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Abstract

It is often unavoidable to combine data from different sequencing centers or sequencing platforms when compiling data sets

with a large number of individuals. However, the different data are likely to contain specific systematic errors that will appear

as SNPs. Here, we devise a method to detect systematic errors in combined data sets. To measure quality differences between

individual genomes, we study pairs of variants that reside on different chromosomes and co-occur in individuals. The

abundance of these pairs of variants in different genomes is then used to detect systematic errors due to batch effects.

Applying our method to the 1000 Genomes data set, we find that coding regions are enriched for errors, where�1% of the

higher frequency variants are predicted to be erroneous, whereas errors outside of coding regions are much rarer

(<0.001%). As expected, predicted errors are found less often than other variants in a data set that was generated with

a different sequencing technology, indicating that many of the candidates are indeed errors. However, predicted 1000

Genomes errors are also found in other large data sets; our observation is thus not specific to the 1000 Genomes data set. Our

results show that batch effects can be turned into a virtue by using the resulting variation in large scale data sets to detect

systematic errors.
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Introduction

Next generation sequencing technologies allowed for the

generation of data sets that include genetic data of a large

number of individuals. To produce these data sets, sequenc-

ing data of different coverage, and from different platforms

or different batches of sequencing chemistry may need to be

combined. This can result in differences in the type and num-

ber of errors across samples (Wall et al. 2014; Wolpin et al.

2014; Schirmer et al. 2015; Torkamaneh et al. 2016; Kircher

et al. 2011).

Here, we introduce a method to identify individual

genomes with a higher error rate in large data sets and to

predict which variants are likely due to error. The method first

tests pairs of variants that reside on different chromosomes

for signals of linkage disequilibrium. Linkage between sepa-

rate chromosomes is not expected by population genetics

theory for a randomly mating population, unless strong epi-

static interactions are present. However, such signal can occur

if errors affect individual genomes differently, leading to co-

occurring erroneous variants in the same individuals but on

different chromosomes (fig. 1). This first step is computation-

ally expensive and we therefore limited the computation of

linkage to pairs of variants in a subset of the genome. In the

second step, we compare the contribution of individual

genomes to the total linkage signal to identify outlier indi-

viduals that carry more potentially erroneous variants. As a

last step, we use the differences in the number of linked

pairs between individuals to identify which variants are pre-

sent primarily in those individuals that carry more predicted

errors (fig. 1). This last step can be applied to all variants

and not only those that have been tested for linkage,

resulting in a list of predicted erroneous variants for the
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complete data set. Removing these errors, we repeat the

procedure starting from the second step, until no signifi-

cant differences in the burden of predicted errors is ob-

served between individuals. No knowledge of differences

in sequencing technologies or other factors is required by

this approach.

Materials and Methods

Data Handling

We downloaded the 1000 genomes phase 3 data set (version

June 25, 2014). We used only one representative individual

for each set of related individuals, using the 1000 genomes

annotation. Only populations with at least 95 unrelated indi-

viduals were analyzed further, retaining 12 populations and

1,117 individuals (supplementary table 1, Supplementary

Material online). Variants were classified according to fre-

quency using bcftools (common variants: >5% frequency in

at least one population, rare variants: 1% < frequency in at

least one population, but � 5% in all) (Li 2011). We per-

formed all analyses on both common and rare variants, or

only on common. Variants were annotated as coding when

they fell within 200 bp of the coding exons of the UCSC

known gene annotation (Rosenbloom et al. 2015), and as

intergenic when they did not overlap UCSC known genes

and were not annotated as a potentially functional variant

by the Variance Effective Predictor (McLaren et al. 2016).

The Botnia data include 327 trios from the Botnia population,

in Finland (Fuchsberger et al. 2016). We excluded all offspring

and related individuals.

Data from the Genome of the Netherlands were filtered

and annotated analogously to the 1000 genomes. All analy-

ses shown refer to variants with a 5% MAF cutoff.

Outline of Pipeline

We implemented our analyses in a pipeline to detect inter-

chromosomal linkage disequilibrium and detect variants af-

fected by batch effects or inhomogeneity in the treatment

of samples. This pipeline is outlined in supplementary figure

1, Supplementary Material online, and the different steps are

described in the following sections.

Step 1: Linkage Disequilibrium

When the phase is unknown, as for two physically unlinked

loci A and B with possible alleles A-a and B-b, respectively, a

composite genotypic linkage disequilibrium can be calculated,

by relying on a maximum likelihood estimate of the amount

of AB-gametes that are present in samples. Following Weir

(Weir 1996), we can arrange the counts of the nine possible

observed genotypes for the two loci in a matrix:

B/B B/b b/b

A/A n1 n2 n3

A/a n4 n5 n6

a/a n7 n8 n9

so that

RAB ¼ 2n1 þ n2 þ n4 þ n5=2: (1)

The composite genetic disequilibrium equals DAB ¼ RAB/

n-2pApB where n is the number of samples. The sign of the

composite linkage disequilibrium DAB indicates whether alleles

A and B (or a and b) occur preferentially in combination

(DAB>0) or whether the alleles occurring most often together

are A and b (or a and B) (DAB<0). We can test statistical

association between two variants by either considering a

two-tailed test (i.e., Fisher’s exact test, adopting normalization

proposed by Kulinskaya and Lewin 2009), or by performing a

1-tailed Fisher’s exact test for the positive and negative asso-

ciations between minor alleles, thus denoted as A and B.

In order to speed up calculations approximate P values

were first determined with the v2 based T2 method (Schaid

2004; Wu et al. 2008; Zaykin et al. 2008), and exact P values

were calculated only for those pairs with an approximate P

value < 100/nSNP
2, where nSNP is the total number of variants

examined. While negative association between minor variants

might also occur because of synergistic interaction between

deleterious variants (Sohail et al. 2017), batch effects are

expected to result in the positive association between errors

introduced at low frequency (fig. 1). Thus, we restricted our

analyses to significantly linked variants with a positive

(a)

(b)

FIG. 1.—Outline of the method. (a) Sequencing data generated from

samples with different sequencing quality or processing might introduce

different errors (black dots). Since these errors will be present in samples

coming from the same platform, they will give a signal of linkage between

different chromosomes (dashed lines). (b) The contribution to the linkage

signal can be computed for each sample (dashed lines), and used to iden-

tify samples coming from the same batch and with similar error profiles, as

well as the errors. See also supplementary figure 1, Supplementary

Material online.
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association. Note however, that batch effects can also result

in an excess of negatively associated minor variants when

high-frequency errors are present, as we observed in the cod-

ing regions of the 1000 Genomes data set (see supplementary

fig. 21, Supplementary Material online, for an analysis of neg-

ative linkage, and supplementary fig. 22, Supplementary

Material online, for both positive and negative linkage

together).

With the exception of the per-population analyses shown

in figure 2a and b and supplementary figures 6a and b and

10c, Supplementary Material online, we combine P values

across populations, using Fisher’s method to obtain a single

combined 1-tailed P value for each pair of variants. These

combined P values are then compared with those obtained

in a data set generated by randomly redistributing chromo-

somes across individuals. This allows one to additionally con-

trol for the sporadic linkage between chromosomes that can

occur for low frequency alleles (Skelly et al. 2016). The False

Discovery Rate was calculated as the fraction of allele-pairs

that have an equal or lower P value in the randomized data

set, versus the original data. In order to test the excess of

interchromosomal linkage disequilibrium we restrict further

analyses to instances in which at least one pair of variants is

significantly associated (supplementary figs. 2 and 3,

Supplementary Material online).

Step 2: Individual Contribution to LD

We calculated the contribution of each sample/diploid indi-

vidual to the linkage signal by summing up its contribution to

the total of the RAB values over all significant linkage pairs.

Note that this value, called nAB, is calculated per individual.

For positive associations (D> 0), the contribution of each sam-

ple is directly the weight in equation (1) corresponding to a

specific genotype configuration, for example, 2 if a sample

has genotype n1 (A/A, B/B) since both gametes necessarily

had alleles A and B on both chromosomes, and 0 if it has

genotype n3 (A/A, b/b), since no gametes had alleles A and B

on both chromosomes.

In order to test whether samples contribute uniformly to

the linkage signal or not we compared the variance of the

observed data and random reshuffling of the chromosomes

across samples and within populations. To identify samples

with similar features, we perform a finite mixture analysis (R

package Mixtools), by assuming a normal distribution for the

underlying model of the contribution to the linkage signal of

each group of samples, within a population. We calculated

the corrected Akaike Information Criterion (AICc) weights for

each model, with one to nine possible underlying Gaussians

for each population.

The models with the highest weights are shown in supple-

mentary figure 7, Supplementary Material online. Since a

Gaussian might deviate from the real underlying distribution,

we tested whether a finite mixture analysis on the null data

sets in which chromosomes are redistributed across individu-

als would provide less support to the presence of groups of

samples with different nAB. We first calculated the relative

support for the best supported model against the null model

with only one Gaussian to explain the data, and compared it

with the same statistics for 100 null data sets. Higher support

for multiple clusters was present in the observed data com-

pared with the null distribution (Wilcoxon-rank test, P

value< 10�16 for coding regions, P value¼ 0.00103 for inter-

genic). Note that although generating permutations of the

data is computationally expensive, the high number of poten-

tial links give a very narrow distribution of all statistics related

to this empirical null distribution. For the 1000 genomes data

set 3 randomizations are sufficient to provide highly signifi-

cant P values when adopting a one-tailed t-test and compar-

ing to the real data. When a data set showed a significantly

higher variance and higher clustering than its empirical null

distribution in terms of nAB, we proceed into identifying the

variants responsible for the signal and the sources of the bias.

In order to assess whether the identified clusters correspond

to specific features of the samples we tested the role of sev-

eral technical predictors extracted from the sample spread-

sheet of the 1000 genomes data set (ftp://ftp.1000genomes.

ebi.ac.uk/vol1/ftp/technical/working/20130606_sample_info/

20130606_sample_info.xlsx). The clusters identified with

Mixtools for the coding regions of the 1000 genomes are

significantly associated with Sequencing Center and average

coverage (combined v2 P value< 10�16) (supplementary figs.

8 and 9, Supplementary Material online).

Step 3: Identification of Error Candidates

In order to identify variants whose presence is explained by

the occurrence in specific clusters of samples, we used a

Generalized Linear Mixed Model iteratively on each variant,

considering the contribution of each sample to nAB as only

predictor. The underlying assumption is that samples that

show a consistent excess of linked variants are more likely

affected by technical artifacts. Hence, variants that are present

only in these samples would be more likely spurious. To assess

whether the presence of an allele is predicted by the contri-

bution of each individual to the linkage signal, we built two

models: a full model, including the nAB value for each indi-

vidual as a predictor, and a null model, in which nAB is not

included. We then compared the two models with a likeli-

hood ratio test, so that for each variant we assess the signif-

icance of the relationship between nAB and the presence of

the minor variant (supplementary fig. 11, Supplementary

Material online). Notice, that this method uses as only predic-

tor the observed linkage, and thus does not require any ad-

ditional information about the samples. In more detail, the

response variable of the linear models is the presence or ab-

sence of the minor allele per sample. A sample can have three

states for this minor allele (absent homozygous a/a,
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heterozygous a/A or present homozygous A/A). To model

nonindependence of the two chromosomes of each individual

we consider each allele separately and introduce a predictive

variable (factor) “Sample” that groups the two alleles for each

chromosome of each individual (supplementary fig. 11,

Supplementary Material online). The other predictor that is

present in both the full and the null model is the population

to which each individual belongs. In the full model, the con-

tribution to the linkage signal per sample (nAB), is also present

as a continuous covariate.

We can thus write the two models as:

• full model: presence allele A at site i � contribution

nAB þ (1j Population) þ (0 þ contribution nAB j
Population) þ (1jSample).

• null model: presence allele A at site i � (1j
Population) þ (1jSample).

Sample and Population were introduced as two random

factors (categorical random predictors), in order to control for

the nonindependence between chromosomes belonging to

the same individual and individuals belonging to the same

population. The effects of random factors are denoted as

(1jFactor). The effects of a covariate, when dependent on a

random factor, are denoted as (0þ covariate j Factor). In par-

ticular, we allowed for different effects of nAB in different

populations (0þ contribution nAB j Population), due to po-

tential differences in population composition and treatment.

The contribution of each sample to the nAB signal has

been z-transformed and the P values of the likelihood ratio

test are corrected for multiple testing with the Benjamini–

Hochberg criterion. In order to speed up calculations we pre-

liminarily scanned each sample with an analogous simpler

logistic model, in which random factors are neglected, and

populations are considered independently. The P values of

each population are combined with Fisher’s method, and

the full model including all random components was per-

formed only for variants for which the combined P value

was <0.01.

(a)

(d)

(b) (c)

FIG. 2.—Characteristics of interchromosomal linkage among common variants in the coding regions (>5% minor allele frequency). (a) Number of

interchromosomal linked variants with a false discovery rate (FDR) < 5% in the 1000 Genomes populations, when analyzed independently. The FDR was

calculated by comparing the P value of each linked pair to the distribution of P values after permuting chromosomes across individuals. Populations labels are

colored according to the continent: blue for Asia, red for Africa, black for Europe and yellow for others. (b) Fraction of interchromosomal linked variants in

one population (row) that are also linked in another population (column). Darker colors indicate a higher proportion of linked variants. The order

of the populations is determined by the hierarchical clustering graph shown on the left, calculated on the basis of the sharing of linked variants.

(c) Contribution of Chinese from Bejing individuals to the linkage signal (bars) given by the number of linked minor alleles (nAB). Individuals with

similar nAB values were grouped by a Gaussian mixture model, whose fitted distributions are shown as colored lines. (d) Distribution of nAB for

individuals from different 1000 Genomes populations. Colors indicate the sequencing center per individual. Individuals sequenced in multiple

centers were marked with a separate colors.
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Analysis of the 1000 Genomes Data Set

Characterization of Batch-Effects

To directly assess the association between nAB and technical

features of the samples, we applied a Generalized Linear

Mixed Model using the R package lme4 (supplementary

tables 2 and 3, Supplementary Material online). We tested

a model exploring whether the observed log(nAB) value for

each sample (response variable) is predicted by technical

features of the individual samples (predictor variables). As

predictor variables, we used technical features of the sam-

ples described in the sample spreadsheet of the 1000

Genomes project. For simplicity, we grouped these different

predictors into three main groups: Center, Coverage, and

Chip. As a first predictor variable, we considered the main

sequencing center where each sample was processed, that

is, for coding regions the main sequencing center for the

exome, and for intergenic regions the main sequencing cen-

ter for the low coverage sequencing. For most samples, one

sequencing center was used to produce all or at least the

majority of the data, which was regarded as the main se-

quencing center; for the remaining cases (n< 3 for all pop-

ulations), where equal proportions of data were produced at

multiple sequencing centers, we considered this combina-

tion as an independent level. Center is a single categorical

variable, in which the different levels of the linear model

indicate different sequencing centers, and the coefficients

estimated by the linear model (supplementary tables 2 and

3, Supplementary Material online) are the effect that each

sequencing center has in respect to a baseline sequencing

center selected from the spreadsheet. The second group of

variables, Chip, includes three independent binary variables,

each denoting whether one the genoyping array platforms

(Omni, Affymetrix, or Axiom) was used for the sample.

Finally, the group Coverage, describes the average coverage

per sample, measured as three continuous variables

from the sampled spreadsheet of the 1000 genomes data

set, that is, Total.Exome.Sequence, X.Targets.Covered.to.

20x.or.greater and LC.Non.Duplicated.Aligned.Coverage.

Populations were included as random categorical predic-

tors, and for all other predictor variables we considered

random intercepts and random slopes nested within

Population. This approach accounts for the different

effects that the different predictor variables might have

in different populations. We tested a full model, that in-

cluded all predictor variables, and three reduced models

including only some of the predictors: 1) the three con-

tinuous coverage variables (Coverage) þ Center, 2)

Coverage þ the presence of genotyping arrays (Chip), 3)

Center þ Chip. The models were compared with a likeli-

hood ratio test, indicating whether the group removed in

the reduced model improves significantly the predictions

of the model (supplementary tables 2 and 3,

Supplementary Material online).

Idenfication of Error Candidates

We applied our method to all variants present in the 1000

genomes data sets. For the coding regions, where linkage

pairs are abundant, we directly use the nAB values estimated

exclusively on significantly linked variants using a minimum

allele frequency threshold of 5% (supplementary table 4,

Supplementary Material online) and 1% (supplementary table

5, Supplementary Material online). This procedure is under-

powered for intergenic variants, where the amount of linked

pairs is much smaller and the distribution of nAB has a low

resolution. To increase the amount of bona fide linked var-

iants in the intergenic data set, we first increased by ten-fold

the number of pairwise interchromosomal comparisons by

subsampling a larger amount of intergenic variants. In addi-

tion, we relax the FDR cutoff to define linked pairs to

FDR< 20%. Notice that while this reduced cutoff may in-

crease the noise in the nAB profile due to additional randomly

linked pairs, we expect no systematic bias that would increase

the number of predicted errors. In contrast, increasing the

FDR cutoff for links considered to compute nAB has only a

minimal effect on the number of predicted errors in coding

regions, suggesting that the estimation of the nAB profile for

the exome is not underpowered. The set of genome-wide

discovered variants using linkage between intergenic variants

is reported in supplementary tables 6 and 7, Supplementary

Material online, for minor allele frequency cutoff of 5% and

1%, respectively. Note that supplementary tables 6 and 7,

Supplementary Material online, include variants discovered

genome-wide, also in regions for which the linkage was not

computed directly.

For both data sets, we estimated the false discovery rate for

each variant with the Benjamini–Hochberg method (supple-

mentary tables 4–7, Supplementary Material online). An empir-

ical false discovery measure can be obtained by calculating the

overlap of the candidate variants from the 1000 genomes data

set to variants present in Complete Genomics (supplementary

figs. 14 and 15, Supplementary Material online). Significant

variants for both data sets show a reduced overlap with the

high quality Complete Genomics data set (P value< 10�16),

indicating an enrichment in error among our candidates.

Effects of Selection

In order to illustrate the possible selection scenarios that could

lead to interchromosomal linked variants we calculated the dy-

namics in time of the average linkage-disequilibrium coefficient

D, in presence of epistatic interactions between two different

genomic variants leading to a difference in survival rates of the

different gametes. We consider two biallelic sites, with alleles A-

a, and B-b, respectively. We denote the number and selection

coefficient of gametes AB, Ab, Ab, and aB with nAB, nAb, naB,

and nab, and sAB, sAb, saB, and sab, respectively. We performed

for each selection scenario 10,000 simulations. In each gener-

ation, we first simulated recombination, then selection.
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In the recombination step, we sampled the number of

gametes that would change state (i.e., gametes AB recombin-

ing with ab, and Ab recombining with aB) after random pair-

ing of the gametes and recombination occurring with

probability r. The selection step follows a Wright–Fisher

model, with each gamete having fitness 1þsAB, 1þsAb,

1þsaB, and 1þsab, respectively. We consider two possible sce-

narios: advantageous combinations of minor alleles, with

sAB>0 and sAb¼sAb¼ sab ¼0, and antagonistic combinations

of minor and major alleles (with sAB¼sab¼0 and sAb¼saB<0).

Selection coefficients were either fixed to 1% (strong selec-

tion) or sampled from a distribution of selection coefficients

estimated for nonsynonymous variants in the human genome

(Racimo and Schraiber 2014). Simulations are shown in sup-

plementary figure 5, Supplementary Material online.

Validation of the Methods

We tested the current pipeline on simulated data sets with

either 50, 100, or 200 unrelated individual genomes of equal

length to that of the coding regions analyzed for the 1000

Genomes data set. The genotypes of these data sets were

randomly sampled from the 1000 Genomes data sets. Each

chromosome was sampled independently from the others, to

obtain data sets with no residual linkage due to population

structure nor errors. The individuals were divided into two

batches, one with errors and one without errors. The error-

containing batch encompassed either 20% or 50% of indi-

viduals. Errors were added to either 10% or 50% of the

individuals of the error-containing batch at 0.1% of the sites.

Errors were added in the form of false heterozygotes, leading

to overall error rates equal between 10�5 and 0.000125 per

site and individual. Results are shown in supplementary fig-

ures 24 and 25, Supplementary Material online.

Results

Excess of Interchromosomal Linkage-Disequilibrium in the
1000 Genomes Data Set

We applied our method to the widely used 1000 Genomes

data set (Sudmant et al. 2015; The 1000 Genomes Project

Consortium 2015). The data used for the 1000 Genomes

project have been acquired over 7 years, involving ten se-

quencing centers, five sequencing technologies, and several

platform versions (The 1000 Genomes Project Consortium

2012, 2015). Individuals also differ in genome-wide sequenc-

ing coverage and in the coverage of the additional exome

sequencing data. We limited our analysis to populations

with at least 95 unrelated individuals, resulting in a total of

12 populations that we were able to test. Since many individ-

uals from the 12 populations contained data generated via

exome capture, we considered for our analysis all rare (minor

allele frequency MAF >1% and <5%) and common variants

(MAF> 5%) in coding regions (“coding region data set”;

107,087 sites over all 12 populations) and, as a separate

data set (“intergenic data set”), an equal number of rare

and common intergenic variants. To minimize the influence

of population substructure on our analyses, we calculate inter-

cchromosomal linkage for each population independently.

For both the intergenic and coding region data sets, and

for all populations, we observe an excess of linked pairs over

the expected number at a false discovery rate of 5%, or when

comparing to an expectation derived from randomly assign-

ing chromosomes to individuals (fig. 2a; supplementary figs. 2

and 3, Supplementary Material online). Analyzing each pop-

ulation separately, we find that linked pairs are often shared

between populations, but this sharing does not reflect popu-

lation relationships (fig. 2b). However, many more significant

links are discovered in the coding region data set compared

with the intergenic data set. In coding regions we find that

variants are often linked to other variants on several different

chromosomes, leading to large clusters of paired-variants

(supplementary fig. 4, Supplementary Material online).

Maintaining such large clusters would require implausible se-

lective pressures that favor the coinheritance of minor alleles

(supplementary fig. 5, Supplementary Material online). This

contrasts with the concept of synergistic epistatic interaction

among deleterious variants, which would lead to a repulsion

between rare variants (Sohail et al. 2017).

Next,wecalculatedthecontributionofeach individual tothe

overall signal of linkage in a population by summing over the

estimated number of linked pairs of minor alleles this individual

carries (called nAB) (Weir 1996; Schaid 2004). For this, we con-

sidered all linked pairs that showed a significant combined P

value across all populations (see Materials and Methods). We

then compared the distribution of nAB over the individuals in a

given population to the distribution calculated after randomly

assigning chromosomes to individuals. We found that the var-

iance innAB is>80-foldhigher in intergenic regionsand>100-

fold higher in coding regions compared with the expectation

from randomization (Wilcoxon-rank test: intergenic P val-

ue< 7.4�10�7, coding region P value< 10�20), showing

that the signal of linkage is driven by individuals that carry an

excessof linkedpairs. Interestingly, incoding regionsmostpop-

ulationsshowgroupsof individualsthathavesimilarnABvalues,

but differ from the values observed for individuals of other

groups (fig. 2c and d; supplementary figs. 6 and 7,

Supplementary Material online). Consistent with this observa-

tion, thenABdistribution inalmostall populationsfitamodelof

a mixture of several Gaussian distributions significantly better

than a model with just one Gaussian distribution. We use the

fitted Gaussians to assign individuals to groups (fig. 2c;

supplementary figs. 6 and 7, Supplementary Material online).

Identification of Errors

To explain the differences in nAB between individuals for the

coding region data set, we correlated the group assignment
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of individuals from all populations with technical features of

individuals annotated as part of the 1000 Genomes data set.

We found that coverage, the presence of SNP array data for

the sample and sequencing center are significantly associated

with differences in nAB (coverage: P value< 10�18; sequenc-

ing center: P value< 10�20). Sequencing center has the stron-

gest effect, explaining over 80% of the variation in nAB

(fig. 2d; supplementary table 2 and figs. 8 and 9,

Supplementary Material online): models including the predic-

tor sequencing center explain up to 96% of the variation

observed in the data, compared with a null model including

only the predictor population that explains only�15% of the

variation. Note however that different sequencing centers are

often characterized by different average coverage per sample;

besides, samples processed in certain sequencing centers also

have additional genotyping array data. Thus, the predictors

sequencing center, coverage, and SNP array are not indepen-

dent (see also supplementary figs. 8 and 9, Supplementary

Material online). For this reason, models including both the

predictors coverage and SNP array but not the predictor se-

quencing center explain �79% of the observed variation in

nAB. These results suggest that while known technical factors

like coverage can explain part of the observed batch-effects

(�59% for exome sequencing coverage), additional technical

processes affecting nAB are captured here by the predictor

sequencing center, and account for�20% of the variation in

nAB. We notice that alternative explanations are incompatible

with the observed signal: for example, the possibility that

polymorphic genetic rearrangements contribute to the link-

age signal to a large extent is incompatible with the clustering

of individuals according to their nAB, whereas population

substructure would not generate the same linked variants

across different populations. For the intergenic data set, we

find that sequencing center is still strongly associated with

nAB, but coverage is only marginally associated when consid-

ering a minor allele frequency of 1% (supplementary table 3,

Supplementary Material online). Consistently, models includ-

ing sequencing center are better supported than models that

do not include it but only include the predictors coverage and

SNP array (P value< 10�16), and explained a larger proportion

of the variation in nAB (42.2–44.1% and 25.8% for models

including or not the predictor sequencing center, respectively,

for variants with allele frequency >5%). Much fewer variants

appear linked in the intergenic compared with the coding

region data set (421 or �1% of the number of linked pairs

in the coding regions; see fig. 2a vs supplementary fig. 10c,

Supplementary Material online) across all populations. A

larger amount of intergenic variants to determine linked pairs

does not change this result.

We next searched for variants where a minor allele is pref-

erentially encountered in individuals with a high nAB value

(supplementary fig. 11, Supplementary Material online).

Genome-wide (coding regions and noncoding regions) we

identify 16,951 common variants (>5% MAF in at least one

population) in the 1000 Genomes data that are significantly

associated with nAB and form our set of error candidates.

Interestingly, these candidates are not distributed randomly

over the genome, but are enriched in coding regions, where

around 696 variants (�1%) are predicted to be errors (sup-

plementary tables 4 and 5, Supplementary Material online). In

comparison, in noncoding regions only a small fraction

(<0.001%) were labeled as candidates, even if more variants

are sampled to increase power in the prediction (supplemen-

tary tables 6 and 7, Supplementary Material online). To fur-

ther test the enrichment in coding regions, we used the

software admixture (Alexander et al. 2009), which labels indi-

viduals by components of ancestry, on variants in coding

regions and on all variants genome-wide. Coding regions

showed components that corresponded to the grouping of

individuals by nAB and with technical features of the samples

(supplementary fig. 12, Supplementary Material online), while

such an effect was not observed for noncoding regions var-

iants, suggesting that variants in coding regions are enriched

for error.

Presence of Error Candidates in Different Data Sets

We would expect that our predicted errors are shared less

often than real variants with data sets produced at high cov-

erage by different technologies. To test this prediction, we

calculate how often our candidate variants are found in the

genomes of 69 individuals generated by Complete Genomics

and compare this number to the sharing of other frequency

matched variants from the 1000 Genomes data set. In coding

regions, 85% of the matched variants are found in the

Complete Genomics data sets, while only 15% of our candi-

dates are shared (v2 test P value< 10�15). In noncoding

regions 80% of variants match, while only 56% of candidates

are shared (P value< 10�15). This suggests that�84% of our

predicted variants in coding regions and 33% of variants in

noncoding regions are more likely due to error, assuming

conservatively that Complete Genomics is devoid of errors

that are shared with the 1000 Genomes data set. These pro-

portions increase for lower FDR thresholds and lower allele

frequencies (supplementary figs. 14 and 15, Supplementary

Material online). For example, only 42 out of 4,681 candidates

in noncoding regions that have a frequency<1% are present

in Complete Genomics, and 98% of these candidates are

estimated to be errors; the fraction of true errors is 56%

when considering all variants <10% frequency.

We also assessed whether these errors are unique to the

1000 Genomes data set or whether they can be found in

other large collections of genomes that may contain similar

batch effects. We find that 7,843 error candidates, of which

69 occur in coding regions, are also present in the HRC data

set (The Haplotype Reference Consortium 2016) In the GoNL

data set (The Genome of the Netherlands Consortium et al.

2014) we find 7,380 error candidates, of which 32 are in
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coding regions. These variants are underrepresented in the

Complete Genomics data set (v2-test <10�16 for both

GoNL and HRC), although with a proportion of estimated

errors lower than those of the full set of candidates (49%

and 17% in the coding and noncoding regions in GoNL;

69% and 26% in HRC). We also note that while we are

able to detect some of the systematic errors from the 1000

Genomes in both data sets, the fraction of predicted errors

that are present (56% and 0.49% in GoNL and HRC, respec-

tively) is significantly lower than the fraction of variants that

were not labeled as error (67% and 80%; P values< 10�15 in

both cases). For the HRC data set, which is based on 1000

Genomes data, this suggests that further filtering was effi-

cient in removing a large proportion of systematic errors.

Consistenly, in the coding regions only 10% of the candidates

are present in both 1000 Genomes and HRC data sets, while

91% of the frequency matched coding variants overlap.

Characterizing the Features of Predicted Errors

Errors may be caused by a variety of technical issues (Dohm

et al. 2008; Schirmer et al. 2015; Chen et al. 2017; Wang

et al. 2017). To learn more about the features of error candi-

dates in the 1000 Genomes data set, we tested several char-

acteristics in comparison to background variants that were

randomly selected from the set of all tested variants. We first

tested candidates in coding region, and divided the candi-

dates and control variants into synonymous and nonsynony-

mous sites. Whereas the control set shows an approximatively

equal number of nonsynonymous and synonymous variants

(�48% nonsynonymous), error candidates show a much

higher proportion of nonsynonymous variants (�72%), con-

sistent with the expected fraction of nonsynonymous substi-

tutions that would be generated by random errors, given the

codon composition of human genes (�72%) (Nei and

Gojobori 1986) (fig. 3). Coding region candidates also show

a 2-fold higher proportion of transversions (z-test P< 10�6), a

base composition with a 75% higher proportion of Gs and Cs

(z-test P< 10�12, 70% GC content for error candidates vs

40% for background SNPs), a 4.2-fold higher propensity to

fall within short C or G homopolymer stretches (z-test

P< 10�6), and an�125-fold higher proportion of SNPs show-

ing an excess of heterozygous genotypes in respect to the

Hardy–Weinberg equilibrium (Wilcoxon-rank test on control

and candidate errors; P values: P< 10�12), compared with

background SNPs (fig. 3). The last test indicates that errone-

ous sites are often heterozygous. Allele imbalance, that is, the

unequal representation of sequences supporting the two

alleles in a high-coverage sample, is often used as a hallmark

sign for erroneous heterozygotes (Li 2014). To test whether

this is also true for our candidates we used 25 high-coverage

samples from the Simons Genome Diversity Panel (SGDP)

panel (Mallick et al. 2016), which were independently se-

quenced with the Illumina platform. Specifically, we tested

allele imbalance in potential heterozygous samples of the

SGDP panels, that is, samples showing at least one read in

support of the reference allele and at at least one read in

support of the alternative allele, at positions classified as error

candidates in the 1000 Genomes Project data set or for back-

ground SNPs. While 81.4% of the error candidates showed a

significant (P value< 0.05) deviation from the expected 50%

proportion of reads supporting the alternative and the refer-

ence allele (binomial test with probability¼ 0.5), only 9.1% of

the background SNPs showed a significant deviation, indicat-

ing a strong enrichment in samples displaying allele imbalance

(v2 test P value<10�12). This suggests that sequencing errors

or cross-contamination introduce apparent heterozygous sites

(fig. 3 and supplementary fig. 16, Supplementary Material

online). For genome-wide candidates, we find some of the

same signals, albeit often weaker. Candidates still exhibit a 2-

fold higher tendency to reside in homopolymer stretches (z-

test P< 10�5), occur >8 times more often in heterozygous

state (P< 10�12) and show allele imbalance (P< 10�12).

Furthermore, both candidates in intergenic and coding

regions (both with v2 P value< 10�16) overlap repeats more

often than background candidates (fig. 4). As part of their

release, the 1000 Genomes Project provided users with two

annotations, that label variants by high or low coverage, or

the presence of low mapping quality sequences. These two

annotations differ in strictness, with one representing more

permissive criteria that label fewer bases as potentially prob-

lematic (pilot accessibility filter) and the other a stricter filter

that labels more variants (strict accessibility filter). We observe

that the majority of error candidates in coding regions are not

labeled by either annotation, whereas at least 25% remain

unlabeled for genome-wide variants (fig. 4). This indicates

that, at least in coding regions, interchromosomal linkage

detects erroneous variants that are not detectable when con-

sidering coverage or mapping quality alone.

Interestingly, we find that only the strict accessibility mask

is enriched for candidate errors, compared with background

variants when considering intergenic variants (v2 test, P val-

ue< 10�16). No significant enrichment is observed for the

pilot accessibility filter for intergenic variants and neither strict

nor pilot accessibility filters show significant enrichment for

coding region error candidates. Note that the pilot accessibility

filter masks sites where >20% of sequences align with a

mapping quality of 0. This criterion is likely ineffective for

low frequency variants that constitute the majority of our

predicted errors. Besides, both coverage accessibility filters

provided by the 1000 Genomes Project are solely based on

the low-coverage sequencing data, and do not include infor-

mation about the exome data, that account on an average for

�8 times more sequencing reads. Thus, errors in coding

regions that are caused primarily by the exome sequencing

data are not expected to be captured by these filters.

To further test whether error candidates in coding regions

are primarily linked to exome capture and not shotgun
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sequencing data, we downloaded all sequences of the 1000

Genomes Project for one population (CHB). We then com-

pared the proportion of sequences supporting the minor allele

at positions classified as candidate errors and at 5,000 back-

ground variable positions in the coding regions, in low-

coverage and exome sequencing data. We observed a

25.7% higher proportion of sequences supporting the minor

allele in the exome data compared with the low-coverage

data, while there is no difference for background variants

(binomial test, P value¼ 0.978), supporting an enrichment

in sites with different error rates in exome and low-

coverage sequencing among our candidates (v2 test, P val-

ue¼ 0.32�10�7). Note that different individuals have

different fractions of sequencing reads produced via exome

sequencing compared with the total of all sequences covering

the exome. These fractions range per individual from a mini-

mum of 46.8% to a maximum of 99.9%. This means that for

certain variants, many individual genotypes are based almost

exclusivelyonexomesequencingdata,whileothershavehigher

proportions of low-coverage data, potentially introducing

batch-effects. Interestingly, for candidate errors the coverage

of the exome across individuals has a 15.4% higher standard

deviation than background variants. This is consistent with the

findings that the coverage of the exome is a strong predictor

of the contribution to the linkage signal (supplementary table 1

and fig. 8, Supplementary Material online).

FIG. 3.—Characteristics of error candidates in the 1000 Genomes data set detected in coding regions (a) or genome-wide based on the intergenic data

set (b). For error candidates (red) and frequency-matched background variants (gray), the barplot shows the proportions of nonsynonymous versus syn-

onymous variants, transversions versus transitions, alternative alleles introducing Gs or Cs after or before GG or CC dimers, and positions with significant

excess of heterozygotes (P value<0.05). The violin plot shows the proportion of sequences supporting the alternative alleles in individual with at least one

sequence showing the alternative allele. On the right, the base composition of alternative alleles is shown for error candidates (red) and background variants

(gray).
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Testing Uniform Data Sets

Our method predicts errors that likely originate from the com-

bination of technologies, but should not find errors when the

data set is generated with just one technology and does not

contain other batch effects. To test this prediction, we ana-

lyzed data from the GoNL data set (The Genome of the

Netherlands Consortium et al. 2014), which is composed of

two parts that were produced with the Illumina and Complete

Genomics (Drmanac et al. 2010) sequencing technologies,

respectively. We first analyzed the two parts independently

and found no excess of linked pairs, consistent with a uniform

error within each part. However, when both parts are

merged, 2,750 linkage pairs with FDR< 20% are detected

(supplementary fig. 17 and table 8, Supplementary Material

online), representing batch-specific variants that are likely

due to error. We applied our method to detect the var-

iants that drive this signal. Similar to the 1000 genomes

data set the identified variants display typical features of

errors, such as an excess of heterozygotes and evidence of

allele imbalance (supplementary fig. 18, Supplementary

Material online).

We also analyzed how many false positive errors we pre-

dict in another uniform data set containing 654 unrelated

individuals from the Botnia region (Fuchsberger et al. 2016).

The data set was produced as part of a diabetes genome-wide

association study using OmniChip. Our method found no ex-

cess of linked pairs in this data set and the distribution of nAB

across individuals is comparable to that observed after ran-

domly permuting chromosomes across individuals.

Discussion

Previous studies used local patterns of linkage disequilibrium

(LD) in order to improve the quality of haplotype and SNP calls

in large-scale studies (Scheet and Stephens 2006; Leek 2014).

An example is the fastPhase method, which allowed for the

identification of over 1,500 low frequency SNPs with high

error rates in the HapMap data sets (Scheet and Stephens

2006). Our method uses a different source of information

and can be combined with these approaches to predict errors.

Here, we have shown that long-distance linkage between

pairs of sites that reside on different chromosomes can be

used to predict individuals that show an excess of error and

to label variants that are likely errors.

The errors we detected can influence a variety of analyses.

For instance, we showed that they affect estimates of popu-

lation structure (supplementary fig. 12, Supplementary

Material online) and estimates of mutational load (supple-

mentary figs. 19 and 20, Supplementary Material online).

Furthermore, since exons are enriched for errors and random

errors appear more often as nonsynonymous variants, esti-

mates of functional mutational load and the fitness effects

of newly arising mutations might be affected. The apparent

linkage between chromosomes can also affect studies of ep-

istatic interactions. For example, Sohail et al. were able to

detect epistatic effects only for the most functional elements

of the genomes, and detected an overall signal of linkage

disequilibrium compatible with the presence of errors, as iden-

tified in the present study (Sohail et al. 2017). Our approach

allows us to identify these errors.

(a) (b)

FIG. 4.—Overlap of error candidates (left) and background variants (right) with repeated regions (top) in the genome and accessibility filters provided by

the 1000 Genomes Projects (middle and bottom). Candidates and 20,000 background variants detected using the minor allele frequency filter �5% were

overlapped with known repeats in RepeatMasker (http://www.repeatmasker.org; last accessed September 1, 2017) annotation for hg19 downloaded from

UCSC genome browser, and two filters from the 1000 Genomes Project considering coverage and mapping quality. The coverage filters exclude regions

where the depth of coverage (summed across all samples) was higher or lower than the average depth by a factor of 2-fold (pilotMask) or by 50%

(strictMask). Regions are deemed as lowly mappable if >20% of overlapping reads have mapping quality of zero (pilotMask) or >0.1% (strictMask). LTR,

RNA related repeats, and repeats classified as “unknown” or “others” by RepeatMasker are here labeled as Others, in dark blue.
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We note that our estimates of the per-individual errors

allow for further analyses to study the possible origin of batch

effects. For example, we observed in the 1000 Genomes data

set a strong effect of the sequencing center, followed by

coverage and genotyping array used (supplementary tables

2 and 3 and figs. 8 and 9, Supplementary Material online).

However, the insights from the published metainformation

are limited since sequencing center, for instance, could rep-

resent a variety of underlying causes for quality differences,

such as a differences in chemical reagents or operating con-

ditions (Leek et al. 2010; Chen et al. 2017).

Our error candidates showed an excess of heterozygotes.

These heterozygotes are characterized by allele imbalance in

independently sequenced high-coverage data sets. This sug-

gests that these positions are susceptible to recurrent errors.

Note that these errors are elusive, and often not captured by

coverage and mappability based filters. We note that our

analysis was restricted to variants that passed genotype quality

filters (labeledasPASS).However,consistentlywiththesignalof

allele imbalance, the genotype quality of these heterozygous

errors was on an average a bit lower than for other variants

(supplementary fig. 20, Supplementary Material online).

Concluding, interchomosomal linkage disequilibrium lever-

ages the usage of different technologies to identify errors that

could remain unidentified when only one technology is used

for sequencing. We showed this using the GoNL data set, for

which combining two data sets generated with different tech-

nologies allows for the discovery of platform-specific errors.

Thus, while using a single platform may help in obtaining data

sets with errors that are comparable between samples, the

combination of these data sets can help identify errors that

are different between technologies. We hope that our

method helps to increase the value of large-scale heteroge-

neous data sets that are more susceptible to batch-effects.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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