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ABSTRACT: In recent years, research has focused on the development of disease-modifying treatments for
PSP, targeting mainly at tau dysfunction. However, the glycogen synthase kinase 3 inhibitor, tideglusib, and
the microtubuli stabilizer, davunetide, both failed to show efficacy in recent double-blind, placebo-controlled
studies. Despite these results, further agents targeting tau dysfunction, tau post-translational modifications,
or aiming at mictorubuli stabilization are currently being investigated. Further approaches under development
include agents to reduce tau levels extracellularly by active or passive immunization, antisense
oligonucleotides to reduce tau concentrations, and small interfering RNAs to suppress human tau expression.
However, the major limitation on the way to find disease-modifying treatments for PSP still remains the lack
of biomarkers. Indeed, for all of these potential therapeutic modalities, a well-designed human trial would
require validated biomarkers, without which the results of negative efficacy trials will be difficult to interpret.
In this regard, PET imaging using tau-specific ligands may be proven useful in the near future. There is great
hope that the next decade will bring the first effective therapy for PSP.

Fifty years after the first description of PSP, and although our

knowledge on genetics, pathophysiology, and clinical spectrum

of PSP has expanded,1,2 there are still no effective treatments

available. For almost four decades, treatment approaches focused

on neurotransmitter replacement strategies.3 Despite the poor

methodology of most of these studies, it is widely accepted that

symptomatic drugs targeting dopaminergic, cholinergic (physo-

stigmine, donepezil, and rivastigmine), or gamma-aminobutyric

acid-ergic (gabapentin) deficits are not effective in PSP.3–5

As in most sporadic neurodegenerative conditions, research has

focused in recent years on the development of disease-modifying

treatments.6 In PSP, the targets of such treatments have been

aimed mainly at tau dysfunction.7–10 Tau-related neurodegenera-

tion may occur by gain of function when tau aggregates, which

may be toxic for cells. Tau hyperphosphorylation may promote

aggregation of insoluble tau species and decrease microtubule

binding, leading to loss of function. Thus, treatment strategies

have targeted inhibition of aggregation and/or phosphorylation,

reduction of tau levels, and microtubule stabilization.11–14

Glycogen synthase kinase 3 (GSK-3) is a kinase important

in tau hyperphosphorylation12,13,15,16 and its inhibition has

been found to reduce tau phosphorylation in vitro and in

vivo.11,12,17,18 A trial with lithium, a GSK-3 inhibitor, however,

was not tolerated and the study was terminated. Tideglusib,

another GSK-3b inhibitor, failed to show efficacy on clinical

endpoints in a recent double-blind, randomized, placebo-

controlled, phase II clinical trial in PSP17; however, there were

treatment-related differences in progressive brain atrophy in a

small subgroup of patients who underwent longitudinal volumet-

ric MRI scans as part of the study,19 suggesting that further studies

with kinase inhibitors might be warranted. Methylene blue,

which has been purported to act by inhibiting tau aggregation,

but could also reduce tau levels through enhanced autophagy or

other mechanisms, is currently being investigated in phase III

clinical trials for Alzheimer’s disease and behavioral variant

frontotemporal dementia.20 Moreover, modulating post-transla-

tional modifications of tau, such as acetylation, glycation, and

O-linked N-acetylglucosamine modification, may represent

further promising approaches.21,22

Stabilization of microtubules has been proposed as a strategy to

compensate for loss of tau function.23 However, recently,

davunetide, a peptide derived from the growth factor activity-

dependent neurotrophic protein, which was reported to promote

microtubule stability, failed to show efficacy in a 1-year,

double-blind, parallel-group, phase II/III, placebo-controlled

study with 313 participants.24 Further microtubule stabilizers,
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such as taxol derivatives (TPI-287), epothilones (mainly epothi-

lone D), and others, are currently being investigated as therapies

for tau-related neurodegeneration (for review, see a previous

work20).

Transcellular spread of altered conformations of tau with

prion-like properties has recently emerged as a possible mecha-

nism in sporadic neurodegenerative disorders and offers new

therapeutic possibilities for PSP.25–28 Different strains of patho-

genic tau conformations may help to explain the selective

vulnerability of different brain networks in the spectrum of

tau-related neurodegenerative disease.29 Therapeutic agents are

being developed to reduce tau levels in the extracellular space

either by active or passive immunization,30–32 and evidence

from animal models is promising.33,34 Antisense oligonucleotides

(ASOs) have also demonstrated great promise in reducing tau

concentrations and their pathogenic consequences in animal

models,35and intrathecally delivered ASOs have been shown to

be well tolerated in amyotrophic lateral sclerosis, suggesting this

approach may be feasible for PSP as well.36,37 Last, experimental

data suggest that small interfering RNAs suppressing human tau

expression might be another therapeutic option in the future.38

Apart from targeting tau, mitochondrial dysfunction has been

a therapeutic target of PSP, based on in vitro and in vivo

evidence of complex I dysfunction.39–44 A small, double-blind,

placebo-controlled, randomized trial administering coenzyme

Q10 for 6 weeks found improved clinical scales as well as

occipital energy levels in magnetic resonance spectroscopy45;

however, a larger, placebo-controlled trial of coenzyme Q10 in

62 PSP patients for 12 months, using clinical scales as primary

outcomes, was reported to be negative (poster communica-

tion).46

Despite the current lack of an effective treatment, new

knowledge on the pathophysiology of PSP has contributed to

the design of a relative wealth of potential new therapies, the

translation of which into humans is well underway. However,

despite the fact that PSP is an ideal disease to study tau-related,

disease-modifying treatments,20 current limitations for conduct-

ing clinical trials include the late diagnosis and lack of validated

biomarkers. In particular, for all of these potential therapeutic

modalities, a well-designed human trial would require validated

biomarkers of target engagement to demonstrate that therapies

exert their predicted biological effect in humans. Without such

biomarkers of target engagement, the results of negative efficacy

trials will be difficult to interpret. PET imaging using tau-spe-

cific ligands and cerebrospinal fluid biomarkers47 may be proven

useful in the near future. There is great hope that the next

decade will bring the first effective therapy for PSP.
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