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Abstract

Cas12a (Cpf1) is a CRISPR-associated nuclease with broad utility for synthetic genome 

engineering, agricultural genomics, and biomedical applications. While bacteria harboring 

CRISPR-Cas9 or CRISPRCas3 adaptive immune systems sometimes acquire mobile genetic 

elements encoding anti-CRISPR proteins that inhibit Cas9, Cas3, or the DNA-binding Cascade 

complex, no such inhibitors have been found for CRISPR-Cas12a. Here we employ a 
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comprehensive bioinformatic and experimental screening approach to identify three different 

inhibitors that block or diminish CRISPR-Cas12a-mediated genome editing in human cells. We 

also find a widespread connection between CRISPR self-targeting and inhibitor prevalence in 

prokaryotic genomes, suggesting a straightforward path to the discovery of many more anti-

CRISPRs from the microbial world.

CRISPR-Cas systems represent the only known adaptive mechanism by which prokaryotes 

protect themselves from biological attackers (1). Although diverse in composition, all 

CRISPR-Cas pathways employ RNA-guided enzymes that recognize and destroy foreign 

nucleic acids, commonly double-stranded DNA (2). The ease of changing the RNA guide 

molecule, and hence the DNA targeting specificity, has enabled use of CRISPR-Cas9 and 

Cas12 for programmable genome editing in a wide range of cells and organisms (3, 4). To 

control Cas9, bacterial inhibitors referred to as anti-CRISPRs (Acrs) have been found to 

limit or block Cas9 functions (5–9). However, these inhibitors have been found only 

sporadically, and no such inhibitors have been reported for Cas12a (Cpf1).

The known CRISPR-Cas inhibitors have been identified either through isolation of CRISPR-

resistant phages (9–13) or by proximity to anti-CRISPR associated (aca) genes (14, 15). As 

an alternative inhibitor discovery strategy, the presence of stable self-targeting CRISPR 

sequences has been proposed as a potential indicator of genomes or mobile genetic elements 

(MGEs) harboring CRISPR inhibitors (Fig. 1A) (16, 17). Self-targeting CRISPR sequences 

in CRISPR arrays are expected to be lethal to the host cell by directing cleavage and 

subsequent degradation of the microbial genome (18). However, such self-targeting CRISPR 

sequences could exist in cells harboring CRISPR inhibitors (16). To test whether CRISPR 

inhibitors can be discovered systematically by flagging CRISPR self-targeting genomes, we 

built a bioinformatic pipeline to search across the NCBI prokaryotic sequence database to 

locate self-targeting examples within predicted CRISPR arrays (Fig. 1B). The Self-Targeting 

Spacer Searcher (STSS) first predicts all possible CRISPR arrays using the CRISPR 

Recognition Tool (CRT) (19) and BLASTs each spacer against the host genome and any 

associated plasmids. Additionally, STSS collects information to gauge the likelihood that the 

self-targeting sequence would be lethal to the organism and if the target sequence occurs in a 

MGE (fig. S1) (20, 21).

Using STSS, we collected self-targeting data for 150,291 genomes, observing 22,125 cases 

of predicted self-targets, representing 8,917 unique sequences across 9,155 genomes (fig. S2 

and data S1). Focusing initially on three species in which multiple Acrs have been 

previously identified (Pseudomonas aeruginosa, Listeria monocytogenes, and Neisseria 
meningitidis), we determined the number of genomes that contained at least one lethal self-

targeting CRISPR spacer, and the number of those genomes that also contained an Acr using 

a blastp search (Fig. 1C). In N. meningitidis only 6% of the genomes were observed to 

contain a potential anti-CRISPR, while in P. aeruginosa and L. monocytogenes the number 

exceeded 80% or 90%. The self-targeting genomes devoid of known Acrs may also contain 

inhibitors that have yet to be discovered, especially in N. meningitidis where the number of 

self-targeting genomes is high but the number containing known Acrs is low.
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Based on our observation that self-targeting genomes frequently contain CRISPR inhibitors, 

we sought to determine whether screening genes in genomes containing self-targeting 

spacers could uncover new inhibitors. We focused our efforts on the CRISPR-Cas12a system 

(22–24), which has so far eluded discovery of inhibitory proteins despite the increasing use 

of Cas12a in gene editing and diagnostic applications (22, 25, 26). From the STSS results, 

we identified four strains of Moraxella bovoculi that contain self-targeting CRISPRCas12a 

systems as top candidates for containing anti-CRISPRs (see Methods). These strains each 

contained at least one perfectly matched self-targeting sequence in or near a predicted MGE 

with a correct TTV PAM sequence and intact Cas12 open reading frame, which should 

render the self-targeting spacers lethal in the absence of anti-CRISPRs (Fig. 1D and fig. S3) 

(27).

To test whether the Moraxella genomes encode type V-A anti-CRISPRs (AcrVA), we 

employed a cell-free transcription-translation (TXTL) system (28, 29) to express gene 

products from Moraxella genomic fragments. As an initial test of M. bovoculi Cas12a 

(MbCas12a) protein activity, we PCR-amplified a genomic fragment containing the 

promoter region and all of the Cas proteins (Cas12a, Cas1, Cas2, and Cas4) from M. 
bovoculi strain 22581. This amplicon was added to TXTL reactions with two reporter 

plasmids encoding green or red fluorescent protein (GFP or RFP) (Fig. 2A). When supplied 

with CRISPR RNAs (crRNAs) with base pairing complementary to the GFP and RFP genes, 

the presence of the MbCas12a-containing genomic fragment greatly reduced expression of 

both reporters (Fig. 2B and fig. S4). This result suggests that MbCas12 is active in M. 
bovoculi, suggesting the existence of CRISPR inhibitor(s) to prevent the self-targeting 

spacers from killing the cell.

To identify potential AcrVA-encoding genes, we used a directed screening approach to 

search the predicted MGEs within three of the M. bovoculi strains (strain 283689 was 

unavailable) containing self-targeting sequences from a type V-A CRISPR array. 

Interestingly, we also observed 13 self-targeting CRISPR type I-C spacers in strain 58069 

that strongly suggest the presence of I-C anti-CRISPRs in that strain (fig. S5). For each of 

the M. bovoculi genomes, pairs of PCR primers were used to make overlapping ~2–10 kb 

amplicons spanning all of the predicted MGEs in the three strains (generally excluding 

highly similar sequences) (table S1). These genomic fragments (GFs) were then added to the 

TXTL cleavage reactions described above.

From a total of 67 GFs that we tested for type V-A CRISPR inhibition activity, four 

correlated with increased levels of gene expression for both reporters (Fig. 2, C and D, and 

figs. S6 to S8). We then cloned the individual open reading frames within these fragments 

(Fig. 2D and table S3) downstream of the Ptet promoter to separately induce transcription 

and translation of each gene and assessed them for CRISPR inhibition activity using the 

TXTL Cas12a cleavage assay. From the pool of candidates, three proteins supported high 

levels of dual reporter gene expression (Fig. 2, E and F, and fig. S9): GF36 candidate 1, 

GF59 candidate 2, and GF59 candidate 3, hereafter referred to as AcrVA1, AcrVA4, and 

AcrVA5, respectively, to complement the other AcrVA genes discovered concurrently with 

this work (30).
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To confirm the CRISPR inhibition activity of AcrVA1, AcrVA4, and AcrVA5 in vitro, we 

first overexpressed and purified each putative Cas12a inhibitor, MbCas12a, and two 

additional Cas12a enzymes (AsCas12a and LbCas12a) commonly used in genome editing or 

DNA detection applications (fig. S10) (25, 26). We then generated crRNA-protein (RNP) 

complexes for each of the purified Cas12a enzymes and added the RNPs to a linearized 

target plasmid that was preincubated with increasing concentrations of each candidate 

AcrVA protein. We observed that AcrVA1 inhibited DNA cleavage by all three Cas12a 

enzymes, with the strongest inhibition observed for MbCas12a and weakest observed for 

As-Cas12a (Fig. 3). AcrVA4 and AcrVA5 inhibited dsDNA cleavage for both MbCas12a and 

LbCas12a, but did not inhibit AsCas12a. Interestingly, we also observed that AcrVA4 more 

strongly inhibited the MbCas12a from strain 58069 (fig. S11) than the MbCas12a from 

strain 22581 (Fig. 3A), and that AcrVA5 was unable to inhibit the MbCas12a from strain 

58069 (fig. S11). None of the AcrVA proteins inhibited S. pyogenes Cas9 (SpyCas9) 

cleavage (fig. S12).

Having confirmed robust DNA cleavage inhibition by AcrVA1, AcrVA4, and AcrVA5 using 

purified protein samples, we next tested whether these Cas12a inhibitors could block or 

reduce Cas12a-mediated genome editing in human cells. We cloned each AcrVA candidate, 

AcrIIA4 (a SpyCas9 inhibitor), or negative controls, into a lentiviral expression vector and 

stably transduced HEK293T-derived genome editing reporter cells containing a doxycycline-

inducible GFP marker. Purified AsCas12a, LbCas12a, MbCas12a, or SpyCas9 protein was 

assembled with a GFP-targeting guide RNA and transfected into the AcrVA-expressing 

reporter cell lines (Fig. 4A). At 24 hours post RNP delivery, cells were induced by 

doxycycline for another 24 hours before quantifying editing efficiency by flow cytometry 

(Fig. 4B and fig. S13A) and a T7 endonuclease 1 assay (Fig. 4C and fig. S13B). We 

observed high levels of genome editing induced by SpyCas9 with no inhibition by any of the 

AcrVA proteins or negative controls, but virtually complete inhibition by AcrIIA4. We also 

observed strong Cas12a RNP editing inhibition that generally matched the in vitro cleavage 

results. Mirroring their biochemical behavior, AcrVA1 provided the broadest inhibition of 

Cas12a and fully blocked AsCas12a with efficiencies comparable to AcrIIA4’s inhibition of 

SpyCas9. AcrVA4 and AcrVA5 only inhibited LbCas12a. RNP-based delivery of MbCas12a 

did not edit efficiently enough to determine the effectiveness of the AcrVA genes on its 

activity (fig. S13), consistent with previous findings (22).

Together, these results establish a new approach for systematic discovery and validation of 

CRISPR-Cas inhibitors hidden within self-targeting genomes. Importantly, the Cas12a 

inhibitors revealed by this approach are only found within a few genomes within the NCBI 

database, with AcrVA4 and AcrVA5 being particularly rare genes, only cooccurring with 

each other and thus intractable to an aca-based search approach (fig. S14). While we expect 

the extensive set of yet-to-be-analyzed CRISPR self-targeting genomes (data S1) will lead to 

the discovery of many more Acrs across all CRISPR subtypes, the AcrVAs discovered and 

validated here provide a toolkit for selective Cas12a regulation both in vitro and in 

mammalian systems, with the potential to advance synthetic biology, CRISPR diagnostics, 

and therapeutic genome editing.
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Fig. 1. Bioinformatic approach for discovering Acr genes.
(A) Anti-CRISPRs allow survival of cells containing self-targeting CRISPR arrays. (B) 
STSS finds self-targeting CRISPR spacers in genomic DNA, predicts the type of CRISPR 

system involved, and obtains information about the targeted sequence. (C) A large 

percentage of genomes containing self-targeting (ST) spacers predicted to be lethal contain 

previously-identified Acr genes. (D) Moraxella bovoculi strain 22581 contains three self-

targeting spacers in two different prophages in the genome. All of the protospacers contain a 

TTV protospacer-adjacent motif (PAM) (22).
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Fig. 2. TXTL screening for Acr gene candidates.
(A) Overview of the transcription-translation (TXTL) reaction. DNA expressing Cas12a, 

two fluorescent reporters, and two gRNAs are mixed with or without DNA potentially 

containing Acr genes. (B) Cleavage of the reporter plasmid results in a reduced fluorescent 

output that is rescued by Acr genes (Acr-absent data in triplicate). (C) Amount of relative 

inhibition observed for 67 genomic fragments (GFs) across three self-targeting M. bovoculi 
strains. Four GFs (bold) exhibited inhibition in both fluorescence channels. (D) Genomic 

fragments GF29, GF35, GF36, and GF59 (99% nucleotide identity to GF29) exhibited high 

levels of expression for both reporters. (E) Testing the individual genes from the fragments 

in (D) (table S2) resulted in the identification AcrVA1 (GF36 candidate 1), AcrVA4 (GF59 

candidate 2), and AcrVA5 (GF59 candidate 3). (F) Kinetic TXTL data for the AcrVA genes 

measured over the course of 10 hours of gene expression.
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Fig. 3. Biochemical validation of AcrVA inhibitors.
(A) Moraxella bovoculi Cas12a (MbCas12a) in vitro dsDNA cleavage is inhibited by 

increasing concentrations of AcrVA1, AcrVA4, and AcrVA5 (0 – 1.25 μM; see Methods). 

(B) LbCas12a, a Cas12a commonly used for gene editing and diagnostics (4, 22, 26), is also 

inhibited by all three AcrVA proteins. (C) High concentrations of AcrVA1 inhibit AsCas12a-

mediated dsDNA cleavage, but AcrVA4 and AcrVA5 have no effect. Triangles indicate 

uncleaved (black) or cleaved (gray) DNA.
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Fig. 4. AcrVAs robustly inhibit genome editing by specific CRISPR-Cas12a nucleases in 
mammalian cells.
(A) Overview of the editing reporter assay in human cells. (B) Quantification of genome 

editing in reporter cell lines stably expressing the indicated CRISPR-Cas12a inhibitors 

(AcrVAs) or a control (mTagBFP2, mCherry). The scale of each plot is adjusted to 

compensate for differences in editing efficiency. Error bars indicate standard deviations of 

triplicates. (C) Biochemical analysis of AcrVA-mediated inhibition in representative 

samples shown in (B). Editing was assessed by the T7 endonuclease 1 (T7E1) assay.
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