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Abstract

Background—Recent evidence supports that the gut microbiota may be involved in the 

pathophysiology of non-alcoholic fatty liver disease (NAFLD), and may also offer avenues for 

treatment or prevention.

Methods—We investigated the associations among gut microbiota, diet and hepatic fat fraction 

(HFF) in 107 adolescents. Magnetic Resonance Imaging (MRI) was used to assess HFF, and 16S 

rRNA gene sequencing was performed on collected fecal samples. Dietary intake was assessed 

using Food Frequency Questionnaires. We examined the association between gut microbiota alpha 

diversity and HFF, and assessed the predictive accuracy for HFF of 1) taxonomic composition, 2) 

dietary intake, 3) demographic and comorbid conditions, and 4) the combination of these.

Results—Lower alpha diversity was associated with higher HFF (β=−0.19, 95% CI −0.36, 

−0.02). Selected taxa explained 17.7% (95% CI: 16.0–19.4%) of the variation in HFF. The 

combination of 2 of these taxa, Bilophila and Paraprevotella, with dietary intake of 

monounsaturated fatty acids and BMI z-scores explained 32.0% (95% CI: 30.3–33.6%) of the 

variation in HFF.

Conclusions—The gut microbiota is associated with HFF in adolescents and may be useful to 

help identify youth who would be amenable to gut microbiota-based interventions.

Introduction

Non-alcoholic fatty liver disease (NAFLD) is a spectrum of conditions ranging from simple 

steatosis to progressive nonalcoholic steatohepatitis (NASH) and is the most common cause 

of chronic liver disease in the United States, as well as many other places in the world.(1) 
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Prevalence of NAFLD has been increasing rapidly in recent years in conjunction with 

increases in obesity, which is a primary main risk factor for fatty liver, though it also occurs 

in lean individuals. (2) Current prevalence estimates range from 10–30% among U.S. adults 

and 3–10% in children.(2) Early interventions for NAFLD include dietary and lifestyle 

counseling, as well as vitamin supplementation.(3,4) In order to curb the long-term health 

effects of NAFLD, it is important to improve and expand the options for early interventions, 

and to gain a deeper understanding of the biological processes underlying the condition, 

which may also inform prevention efforts.

Both animal and observational studies in humans provide evidence that the pathogenesis of 

NAFLD may involve the gut microbiota through various mechanisms, such as effects on the 

metabolism of lipids and cholesterol, triglyceride storage, hepatic inflammation, and 

regulation of lipogenesis and gluconeogenesis.(5,6) Diet may also play a role in NAFLD, 

either directly or through gut microbiota-mediated effects. Total carbohydrates, specifically 

sugars and fructose, and total fat, particularly saturated fat, have been linked to increased 

risk for NAFLD; monounsaturated fats may be protective.(6,7) The fermentation of fiber by 

gut microbiota produces short chain fatty acids (SFCAs), which then affect energy 

metabolism, the immune system and adipose tissue expansion, and may play a role in 

gluconeogenesis in the liver.(6,8) Prebiotics or prebiotic foods, which are a type of fiber that 

are not digested in the small intestine but are fermented in the colon by the gut microbiota, 

have been suggested as a possible treatment for NAFLD, possibly in conjunction with 

probiotics.(9) A better understanding of the relationships between diet, the gut microbiota 

and NAFLD may help to inform or target such interventions.

In this study, we examined whether there is an association between gut microbiota and 

hepatic fat fraction (HFF), both alone and in conjunction with dietary information, in an 

adolescent population from the Exploring Perinatal Outcomes among Children (EPOCH) 

cohort. We assessed the accuracy of using the following information to predict HFF: 1) 

taxonomic composition, 2) dietary intake information, 3) demographic and comorbid 

conditions, and 4) the combination of all of the above.

Materials & Methods

Study Cohort

EPOCH is a historical prospective study of 604 mother / child pairs. Adolescents were 

identified through the Kaiser Permanente of Colorado Perinatal database based on exposure 

to gestational diabetes mellitus during singleton pregnancies. A research visit with data 

collection took place during 2012–2016, while the children were 12–19 years, and a fecal 

sample was requested from a randomly selected subsample of 240 participants. The 

subsample included 1 exposed participant for every 2 unexposed, matched on gender and 

race/ethnicity. Many participants chose to not provide a sample, or were unable to do so 

within the requested time frame. Thus, fecal samples were successfully collected from 120 

participants. Of those, one sample failed to sequence, two had poor quality reads, four were 

missing dietary information, and six were missing the outcome measure of hepatic fat 

fraction, leaving a sample size of 107 for the primary analyses. Analyses involving waist 

circumference or insulin resistance included 106 participants with complete data. The study 
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was approved both by the Colorado Multiple Institutional Review Board and Human 

Participant Protection Program. All participants provided written informed consent and 

youth provided written assent.

Data collection

The primary outcome variable in this study was hepatic fat fraction (HFF) obtained by 

Magnetic Resonance Imaging (MRI). Hepatic imaging was performed using a modification 

of the Dixon method by Hussain involving multi-breath-hold double gradient echo 

sequences.(10,11) HFF was calculated from the mean pixel signal intensity data, for each 

flip angle acquisition. An HFF of 5% or greater is commonly used as an indicator for mild 

fatty liver.(12)

Data collection also involved completion of the Block Kid’s Food Questionnaire,(13) a 

semi-quantitative food frequency questionnaire (FFQ) developed for children aged 8 years 

and older, which assesses 85 food items consumed in the last week, frequency and average 

portion size. Height was measured by SECA stadiometer, and weight was measured using an 

electronic SECA scale, as described previously.(14) Age- and sex-specific BMI z-scores 

were calculated using CDC reference standards, (15) and weight groups were defined using 

percentiles of BMIfor- age: underweight=less than 5th percentile; normal weight=5th to 85th 

percentile; overweight=85th up to 95th percentile; obese=95th percentiles or above.(16) Waist 

circumference was measured according to the National Health and Nutrition Examination 

Survey protocol.(17) Blood samples were obtained at the EPOCH study visit after an 

overnight fast, and glucose, triglycerides, and alanine aminotransferase (ALT) were 

measured, as described previously.(14) HOMA-IR [homeostasis model of insulin resistance: 

fasting glucose (mmol/l) × fasting insulin (µU/ml)/22.5] was used as a marker of insulin 

resistance. Race / ethnicity was self-reported using 2000 U.S. census definitions and 

categorized as Hispanic (any race), non-Hispanic white, non- Hispanic African-American, 

and non-Hispanic other. Maternal level of education and total household income at the time 

of birth were self-reported during the office visit. Maternal diabetes status was physician-

diagnosed using a standard two-step screening protocol (18) and ascertained from the Kaiser 

Permanente of Colorado Perinatal database, an electronic database linking the neonatal and 

perinatal medical record. The database was also used to determine delivery mode at birth.

Collection and processing of fecal samples

Before their study visit, a subsample (described above) of participants were asked for a 

microbiome stool sample. If they agreed to provide a sample, they were sent instructions as 

well as a Fisher Scientific BBL™ CultureSwab™ kit, a dual swab system for the sterile 

collection and transport of fecal microbiological samples. Participants were asked to take the 

sample as close as possible to the time of the in-person visit, and in all cases, it was the same 

day as the interview. The participants kept the sample at room temperature until the time of 

the interview, when the samples were frozen and stored at −80°F. DNA was extracted using 

the standard Power Soil Kit protocol (MoBio). Extracted DNA was PCR amplified with 

barcoded primers targeting the V4 region of 16S rRNA as detailed in Yatsunenko et al.(20) 

Control water samples that had undergone the same DNA extraction and PCR amplification 

procedures were also sequenced. Each PCR product was quantified using PicoGreen 
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(Invitrogen), and equal amounts (ng) of DNA from each sample were pooled and cleaned 

using the UltraClean PCR Clean-Up Kit (MoBio). Sequences were generated on a MiSeq 

personal sequencer (Illumina, San Diego, CA).

Denoising and OTU picking

Reads were first quality filtered and trimmed to a uniform length based on average position 

of first low quality base pair among all samples. The R package DADA2(19) was then run 

on default parameters to denoise the data and find exact sequence abundances across 

samples. These sequences were then used as input for open reference Operational 

Taxonomic Unit (OTU) picking using QIIME 1.9 (20) with a 99% identity threshold to 

determine OTUs. OTUs are groups of organisms based on sequence similarity. Greengenes 

13.8 was used as a reference database of near-full length sequences,(21) and unassigned 

sequences were clustered into de novo OTUs using UCLUSTref.(22) Analyses were 

standardized at the minimum sequence depth, 2537 sequences per sample, to avoid biases. 

The OTUs were summarized at the most specific known level of taxonomy for all analyses 

of taxonomic composition.

Statistical Methods

We dichotomized HFF using the same cutoff as typically used for adults to define mild 

steatosis: HFF≥5%(12) and compared demographic characteristics by NAFLD status using 

chi-squared tests for categorical variables and Wilcoxon rank-sum tests for continuous 

variables. Alpha diversity and UniFrac principal coordinates analyses (PCoA) were 

conducted using QIIME.(23) PCOA plots were colored by HFF and by weight group.

Alpha diversity

Alpha diversity measures the microbial diversity of each sample. There are many alpha 

diversity measures, and they differ in how they weight richness and evenness and whether 

they incorporate phylogenetic distance. We chose Shannon Diversity Index as our primary 

measure of alpha diversity because it gives equal weight to evenness and richness. We used 

linear regression models to examine the association between alpha diversity of gut 

microbiota and hepatic fat fraction (HFF). We used a square root transformation in order to 

normalize HFF to meet the assumptions of linear regressions. We controlled for sex, age, 

race/ethnicity, parental education, exposure to gestational diabetes in utero and delivery 

method at birth.

Taxonomic composition

In order to understand the interrelationships of the taxa, we used the graphical lasso 

technique as implemented in the R package qgraph, calculating the correlation using the 

Pearson’s correlation as input to the R function ccrepe, which was designed specifically for 

sparse compositional data such as these.(19) The minimum prevalence threshold for 

applying the ccrepe function was nonzero abundance in ≥10 samples, and we used this same 

cutoff for all analyses involving the gut microbiota taxa.
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Assessment of relationship between taxonomic composition and cardiometabolic 
measures

We evaluated the association between the gut microbiota composition and HFF using a 

Microbiome Regression-Based Kernel Association Test (MiRKAT)(19) of the Bray-Curtis, 

weighted and unweighted UniFrac distance matrices. Each of these metrics compares the 

dissimilarity across samples in slightly different ways: Bray-Curtis compares presence / 

absence, weighted UniFrac compares both phylogeny and abundance, and unweighted 

UniFrac compares phylogeny alone. These models were run first unadjusted, and again 

controlling for sex, age, race/ethnicity, parental income, parental education, exposure to 

gestational diabetes in utero, and delivery mode at birth. We performed similar models with 

BMI z-score, waist circumference (N=106), and HOMA-IR (N=106) as the outcomes of 

interest.

Evaluation of Association Between HFF and Taxonomic Composition, Diet and 
Comorbidities

In order to gain understanding of the role of gut microbiota and diet in the generation of 

hepatic fat, we used random forests. We applied the R function VSURF (Variable Selection 

using Random Forests)(19) to select features that are highly associated with HFF from the 

following groups of predictors: 1) taxa meeting the minimum threshold of presence in ≥10 

samples (N=76, pictured in Supplemental Figure S1); 2) dietary total daily kilocalories and 

the following macronutrients as percent of total intake: total fat, saturated fat, 

polyunsaturated fat, monounsaturated fat, total protein, total carbohydrates, sugars, soluble 

fiber, and insoluble fiber; 3) demographic and comorbid conditions: sex, age, race/ethnicity, 

parental income, parental education, exposure to gestational diabetes in utero, delivery mode 

at birth and current BMI z-score; and 4) the combination all of the these. The VSURF 

function is a multi-step algorithm that identifies the most important features for the 

prediction of HFF. We performed a sensitivity analysis for the random forest of dietary 

information, additionally including meat, fructose, vitamin D, vitamin A, and coffee / tea 

intake, which may be related to fatty liver.(6,7)

Whereas a linear regression would fit only a linear relationship between the predictors and 

the outcome, random forests allow for any type of relationship, including complex 

interactions. Random forests also do not provide regression coefficients, thus, we used 

various tools to understand the nature of the relationships between the predictors and the 

outcome as well as inter-relationships between the predictors, including partial plots and 

interaction plots. Partial plots show the adjusted relationship between the predictors and 

HFF, i.e. all the other selected features are held constant, as in multiple regression. We also 

used repeated cross-validation (3 folds, 100 repetitions) in order to evaluate the accuracy of 

the random forests. All analyses were performed using Qiime 1.9(20) and R v3.4.1.(19)

Results

Population Characteristics

The prevalence of NAFLD (defined as HFF≥5%) in this cohort was 7.5% (N=8; Table 1), 

which is similar to other estimates among youth in the United States, ranging between 3 and 
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10%.(2) Among those with NAFLD, the median hepatic fat fraction was 7.7% (IQR 6–8.5%; 

Range 5.2–11.1%); among those without NAFLD, it was 1.9% (IQR: 1.3–2.5; Range 0–

4.7%). The overall prevalence of overweight was 15% and obesity was 20.6%. Individuals 

with NAFLD were all either overweight or obese. Compared to those without NAFLD, they 

had larger waist circumference, higher alanine aminotransferase (a measure of liver 

function), higher HOMA-IR and were more likely to be Hispanic. The parents of individuals 

with NAFLD tended to have a lower level of education, and the mothers had higher pre-

pregnancy BMI. Other demographic, comorbidity and dietary information tended to be 

similar by NAFLD status (Table 1).

Alpha Diversity

Alpha diversity measures (Shannon Diversity Index, Phylogenetic Distance and Observed 

Species) did not differ significantly by dichotomous NAFLD status (Table 1). However, we 

also used regressions to evaluate the relationship between one of these alpha diversity 

measures, Shannon Diversity, which takes into account both richness and evenness, and the 

continuous measure of HFF. We found that in unadjusted models, there was a trend towards 

lower Shannon Diversity with increasing levels of liver fat (β=−0.15, 95% CI −0.33, 0.02; p-

value=0.07; Figure 1). The effect became statistically significant when controlling for sex, 

age, race / ethnicity, parental education, exposure to diabetes in utero and delivery method at 

birth (β=−0.20, 95% CI −0.37, −0.03; p-value=0.03).

Taxonomic Composition

The fecal microbiota across our samples was dominated by the phyla Firmicutes and 

Bacteroidetes, particularly the genus of Bacteroides, those from the families of 

Lachnospiraceae and Ruminococcaceae, as is typically observed in Western populations 

(Supplemental Figure S2).(24) In order to examine relationships between bacterial taxa, we 

formed a network using the Graphical LASSO technique(25) (Supplemental Figure S1). 

This network showed a large cluster of co-occurring taxa that included representatives of a 

wide array of phyla, as well as many smaller clusters, although the majority of taxa were not 

in clusters.

Assessment of relationship between taxonomic composition and cardiometabolic 
measures

UniFrac-based PCoA plots of the gut microbiota samples of adolescents are shown in Figure 

2, colored by (a) amount of HFF and (b) by weight group. Statistical models showed that 

qualitative differences in taxonomic phylogeny (unweighted UniFrac) were significantly 

associated with HFF (unadjusted p=0.01; adjusted p=0.02; Table 2), while quantitative 

differences in phylogenetic abundance (weighted UniFrac) were significantly associated 

with BMI z-score (unadjusted p=0.04; adjusted p=0.07). Presence / absence of taxa (Bray-

Curtis) was associated with waist circumference in adjusted models (unadjusted p=0.08; 

adjusted p=0.02). None of the taxonomic composition measures examined were associated 

with HOMA-IR.
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Evaluation of Association Between HFF and Taxonomic Composition, Diet and 
Comorbidities

In order to identify which features were most associated with hepatic fat, we used a random 

forest feature selection process, the results of which are shown in Figure 3. The selected 

subset of gut microbiota most predictive of HFF included 7 taxa (R2: 17.7; 95% CI: 16.0, 

19.4): Bilophila, Paraprevotella, Varibaculum, Sutterella, Oscillospira, Order RF32 with 

unclassified genus, and Bacteroides. Varibaculum was highly correlated many other taxa (as 

shown by the connected nodes in Supplemental Figure S1); Bacteroides showed a weak 

negative correlation with Prevotella copri; and Oscillospira and RF32 were positively 

correlated with each other.

The selected dietary components explained substantially less of the variation in HFF 

compared with the taxa (R2: 5.2%, 95% CI: 4.4, 6.0) and included dietary percentage of 

monounsaturated fats, carbohydrates and total fats. The sensitivity analysis including 

additional dietary components performed even worse, and none of the additional dietary 

components were among the selected features.

The selected demographic and comorbid features included current BMI z-score and delivery 

mode at birth; these features explained more of the variation in HFF than the taxa or dietary 

components alone (R2: 26.1%, 95% CI: 24.7, 27.4). The random forests using the 

combination of all of these groups of features had the best accuracy measures, and included 

BMI z-score, percent monounsaturated fats, Bilophila and Paraprevotella (R2: 32.0%, 95% 

CI: 30.3, 33.6).

The most important features identified by random forests may be positively or negatively 

related to the outcome, or they may be related through complex interactions with each other. 

Thus, we used various plotting methods as detailed in the methods section in order to 

interpret the results of the random forests (Supplemental Figures S3–4; summarized in Table 

3).

Most of the taxa highlighted by the random forests correlated positively with HFF, including 

Bilophila, Paraprevotella, Suturella, and RF32. Bacteroides showed a U-shaped pattern with 

hepatic fraction over levels of abundance; both low and high abundance corresponded to 

higher hepatic fat, while moderate levels corresponded with low hepatic fat. Oscillospira and 

Varibaculum were protective. Dietary components were not strongly associated with HFF, 

and they were highly correlated with each other, which makes it difficult to separate their 

effects. The adjusted relationships showed protective effects of monounsaturated fats and 

carbohydrates, and positive correlation between percent total fat and HFF. As would be 

expected, BMI z-scores positively correlated with HFF.

When comparing the groups of predictors of HFF, gut microbiota taxa show important value 

in terms of the prediction of HFF (Figure 3). Dietary components showed the weakest 

association with HFF. The most accurate predictions of HFF included BMI z-scores, as 

might be expected since obesity is a major risk factor for NAFLD.
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Discussion

In this observational study of adolescents, our results support the hypothesis that there is an 

association between gut microbiota and hepatic fat fraction. We found associations between 

lower alpha diversity, taxonomic phylogeny, and specific gut microbiota taxa with HFF. We 

did not find a strong association between the dietary components examined and HFF, or 

strong interactions between gut microbiota taxa and dietary components. In this cohort, HFF 

was associated with qualitative differences in taxonomic composition (unweighted UniFrac), 

while BMI z-score was associated with quantitative differences in phylogenetic abundance 

(weighted UniFrac). Understanding this shift in the types of microorganisms present among 

individuals with more hepatic fat may shed light on the role of the gut microbiota in 

NAFLD.

We observed lower adjusted alpha diversity with higher hepatic fat. Prior studies of NAFLD 

and NASH in pediatric populations have shown similar trends of lower alpha diversity with 

these conditions relative to healthy controls, and lower alpha diversity has also been 

associated with obesity. (26–28)

Some of the taxa associated with fatty liver in this study are highly associated with bile 

acids. The gut microbiota play an important role in modulating bile acid homeostasis, and 

bile acids likewise play an important, but not fully understood, role in NAFLD.(5,29) 

Bilophila was positively correlated with HFF in our study and thrives in the presence of bile, 

specifically taurine conjugated bile.(30) Interestingly, the bile acid pool shifts towards 

taurine conjugation in response to a diet high in taurine, which is predominantly in animal 

products.(31) One species of Bilophila in particular, B. wadworthia, has been consistently 

seen across studies as enriched in response to Western diets or those high in fat,(32,33) and 

is also linked to Th1-mediated intestinal inflammation;(32) it is thought that its by-products 

of hydrogen sulfide and secondary bile acids may degrade the gut mucosal barrier.(32) 

Oscillospira and Bacteroides are also associated with diets high in animal products,(34,35) 

and are likewise highly bile tolerant. However, these microbes showed different patterns in 

their relationships with HFF in our study.

Oscillospira was negatively related to HFF. This is not surprising since Oscillospira is 

generally associated with leanness and health,(36) and has previously been seen to be 

reduced with NAFLD and NASH in other pediatric populations.(26,27) However, its 

functions in the gut are not well understood.(36) Interestingly, the positive association 

between HFF and Bilophila was only observed at low levels of Oscillospira (Supplemental 

Figure S4). These microbes were not mutually exclusive; some individuals did have high 

levels of both Oscillospira and Bilophila. Since this is a cross-sectional epidemiologic study, 

we cannot offer conclusions about the biological underpinnings of this relationship, but it is 

possible that if Bilophila contributes toward fatty liver, Oscillospira counteracts its effects in 

some way.

High levels of HFF were seen at both very low and very high abundance of Bacteroides, 

whereas moderate HFF corresponded with moderate abundance of Bacteroides. Bacteroides 
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is very common in the human gut, and has been associated with a “Western Diet”(37) but 

certain species of Bacteroides have also been negatively associated with obesity.(38)

Dietary components were not highly predictive of hepatic fat without other information. 

Monounsaturated fat, total fat and carbohydrates were highly correlated with each other; 

thus, it is difficult to disentangle their effects. The protective effect of monounsaturated fat 

was the most consistent association, and it agrees with prior related research.(7) Given that 

many of the taxa that were associated with HFF in our results are also associated with diets 

high in animal products, it is somewhat surprising that dietary components were not more 

predictive of fatty liver. Total fat was selected as important, which might correlate with a diet 

high in animal products, but other indicators of a diet high in animal products, for example 

protein, saturated fats, or meat were not associated with HFF. Accurately capturing diet has 

known challenges, and likely does not fully capture all of dietary components that may be on 

importance for the gut microbiota, such as prebiotic food intake. (39) Since prebiotics have 

been proposed as a potential avenue for treatment or prophylaxis of NAFLD,(9) we expected 

to see either importance of fiber (prebiotics are a specific type of fiber), or evidence of 

protective associations for HFF with taxa that have previously shown to bloom in response 

to prebiotics, such as Faecalibacteria, Eubacteria, or Akkermansia.(40) This was not the 

case, but it may reflect that there is diversity across individuals in the taxa present in 

“healthy” taxonomic composition.

This study has some important limitations. Since it is cross-sectional, we cannot draw any 

conclusions about the direction of associations between gut microbiota and liver fat. The 

highlighted taxa may contribute towards fatty liver or may be the result of obesity and fatty 

liver. We identified numerous taxa that may prove to be important in the pathophysiology of 

NAFLD, but larger longitudinal studies would be necessary to further understand and 

confirm our findings. This is an ethnically diverse cohort, but there was not enough sample 

size within each racial / ethnic group to examine specific patterns in the association between 

gut microbiota and HFF. One methodological limitation is that we did not explicitly separate 

the data into a training set and test set for the random forests due to a relatively small 

number of individuals with NAFLD. However, we were able to estimate the error rates of the 

random forests using 3-fold repeated cross-validation, which repeatedly separates two-thirds 

of the data into a training set, using the remaining third as a test set.

There are many strengths of this study as well. We have a measure of hepatic fat from MRI 

scans on over 100 adolescents, dietary information from a questionnaire designed 

specifically for children, and a good distribution of weight groups across values of hepatic 

fat. Due to the young age of the participants in this study, the confounding by alcohol intake 

and prescription medications is likely much less than in older populations. We used machine 

learning methods, which are particularly suited to the analysis of complex gut microbiota 

data.

Our results show associations of the microbiota diversity and composition with fatty liver in 

adolescents. The taxa highlighted in our results support the notion that gut microbiota taxa 

may play a role in the pathogenesis of NAFLD, possibly through interactions with bile acid 

metabolism.(29) Furthermore, our results suggest that in the future, the gut microbiota may 
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offer potential to help identify youth at risk for NAFLD or to identify youth who may be 

particularly amenable to microbiota-based interventions for NAFLD.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The relationship between hepatic fat fraction (HFF) with square root transformation and 

Shannon Diversity Index of gut microbiota of adolescents in the EPOCH cohort. Shannon 

diversity is significantly lower with higher HFF, when controlling for race/ethnicity, sex, 

age, parental education, exposure to diabetes in utero and delivery method at birth (β=−0.20, 

95% CI −0.37, −0.03; p-value=0.03).

Stanislawski et al. Page 12

Pediatr Res. Author manuscript; available in PMC 2018 October 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Principal Coordinate Analysis plots of unweighted (left) and weighted (right) UniFrac 

distance by a) amount of hepatic fat fraction, and b) weight group. Statistical models showed 

a significant relationship between unweighted UniFrac distance and HFF (p=0.01), as well 

as between weighted UniFrac distance and BMI z-score (p=0.04).
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Figure 3. 
This figure shows the results of feature selection procedures that choose the most important 

features for the prediction of hepatic fat fraction (HFF) in adolescents in the EPOCH cohort. 

Four groups of variables were explored: gut microbiota taxa, dietary components, 

comorbidities & demographic variables, and the combination of all these. For each group of 

variables, we indicate the selected features and amount of variation in HFF that is explained 

(R2 and the 95% confidence interval, CI).
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Table 1

Demographic, comorbidity, and dietary information for adolescents in the EPOCH cohort, by NAFLD status 

(defined as HFF≥5%)

Variable Total (N=107) NAFLD = 0
(N=99)

NAFLD = 1
(N=8)

P-Value

N (%) or Median (IQR)

Male 55 (51.4%) 50 (50.5%) 5 (62.5%) 0.72

Race

  Non-Hispanic White 52 (48.6%) 49 (49.5%) 3 (37.5%) 0.02

  Hispanic 40 (37.4%) 35 (35.4%) 5 (62.5%)

  Non-Hispanic Black 12 (11.2%) 12 (12.1%) 0 (0.0%)

  Non-Hispanic Other 3 (2.8%) 3 (3.0%) 0 (0.0%)

Parental Education Level

  High School 15 (14.0%) 11 (11.1%) 4 (50.0%) 0.001

  Some college/Associate degree 33 (30.8%) 31 (31.3%) 2 (25.0%)

  Bachelor's degree 31 (29.0%) 29 (29.3%) 2 (25.0%)

  Graduate degree 28 (26.2%) 28 (28.3%) 0 (0.0%)

Household income

  $16,000 through $34,999 4 (3.7%) 4 (4.0%) 0 (0.0%) 0.02

  $35,000 through $74,999 40 (37.4%) 34 (34.3%) 6 (75.0%)

  $75,000 or more 59 (55.1%) 57 (57.6%) 2 (25.0%)

  Don't know/Missing 4 (3.7%) 4 (4.0%) 0 (0.0%)

Delivery Mode

  C-section 25 (23.4%) 24 (24.2%) 1 (12.5%) 0.68

  Vaginal 82 (76.6%) 75 (75.8%) 7 (87.5%)

Exposure to DM in utero 30 (28.0%) 28 (28.3%) 2 (25.0%) >0.99

Pre-pregnancy BMI 26.1 (22.8–30.3) 25.9 (22.5–30.3) 30.9 (25.8–38.4) 0.01

In person visit

Age (years) 15.6 (15.1–16.5) 15.7 (15.1–16.5) 15.6 (15.6–16.4) 0.16

BMI 22.5 (19.8–26.0) 21.9 (19.5–24.9) 32.2 (27.6–36.0) <.001

BMI-for-age Z 0.5 (−0.3 to 1.5) 0.4 (−0.3 to 1.2) 2.0 (1.7–2.5) <.001

Weight group (based on BMI percentile)

  Underweight 4 (3.7%) 4 (4.0%) 0 (0.0%) <.001

  Normal weight 65 (60.7%) 65 (65.7%) 0 (0.0%)

  Overweight 16 (15.0%) 14 (14.1%) 2 (25.0%)

  Obese 22 (20.6%) 16 (16.2%) 6 (75.0%)

Waist circumference 76.4 (70.6–86.3) 75.4 (70.3–84.5) 93.0 (92.3–106.4) <.001

Hepatic Fat Fraction 2.0 (1.4–2.8) 1.9 (1.3–2.5) 7.7 (6.0–8.5) <.001

Alanine aminotransferase (U/L) 25.0 (20.0–31.0) 24.0 (19.5–30.0) 31.0 (29.0–39.0) 0.002

HOMA-IR (Homeostasis model of insulin resistance) 3.0 (2.3–4.4) 2.8 (2.2–4.3) 6.1 (4.6–8.4) <.001
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Variable Total (N=107) NAFLD = 0
(N=99)

NAFLD = 1
(N=8)

P-Value

N (%) or Median (IQR)

Diet

Kilocalories 1547 (1217–2078) 1567 (1217–2091) 1497 (1085–1899) 0.5

% Carbohydrates 48.6 (44.2–52.3) 48.6 (43.7–52.3) 48.1 (44.8–52.3) 0.22

% Added Sugars 24.6 (20.5–28.2) 24.5 (20.5–28.2) 25.1 (19.8–28.4) 0.43

% Fiber 3.0 (2.5–3.9) 3.0 (2.5–3.9) 2.6 (2.4–3.8) 0.72

% Insoluble Fiber 1.9 (1.5–2.5) 2.0 (1.5–2.5) 1.6 (1.5–2.4) 0.68

% Soluble Fiber 1.1 (0.9–1.4) 1.1 (0.9–1.4) 1.0 (0.9–1.3) 0.54

% Fat 38.0 (34.4–41.8) 38.0 (34.4–41.8) 37.1 (34.0–40.1) 0.16

% SFA 13.5 (11.9–15.3) 13.4 (11.9–15.0) 14.2 (12.4–15.4) 0.71

% PUFA 5.7 (4.8–6.7) 5.8 (4.8–6.8) 5.0 (4.5–5.7) 0.10

% MUFA 15.4 (13.7–16.8) 15.5 (13.7–16.8) 14.7 (13.6–15.8) 0.15

% Protein 34.2 (31.3–38.3) 34.2 (31.2–38.2) 35.9 (32.7–40.3) 0.53

Alpha Diversity

Shannon Diversity Index 4.8 (4.4–5.2) 4.8 (4.4–5.2) 4.5 (4.2–5.0) 0.32

PD whole tree 10.8 (9.0–12.2) 10.9 (9.0–12.2) 9.2 (8.9–12.1) 0.6

Observed species 67.0 (55.0–78.0) 67.0 (56.0–78.0) 59.5 (52.0–78.5) 0.63
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Table 3

This table summarizes the general relationships between hepatic fat fraction (HFF) and the features selected in 

the random forests for the prediction of HFF. Plots are used to understand the direction of the relationships 

between the predictors and the outcome, as well as the inter-relationships between the predictors, since 

random forests do not provide regression coefficients; the partial and interaction plots showing these 

relationships in detail are in the supplemental figures. Since random forests allow for complex interactions 

between the predictors, this table notes when there is no evidence of strong 2-way interactions and notes the 

interacting features when there is evidence of interactions. In order to fully understand the nature of these 

interactions, please see the supplemental figures.

Group Selected Features Adjusted association
with HFF

Interactions?

Taxa g_Varibaculum Negative No

o_RF32 Positive No

g_Paraprevotella Positive No

g_Sutterella Positive Bilophila

g_Bilophila Positive Bacteroides, Oscillospira,

g_Oscillospira Negative Bilophila

g_Bacteroides U-shaped: High HFF with low and high abundance, low 
HFF with moderate

Bilophila

Diet % Carbohydrates Negative % MUFA

% Total fat Positive % MUFA

% MUFA Negative Carbohydrates,

Comorbidities & Demographics BMI z-score Positive Delivery mode

Delivery mode Higher HFF with vaginal birth BMI

Combined Features g_Bilophila Positive Paraprevotella

g_Paraprevotella Positive Bilophila, % MUFA

% MUFA Negative Paraprevotella

BMI z-score Positive
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