in vitro and in

vivo IHI2A718 A el with lithium, a GSK-3 inhibitor, however,

was not tolerated and the study was terminated. Tideglusib,
another GSK-3b inhibitor, failed to show efficacy on clinical
endpoints in a recent double-blind, randomized, placebo-
controlled, phase II clinical trial in PSP”; however, there were
treatment-related differences in progressive brain atrophy in a
small subgroup of patients who underwent longitudinal volumet-
ric MR scans as part of the study,'” suggesting that further studies
with kinase inhibitors might be warranted. Methylene blue,
which has been purported to act by inhibiting tau aggregation,
but could also reduce tau levels through enhanced autophagy or
other mechanisms, is currently being investigated in phase III
clinical trials for Alzheimer’s disease and behavioral variant
frontotemporal dementia.”’ Moreover, modulating post-transla-
tional modifications of tau, such as acetylation, glycation, and
O-linked N-acetylglucosamine modification, may represent
further promising approaches.”""*?

Stabilization of microtubules has been proposed as a strategy to
compensate for loss of tau function.”> However, recently,
davunetide, a peptide derived from the growth factor activity-
dependent neurotrophic protein, which was reported to promote
microtubule stability, failed to show efficacy in a 1-year,
double-blind, parallel-group, phase II/III, placebo-controlled
study with 313 participants.”* Further microtubule stabilizers,
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such as taxol derivatives (TPI-287), epothilones (mainly epothi-
lone D), and others, are currently being investigated as therapies
for tau-related neurodegeneration (for review, see a previous
work?).

Transcellular spread of altered conformations of tau with
prion-like properties has recently emerged as a possible mecha-
nism in sporadic neurodegenerative disorders and offers new
therapeutic possibilities for PSP.*>® Different strains of patho-
genic tau conformations may help to explain the selective
vulnerability of different brain networks in the spectrum of
tau-related neurodegenerative disease.”” Therapeutic agents are
being developed to reduce tau levels in the extracellular space
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either by active or passive immunization, and evidence
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from animal models is promising.
(ASOs) have also demonstrated great promise in reducing tau
concentrations and their pathogenic consequences in animal
models,*and intrathecally delivered ASOs have been shown to
be well tolerated in amyotrophic lateral sclerosis, suggesting this
approach may be feasible for PSP as well.***” Last, experimental
data suggest that small interfering RNNAs suppressing human tau
expression might be another therapeutic option in the future.”®

Apart from targeting tau, mitochondrial dysfunction has been
a therapeutic target of PSP, based on in vitro and in vivo
evidence of complex I dysfunction.”” ** A small, double-blind,
placebo-controlled, randomized trial administering coenzyme
Q10 for 6 weeks found improved clinical scales as well as
occipital energy levels in magnetic resonance spectroscopy45;
however, a larger, placebo-controlled trial of coenzyme Q10 in
62 PSP patients for 12 months, using clinical scales as primary
outcomes, was reported to be negative (poster communica-
tion).*®

Despite the current lack of an effective treatment, new
knowledge on the pathophysiology of PSP has contributed to
the design of a relative wealth of potential new therapies, the
translation of which into humans is well underway. However,
despite the fact that PSP is an ideal disease to study tau-related,
disease-modifying treatments,” current limitations for conduct-
ing clinical trials include the late diagnosis and lack of validated
biomarkers. In particular, for all of these potential therapeutic
modalities, a well-designed human trial would require validated
biomarkers of target engagement to demonstrate that therapies
exert their predicted biological effect in humans. Without such
biomarkers of target engagement, the results of negative efficacy
trials will be difficult to interpret. PET imaging using tau-spe-
cific ligands and cerebrospinal fluid biomarkers*’ may be proven
useful in the near future. There is great hope that the next

decade will bring the first effective therapy for PSP.
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