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Abstract

Motivation: Polyploid species carry more than two copies of each chromosome, a condition found

in many of the world’s most important crops. Genetic mapping in polyploids is more complex than

in diploid species, resulting in a lack of available software tools. These are needed if we are to real-

ize all the opportunities offered by modern genotyping platforms for genetic research and breeding

in polyploid crops.

Results: polymapR is an R package for genetic linkage analysis and integrated genetic map con-

struction from bi-parental populations of outcrossing autopolyploids. It can currently analyse trip-

loid, tetraploid and hexaploid marker datasets and is applicable to various crops including potato,

leek, alfalfa, blueberry, chrysanthemum, sweet potato or kiwifruit. It can detect, estimate and cor-

rect for preferential chromosome pairing, and has been tested on high-density marker datasets

from potato, rose and chrysanthemum, generating high-density integrated linkage maps in all of

these crops.

Availability and implementation: polymapR is freely available under the general public license from

the Comprehensive R Archive Network (CRAN) at http://cran.r-project.org/package¼polymapR.

Contact: chris.maliepaard@wur.nl or roeland.voorrips@wur.nl

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In recent years there has been an acceleration of progress in the

understanding of the genetics underlying important traits in autopo-

lyploid species. This has been to a large extent due to developments

in high-density genotyping platforms for single nucleotide poly-

morphism (SNP) markers, which have found increasing application

in polyploids. For example, high-density SNP arrays have been

developed in potato (Felcher et al., 2012; Vos et al., 2015), rose

(Koning-Boucoiran et al., 2015), alfalfa (Li et al., 2014) and chrys-

anthemum (van Geest et al., 2017a), enhancing the scope for genetic

studies in these species.

In polyploid species, as opposed to diploids, co-dominantly

scored markers can possess multiple classes in the heterozygous con-

dition, usually termed marker ‘dosage’. In a tetraploid there are five

possible dosage classes of a bi-allelic SNP marker, namely nulliplex

with a dosage 0 for one of the alleles, simplex with dosage 1, duplex
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with dosage 2, triplex with dosage 3, and quadruplex with dosage 4.

In a hexaploid, the number of dosage classes at a bi-allelic locus rises

to seven. Various software have been developed to convert the signal

from SNP arrays into these discrete dosage calls for polyploids, such

as fitTetra (Voorrips et al., 2011) or ClusterCall (Schmitz Carley

et al., 2017). Dosage estimation from read-counts of sequencing

data will also in time likely become available.

Genetic linkage maps have traditionally been used for both ex-

ploratory trait mapping (often termed quantitative trait locus (QTL)

analysis) and the subsequent fine mapping of traits, as well as for

assisting genome assembly efforts by guiding the integration and

orientation of contigs. High-density linkage maps may also improve

our understanding of the chromosomal composition and genetics of

polyploid species, uncovering such phenomena as double reduction

or partially-preferential chromosome pairing. In many polyploid

species which lack reference genome sequences, linkage maps are

also a (vital) first genomic description of that species.

Despite the importance of both linkage maps and polyploid spe-

cies, there are still relatively few software tools available for poly-

ploid linkage map construction. Allopolyploid species showing

disomic inheritance can be treated (genetically speaking) as diploids,

with a wide range of software options available. In the case of poly-

somic polyploids (autopolyploids and segmental allopolyploids),

the options available to the research community are limited.

Probably the most well-known autopolyploid mapping software is

TetraploidMap (Hackett and Luo, 2003; Hackett et al., 2007),

which has been used in studies of various autotetraploid species

such as potato, alfalfa, rose and blueberry (e.g. Bradshaw et al.,

2008; Gar et al., 2011; McCallum et al., 2016; Robins et al., 2008).

Recently, its successor TetraploidSNPMap (TSNPM) has been

released to accommodate high-density marker data from SNP arrays

(Hackett et al., 2017). However, it can only handle autotetraploid

datasets and provides a graphical user interface for the Windows

platform only. Linkage studies in species exhibiting strong preferen-

tial chromosomal pairing or other ploidy levels are not currently

possible using this software. An alternative polyploid mapping soft-

ware is the PERGOLA package in R (Grandke et al., 2017).

However, this software has been developed for use with F2 or back-

cross populations from homozygous parents only. In many cases,

either due to inbreeding depression or the difficulties imposed by

polysomic inheritance, F1 populations from two heterozygous

parents are typically used instead.

In short, there is currently no software which can perform link-

age mapping at various ploidy levels under a variety of inheritance

models for outcrossing species using dosage-scored marker data.

Here we present polymapR, an R package (R Core Team, 2016) for

linkage mapping in outcrossing polyploid species which can gener-

ate linkage maps for polysomic triploids, tetraploids and hexaploids,

accommodating either fully tetrasomic or mixed meiotic pairing

behaviour (segmental allopolyploidy) at the tetraploid level. Its

modularity will facilitate its adaption to other marker genotyping

technologies or ploidy levels in the future.

2 Materials and methods

The polymapR pipeline consists of four parts—data inspection, link-

age analysis, linkage group assignment and marker ordering, which

are detailed below. A description of the functions within polymapR

is described in the vignette which accompanies the package, going

through all the steps in a typical mapping project. For consistency

and simplicity, all examples mentioned here describe a tetraploid

cross.

2.1 Data inspection, filtering and preparation for linkage

analysis
The input data for polymapR is dosage-scored marker data, avail-

able from a number of packages such as fitTetra (Voorrips et al.,

2011) or ClusterCall (Schmitz Carley et al., 2017). Both fitTetra and

ClusterCall are limited to tetraploid data; fitTetra has recently been

upgraded to fitPoly (https://CRAN.R-project.org/package¼fitPoly)

and can accommodate any ploidy level. Regardless of how it is gen-

erated, the input dosage-scored marker data should consist of a col-

umn of marker dosages for the mother, one for the father followed

by a column for each of the offspring of the F1 cross. Checks for

marker skewness (segregation distortion) and shifted markers (when

dosage scores are shifted by a fixed amount) are currently provided

in polymapR from a suite of tools developed for the fitPoly package

(Voorrips et al., 2011).

The next step in data preparation is the conversion of marker

dosages to their simplest form, such that the sum of the parental dos-

age scores is minimized (e.g. 3�0, 3�4 and 1�4 markers can be

recoded as 1�0 in a tetraploid). There are two possible con-

versions—a relabelling of the reference and alternative allele in both

parents and a single-parent relabelling if the other parent is homozy-

gous. Marker conversions are performed to reduce the number of

marker segregation classes for the linkage analysis (which is directed

according to the parental dosages), but have no effect on the pair-

wise results. In a tetraploid there are nine fundamental segregation

types (i.e. 1�0, 0�1, 2�0, 0�2, 1�1, 1�2, 2�1, 1�3 and 2�2), ris-

ing to nineteen for a hexaploid. Identifiable double reduction scores

are preserved during conversion [e.g. a dosage of 0 from a triplex �
nulliplex (3�0) marker becomes a dosage of 2 in its converted form

as a simplex � nulliplex (1�0) marker], allowing an investigation of

double reduction post-mapping. Any impossible scores (like a dos-

age of 3 or 4 from a 1�0 marker) are made missing.

High-quality data facilitates the generation of high-quality maps.

polymapR assumes the dosage scores are accurate and error-free,

but incorporates some controls to screen out problematic markers.

One indication of poor data quality is a high proportion of missing

values. The user may choose to screen out markers or individuals

with more than a desired rate of missing values (by default up to

10% is tolerated), or duplicate individuals. Identical markers, which

often occur in high-density marker datasets with limited population

sizes and hence a limited number of recombination events, can be

identified and reduced to one representative marker for the mapping

steps, and reintegrated later. A principal component analysis can

also be performed and visualized, which may highlight some un-

wanted structure in the population (for example due to pollination

from an unknown external pollen parent or from self-pollination) or

outlying individuals (for example because of admixture).

2.2 Linkage analysis
2.2.1 Linkage analysis under a polysomic model

In autopolyploid species with polysomic inheritance, it is possible to

model meiotic pairing structures as random bivalents or multiva-

lents. In practice, both pairing structures tend to occur, with a rela-

tively low frequency of multivalents in stable autopolyploids

(Bomblies et al., 2016; Santos et al., 2003). The main consequence

of multivalent formation from a genetic perspective is the phenom-

enon of double reduction, where two segments of a particular homo-

logue can end up in the same gamete and become transmitted
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together to F1 offspring. It has been demonstrated that double reduc-

tion introduces some bias in recombination frequency estimates

under a random bivalent model. This can be safely ignored if the

rate of quadrivalent pairing is low (Bourke et al., 2015, 2016).

Under a random bivalent model, there are three possible bivalent

pairing conformations in a tetraploid. In general, for any even ploidy

p ¼ 2n there are c ¼ 2nð Þ!
2nð Þ:n! possible bivalent pairing conformations to

be considered. Given any pair of marker loci with unknown recom-

bination frequency r, we consider the contribution of recombinant

homologues with a within-bivalent probability of 1
2 r and non-

recombinant homologues with a within-bivalent probability of
1
2 1� rÞð . In cases where recombinants and non-recombinations can-

not be distinguished, both are assigned a probability of 1
2. Assuming

random pairing, the probability of any particular pairing configur-

ation is 1/c (in the case of preferential pairing, we introduce a prefer-

ential pairing factor to model deviations from randomness here).

The expected frequency of each offspring class n (0 � i; j � 2n)

is first summed over all c bivalent conformations:

E nij

� �
¼
Xc

k¼1

1

c
fk r; 1� rð Þ

where fkðr; 1� rÞ denotes a function of r and 1� r, dependant on

the marker combination considered. Given these expected frequen-

cies, we relate them to the observed counts of individuals in each

class O nij

� �
to yield the likelihood function L rð Þ:

L rð Þ /
Y2n

i;j¼0

E nij

� �OðnijÞ

The likelihood equation is found by equating the first derivative of

the log of the likelihood function (differentiated with respect to r)

with zero:

X2n

i;j¼0

O nij

� �
:
Xc

k¼1

1

c

d

dr
ln fk r;1� rð Þð Þ

 !
¼ 0

In cases where no analytical solution exists, we use Brent’s algo-

rithm (Brent, 1973) to numerically maximize the log likelihood func-

tion in the bounded interval 0 � r < 0:5. For any pair of markers

there are a number of possible phases between these markers to con-

sider, which describe the physical linkage between marker alleles. In

the case of a pair of duplex � nulliplex (2�0) markers, these phases

are termed ‘coupling’, ‘mixed’ and ‘repulsion’ (Fig. 1a). As the phase

between markers is initially unknown, we must compute expressions

for each of the possible phases, and select the most likely as the phase

for which 0 � r < 0:5 and which maximizes the log of the likeli-

hood (Hackett et al., 2013).

Finally, we also compute the logarithm of odds (LOD) score,

which provides a useful measure of the confidence in the estimate

and is used for both marker clustering and marker ordering:

LOD ¼ log10

L r ¼ brð Þ
L r ¼ 0:5ð Þ

� �
where br is the maximum likelihood estimate of r.

2.2.2 Linkage analysis in the presence of preferential chromosomal

pairing

In certain polyploid species the meiotic pairing is neither fully ran-

dom nor fully partitioned into exclusively pairing subgenomes, a

situation described as segmental allopolyploidy (Stebbins, 1947).

Regardless of the underlying mechanism, the result of preferential

pairing is that both the segregation ratios and the co-inheritance of

marker alleles are affected. In the example of a 2�0 marker

introduced earlier, the expected segregation ratio in a polysomic

autotetraploid is 1:4:1. With increasing preferential pairing, this

ratio will approach 1:2:1 in the case of subgenome-straddling

markers (Fig. 1b, right), or approach non-segregation in the case of

subgenome-specific markers (Fig. 1b, left).

In order to model this behaviour, we introduce a preferential

pairing parameter q, such that (in the case of a tetraploid) the prob-

ability of the chromosome pairing configuration 1–2/3–4 is 1
3þ q

and the probability of pairing configurations 1–3/2–4 and 1–4/2–3

is 1
3�

q
2. Attempting to model preferential pairing at higher ploidy

levels introduces further complications; Zhu et al. (2016) have pro-

posed a solution for hexaploids by introducing three preferential

pairing parameters h1, h2 and h3 to model deviations in bivalent con-

figuration 1–2, 3–4 and 5–6, respectively, with all other

configurations having a probability of 1
15� 1

12 h1 þ h2 þ h3Þð . In our

software, we have not yet attempted to model segmental allohexa-

ploidy, and confine our attention to the tetraploid level for now.

We do not simultaneously estimate q and r, which can lead to an

over-estimation of the preferential pairing parameter (Wu et al.,

2002). Instead, we estimate the chromosome-wide strength of pref-

erential pairing after map construction and thereafter include it as a

Fig. 1. Phase considerations and clustering strategy in a tetraploid. (a) The

three phases considered for a pair of 2� 0 markers, from left to right, ‘cou-

pling’, ‘mixed’ and ‘repulsion’; (b) In the case of preferential pairing between

homologues 1–2 and 3–4, we must consider two separate types of coupling

phase, either coupling within preferential bivalents (left) or coupling between

preferential bivalents (right). In the extreme case of an allotetraploid, this dis-

tinction could also be termed ‘subgenome-specific’ versus ‘subgenome-

straddling’; (c) Simplex � nulliplex (1�0) markers (solid black dots) uniquely

define homologous chromosomes and are initially clustered together.

Higher-dosage marker types such as duplex � nulliplex (2�0) markers (dark

grey) provide linkage associations between simplex � nulliplex homologues,

helping to identify chromosomal linkage groups. Cross-parental markers

such as simplex � simplex (1�1, light grey) can also link these groups to-

gether, leading to consistent linkage group numbering across parents
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(parent and chromosome-specific) constant in the likelihood frame-

work to correct the pairwise recombination frequency estimates. A

robust method of preferential pairing detection and estimation is to

use inheritance probability estimates such as those provided by

TetraOrigin (Zheng et al., 2016); in polymapR we offer a simpler

likelihood-based approach which uses closely-linked repulsion

marker pairs to test for deviations from random pairing and simul-

taneously estimate the strength of this deviation. As described in

Bourke et al. (2017), tightly-linked pairs of SxN markers in repul-

sion phase identified as being on preferentially-pairing homologues

can be used to estimate q. The expected frequency of offspring

classes n00, n01, n10 and n11 (where n01 is the number of offspring

with a dosage of 0 at marker A and 1 at marker B etc.) are given by
1
6�

q
4,

1
3þ

q
4,

1
3þ

q
4 and 1

6�
q
4, respectively. This gives rise to the likeli-

hood function L qð Þ / 1
6�

q
4

� �n00þn11 : 1
3þ

q
4

� �n01þn10 , which when

solved leads to the following maximum-likelihood estimate for q:

q ¼ 2 n01 þ n10ð Þ � 4 n00 þ n11ð Þ
3ðn00 þ n01 þ n10 þ n11Þ

Given a parent- and chromosome-specific estimate for the prefer-

ential pairing factor q, we modify the expression for the expected

frequency of individuals in marker class n of a tetraploid as follows:

E nij

� �
¼ 1

3
þ q

� �
f1 r; 1� rð Þ þ 1

3
� q

2

� �
f2 r; 1� rð Þ

þ 1

3
� q

2

� �
f3 r; 1� rð Þ

Due to the lack of symmetry, we must consider all possible confor-

mations within each phase, an example of which is shown in

Figure 1b. The procedure for estimating r and LOD remain other-

wise the same. The inclusion of preferential pairing imposes an extra

computational burden as each phase can have up to four sub-phase

conformations, all of which are calculated prior to selection of the

most likely phase and its associated r and LOD score.

Finally, in both the case of random and preferential pairing, link-

age calculations can be run in parallel using doParallel (Microsoft

Corporation and Weston, 2017) on any Windows or Unix-like

multi-core desktop computer, resulting in significant time-savings.

High-density marker datasets with tens of thousands of markers can

be processed in a few hours.

2.3 Linkage group assignment
In diploid studies, the term linkage group is loosely synonymous

with the term chromosome. In autopolyploids two levels of linkage

group exist—homologue groups and integrated chromosomal

groups. The first step in linkage group assignment is to cluster the

1�0 linkage data into homologue groups, for which we currently

use the R package igraph (Csardi and Nepusz, 2006). Clustering is

performed using the pairwise linkage LOD scores, although the

LOD for independence can be used if desired, which may be more

robust with skewed marker data (Van Ooijen and Jansen, 2013).

A number of visual aids are provided to assist in clustering

(Fig. 2). In general, clustering should be performed over a suitable

range of LOD thresholds (e.g. from LOD 3–10) in order to inform

the choice of LOD score to partition the data into both homologues

and chromosomes (Fig. 2a and b). If chromosome and homologue

clusters cannot be readily identified using 1�0 markers alone,

coupling-phase homologue clusters are first identified at a high

LOD and later re-connected into chromosomal clusters using a

higher-dose marker type (Fig. 1c). Visualizations help display the

strength of associations between homologues (Fig. 2c). Occasionally

complete homologue clusters might be broken up in the clustering

step (perhaps due to uneven marker distribution or noisy data); vari-

ous approaches to merge these fragments into complete homologues

are provided (Fig. 2d–f).

In the case of triploid populations, the phasing approach differs

between the diploid and tetraploid parents: for the diploid parent,

phasing can be achieved directly using the phase assignment from

the linkage analysis. Following the definition of the chromosome

and homologue structure using the 1�0 markers, all other marker

segregation classes are assigned to both homologues and chromo-

somes using their linkage to these markers, generating the final

phase assignment of all marker types.

Fig. 2. Example visualizations produced by polymapR to facilitate linkage

group identification and marker clustering. (a) As LOD score is increased,

the number of 1�0 clusters increases, as does the number of single-marker

clusters (unlinked markers). For a given ploidy and chromosome base

number, the expected number of (homologue) clusters is also shown; (b)

Alternative representation of (a) which shows the splitting of each cluster as

the LOD score is increased. In this example, five chromosomal clusters are

identified at LOD 3.5, which split into four homologue clusters between

LOD 4.5 and 7; (c) Using linkage to other marker segregation types such as

2� 0 markers, homologue clusters can be associated into chromosomal

clusters, if this was not achieved using 1�0 data alone. Here, five chromo-

somes are represented; (d) If homologues fragment, cross-homologue

phase information can help determine which fragments to merge.

Here, homologues 4 and 5 show only coupling-phase linkage and should

therefore be joined as a single homologue; (e) Alternative approach to

merge fragments showing network of linkages over a range of LOD scores.

Here, four homologues were successfully identified and merged directly; (f)

Alternative representation of (e), showing these connections in a circular

format instead
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2.4 Marker ordering
One of the challenges of marker ordering and map construction in

autopolyploid species using marker dosages is the variable accuracy

of recombination frequency estimates which must be integrated

somehow. Ordering algorithms which only use unweighted recom-

bination frequency estimates are unlikely to find an optimal map

order, as there is no distinction between equal estimates of r from

situations with vastly different information contents and variances.

A thorough description of this issue is provided in Preedy and

Hackett (2016). Within the polymapR package, marker ordering

can be achieved in two ways—either using the weighted regression

algorithm as originally developed by Stam (1993) and implemented

in JoinMap (Van Ooijen, 2006) and now also in polymapR, or to

use the multi-dimensional scaling algorithm as implemented in the

MDSMap package (Preedy and Hackett, 2016). Given the computa-

tion efficiency of the MDS algorithm, in almost all circumstances

this will be the preferred choice. Identical markers that were origin-

ally set aside can be added back to the final maps after marker

ordering is complete. Marker positions (in centiMorgans) are also

calculated by MDSMap, by default using the projected positions of

markers on a fitted Principal Curve (more details are provided by

the authors Preedy and Hackett, 2016).

3 Results

3.1 Software output—final linkage maps
The final output of the polymapR package is a phased integrated

map. Maps can either be generated per homologue or per chromo-

some, facilitating the definition of haplotypes within a population. A

record is kept in a log file of any markers that were removed at any

stage during the procedure, as well as logging the function calls that

generated each step, improving project reproducibility and later

reporting. Visualizations are provided throughout the mapping pro-

cedure, facilitating the diagnosis of issues as well as summarizing the

results. An example of an integrated map with five chromosomes,

generated using the sample data provided with the package, is shown

in Figure 3a. Phased linkage maps, giving the position of the SNP

alleles on each parental homologue are also generated, as visualized in

Figure 3b for a triploid species. For tetraploid datasets polymapR can

generate input files for TetraOrigin (Zheng et al., 2016) which can

calculate IBD probabilities for the population, useful for QTL ana-

lysis. Alternatively, input files for TetraploidSNPMap (Hackett et al.,

2017) can be generated with which QTL analysis can be directly

performed.

3.2 Application of polymapR to real data
Various developmental versions of the polymapR package have

been used for linkage map construction in potato, rose and chrysan-

themum (Bourke et al., 2016, 2017; Vukosavljev et al., 2016; van

Geest et al., 2017b). The current version brings together all the

capacities developed previously, while extending the algorithm to

triploid populations as well (produced in a tetraploid � diploid

cross). Cross-ploidy hybrids are commonly produced in ornamental

breeding, as well as in certain fruit species such as banana (Musa

spp.), watermelon (Citrullus lanatus var. lanatus) or grape (Vitis vin-

ifera) to generate seedless fruit (Acquaah, 2012). polymapR is ap-

plicable to a wide range of commercially-important crop species

such as potato, leek, alfalfa, blueberry, chrysanthemum, sweet po-

tato and kiwifruit, as well as the myriad of cross-ploidy populations

developed in ornamental and fruit breeding programmes.

4 Discussion

4.1 Comparison with other polyploid mapping software
The range of options for linkage mapping in autopolyploid species is

quite limited. We compared the performance and applicability of

polymapR with two alternative softwares (TetraploidSNPMap

(TSNPM) and PERGOLA).

4.1.1 TetraploidSNPMap

TSNPM possesses a graphical user interface for Windows, uses

optimized routines for marker clustering and offers interactive clus-

ter plots for linkage group assignment. It goes beyond linkage map

construction to compute IBD probabilities and perform QTL inter-

val mapping as well. Given that polymapR uses the same random

bivalent pairing assumption and the same ordering algorithm

(MDSMap; Preedy and Hackett, 2016), we did not expect much

difference in output. Using the sample tetraploid dataset provided

with polymapR (with 3000 markers over five chromosomes and 207

F1 individuals, including seven pairs of duplicate individuals),

polymapR produced phased maps within 24 min on an Intel i7 desk-

top with 16 Gb RAM; TSNPM took 5 min, but took another 10

minutes to phase (so a total of 15 min were needed). However,

the phased output of TSNPM is more difficult to interpret than

that of polymapR and would likely require extra time for curation.

The maps themselves were remarkably similar in terms of numbers

of mapped markers map length and marker order (Supplementary

Fig. S1).

Marker phasing in polymapR is automatic, by selecting phase

based on the counts of significant linkages to 1�0 homologue clus-

ters and ignoring any spurious linkages that go against the general

trend. On the other hand, phase assignment seems to (generally) re-

quire manual intervention in the TSNPM pipeline. Despite its com-

putational efficiency, TSNPM has also set an upper limit of 8000

SNP markers, and the maximum mapping population size is current-

ly 300 F1 individuals. polymapR sets no limits on marker numbers

or population sizes, employing parallel processing to help speed up

calculations for large datasets. Duplicated markers are initially

binned (also possible in TSNPM) and identical individuals are

merged (this feature was missing from TSNPM) to avoid needless

calculations. Overall, the main difference between TSNPM and

polymapR appears to be in applicability: polymapR can analyse

Fig. 3. Linkage map visualizations of polymapR. (a) Integrated chromosomal

linkage maps generated using the sample tetraploid dataset provided with

the package, with each marker segregation type highlighted; (b) Phased

homologue-specific maps of a single chromosomal linkage group from a

triploid dataset (simulated with PedigreeSim; Voorrips and Maliepaard,

2012). Maternal homologue maps (h1–h4) from the tetraploid parent are

shown on the left, and paternal homologue maps (h5–h6) from the diploid

parent are shown on the right, with the integrated chromosomal map in

the middle
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autotriploid, autotetraploid, autohexaploid as well as segmental

allotetraploid data, whereas TSNPM is currently confined to autote-

traploid data. polymapR is also cross-platform given that it is writ-

ten in R (R Core Team, 2016).

4.1.2 PERGOLA

The PERGOLA package in R has been developed for F2 or back-

cross populations from an initial cross between homozygous

parents. Such a situation is highly unusual for most polysomic poly-

ploids, since inbreeding requires many more generations before

homozygosity is reached compared to a diploid or disomic poly-

ploid. In a polysomic hexaploid for example, it would take 25 gener-

ations of selfing an F1 individual before 90% homozygosity is

reached (ignoring the effects of double reduction; Haldane, 1930).

The applicability of the PERGOLA software to real populations in

polysomic polyploids is therefore limited.

Despite the highly unusual type of population, we simulated a

small F2 dataset of selfed F1 individuals randomly chosen from a

cross between two inbred parental lines using PedigreeSim (Voorrips

and Maliepaard, 2012), leading to a marker dataset of 500 duplex

� duplex markers over five chromosomes. The calculation of recom-

bination frequencies took a mere 3.54 s in PERGOLA, in compari-

son to 28 min using polymapR (on a single core; using 6 cores this

step took 8 min). However, for polymapR this particular marker

combination is complex, with nine possible phase combinations in

the parents to be separately calculated per marker pair, and with ex-

tremely complicated likelihood functions for each phase (all 25 dos-

age combinations are possible in a tetraploid, from n00 to n44). It is

therefore a somewhat unfair comparison, as PERGOLA labours

under no such ‘generalist’ difficulties. Phase considerations are triv-

ial and therefore ignored by PERGOLA because of their simplistic

population assumptions. If such populations could be generated,

PERGOLA would produce excellent maps. In our test, PERGOLA

identified all five chromosomes, with near perfect marker order in

each, although the map lengths were inflated—from 200 cm using

the Kosambi mapping function to 400 cm using Haldane’s (when

100 cm was expected). polymapR also produced near-perfect maps

with map-lengths of �90 cm using Haldane’s mapping function.

The polymapR package can handle data from both cross-pollinating

and inbred populations whereas PERGOLA cannot, but given

the performance difference, PERGOLA would appear to be the soft-

ware of choice for inbred polyploid populations, should they be

developed.

4.2 Robustness against genotyping errors
Of potential concern is the effect of genotyping errors on the map-

ping pipeline. We ran a small simulation study using the previously-

mapped potato chromosome 10 (Bourke et al., 2016) and five F1

populations (n ¼ 200) simulated in PedigreeSim (Voorrips and

Maliepaard, 2012) with randomized errors in the offspring dosages

(error rates of 0, 2, 5, 10, 20 and 50%). At the higher rates of error

(>20%) many markers would (by default) be filtered out due to

skewness or poor concordance between parents and offspring scores

(Supplementary Fig. S2). In general, error rates of up to 10% appear

to be acceptable in terms of marker order, while higher rates will

likely lead to map inflation and poorer marker orders.

4.3 Concluding remarks
The development and release of polymapR comes at a time when

there is increasing need for tools to perform genetic analysis in poly-

ploids. Understanding the genetic control of important biological

traits in polyploid species will have a large impact on plant breeding

(or in the case of certain salmonid fish, animal breeding as well),

facilitating the adoption of genomics-driven breeding decisions

such as marker-assisted selection or genomic prediction into

breeding programmes. For these advances to take place, high-

density and accurate maps showing the relative position of markers

on chromosomal groups are needed—which is precisely what

polymapR delivers.
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