Systems biology

SimExTargId: a comprehensive package for real-time LC-MS data acquisition and analysis

William M. B. Edmands, Josie Hayes* and Stephen M. Rappaport

Program in Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA

*To whom correspondence should be addressed. Associate Editor: Oliver Stegle

Received on May 16, 2017; revised on January 2, 2018; editorial decision on April 3, 2018; accepted on May 18, 2018

Abstract

Summary: Liquid chromatography mass spectrometry (LC-MS) is the favored method for untargeted metabolomic analysis of small molecules in biofluids. Here we present *SimExTargId*, an open-source R package for autonomous analysis of metabolomic data and real-time observation of experimental runs. This simultaneous, fully automated and multi-threaded (optional) package is a wrapper for vendor-independent format conversion (ProteoWizard), xcms- and CAMERA- based peak-picking, MetMSLine-based pre-processing and covariate-based statistical analysis. Users are notified of detrimental instrument drift or errors by email. Also included are two shiny applications, *targetId* for real-time MS2 target identification, and *peakMonitor* to monitor targeted metabolites.

Availability and implementation: *SimExTargId* is publicly available under GNU LGPL v3.0 license at https://github.com/JosieLHayes/simExTargId, which includes a vignette with example data. *SimExTargId* should be installed on a dedicated data-processing workstation or server that is networked to the LC-MS platform to facilitate MS1 profiling of metabolomic data.

Contact: josie.hayes@berkeley.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Collection of untargeted metabolomic data, based on liquid chromatography-mass spectrometry (LC-MS) MS1-profiling, is subject to many potential pitfalls. For example, unobserved instrument failure can occur when an investigator is not present during experimental runs. Timely intervention after such a failure is crucial when processing precious samples. Minor leaks or partial blockages in LC systems can lead to retention time drift and loss of chromatographic resolution and column/ion-source degradation and mass-analyzer drift can lead to signal attenuation.

Here we present *SimExTargId*, an open source R package designed to approach autonomous and real-time analysis of metabolomic data. *MetShot*, a currently available R package, provides a framework to achieve nearly-online acquisition of spectra for features of statistical relevance (Neumann *et al.*, 2013). In contrast to *MetShot*, *SimExTargId* provides an *autonomous* workflow that can also perform data preprocessing *in real-time*, thereby alerting the user to signal degradation or loss.

2 Worklow

SimExTargId is a wrapper function for peak peaking and normalization that exploits existing tools. This open-source software facilitates real-time monitoring of LC-MS data acquisition and processing via the Windows operating system. An overview of the *SimExTargId* autonomous workflow is shown in Figure 1, which addresses each of the following steps in the pipeline.

2.1 Initiation, raw file detection and conversion

Raw data from the MS are continuously monitored with a waitingtime counter, which determines whether the last data file exceeds a predetermined maximum time and then alerts the user by email. File sizes are also monitored, and an alert is sent if a file exceeds three absolute deviations from the total median file size, after a minimum of five files have been generated.

New raw data files are automatically converted to the mzXML openfile format using Proteowizard MSConvert (Chambers *et al.*, 2012).

Fig. 1. Overview of the autonomous simExTargld workflow and monitoring system. Each step is addressed in detail in the Workflow section

A user-supplied worklist and table of covariates provides information for grouping xcms sub-directories, adjusting pooled-QC signals, filtering by coefficients of variation (CVs), and performing statistical analyses. This text file contains instructions for column conditioning, MS2 data collection and inclusion of negative controls & pooled-QC replicates.

2.2 xcms peak-picking and CAMERA MS1 deconvolution

Peak-picking (xcmsSet, Benton *et al.*, 2010; Smith *et al.*, 2006; Tautenhahn *et al.*, 2008) is performed after a specified minimum number of samples has been collected, followed by retention-time correction and peak-grouping & filling. The CAMERA package is used to annotate isotopes, ESI adducts & in-source fragments and to identify pseudospectra (Kuhl *et al.*, 2012).

2.3 MetMSLine preprocessing, PCA outlier detection and batch correction

Our previous R package *MetMSLine* is utilized for all preprocessing steps via the wrapper function *preProc* (Edmands *et al.*, 2015). A principal components analysis (PCA) is performed and potential analytical outliers are detected (*pcaOutId*), with alerts if these are QC samples. PCA-based detection of batch effects is then performed (*pcaClustId*) by partitioning around medoids (PAM), clustering and regression of all covariates to any clusters detected. Batch effects are automatically adjusted with a linear model (*batchAdj*) and statistical analyses are performed on both batchadjusted and unadjusted peak tables.

2.4 Covariate based automatic statistical analysis

Following pre-processing and outlier removal, all covariates are used to automatically select an appropriate univariate method for statistical analysis (*coVarTypeStat*). This function attempts to distinguish between continuous & categorical variables and then applies a suite of parametric or non-parametric statistical methods, including Wilcoxon-rank sums, Spearman correlation and ANOVA. Statistical analyses are performed on up to four peak tables (i.e. batch-adjusted & unadjusted tables and batch-adjusted and unadjusted weighted-mean mean tables).

2.5 Metabolite database peak-monitoring

peakMonitor can be used to monitor a list of previously known metabolites supplied as a .csv file. The function identifies peak groups (metabolites) in the xcms database file by m/z and retention time within user-defined parameters for mass accuracy and retention time deviation. Plots of median m/z & retention times, peak areas and PCAs are viewed using a shiny application (http://shiny.rstudio. com, Supplementary Fig. S1). The user is alerted if a user-defined percentage of attenuation for the monitored peak areas is observed.

2.6 MS2 target identification

targetId is a visualization tool for the statistical output from step 4 (Supplementary Fig. S2). This shiny application provides a volcano plot of both the raw *P*-values and multiple-testing adjusted *P*-values versus fold changes for all covariates. Peak areas are used to suggest the most suitable samples for obtaining particular MS2 spectra.

3 Conclusions and limitations

The *SimExTargId* R package is the first open-source package that provides comprehensive real-time automation and a standardized workflow for metabolomic profiling of MS1 data. The *SimExTargId* package has been tested primarily with data files from Agilent Q-TOF and Thermo FT-ICR mass spectrometers operating within a Windows environment, but can be readily extended to other platforms.

Acknowledgements

We gratefully acknowledge the assistance of Agilent Technologies (Santa Clara, CA, USA) for the loans of liquid-chromatography mass-spectrometry instruments used in the development of this package.

Funding

This research was supported by the National Institute of Environmental Health Sciences under grants P50ES018172, P01ES018172 and P42ES004705.

Conflict of Interest: none declared.

References

- Benton,H.P. et al. (2010) Correction of mass calibration gaps in liquid chromatography-mass spectrometry metabolomics data. *Bioinformatics*, 26, 2488.
- Chambers, M.C. et al. (2012) A cross-platform toolkit for mass spectrometry and proteomics. Nat. Biotechnol., 30, 918–920.
- Edmands, W.M.B. *et al.* (2015) MetMSLine: an automated and fully integrated pipeline for rapid processing of high-resolution LC-MS metabolomic datasets. *Bioinformatics*, 31, 788–790.
- Kuhl, C. et al. (2012) CAMERA: an integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets. Anal. Chem., 84, 283–289.
- Neumann, S. et al. (2013) Nearline acquisition and processing of liquid chromatography-tandem mass spectrometry data. Metabolomics, 9, 84–91.
- Smith, C.A. *et al.* (2006) XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching and identification. *Anal. Chem.*, 78, 779–787.
- Tautenhahn, R. et al. (2008) Highly sensitive feature detection for high resolution lc/ms. BMC Bioinformatics, 9, 504.