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Non-alcoholic fatty liver disease (NAFLD) represents a major health problem worldwide 

because of its high and rising prevalence, its association with cardiovascular disease, and its 

link with an increased risk of developing cirrhosis and hepatocellular carcinoma (HCC). 

NAFLD is classified into different degrees, from simple steatosis (overall 20–30% 

prevalence), which is considered “benign”, to steatohepatitis (NASH: 2–5% prevalence) and 

fibrosis.1,2 The major risk factors of NAFLD include metabolic syndrome (i.e. obesity, 

diabetes, hypercholesterolemia and hypertriglyceridemia), sedentary lifestyle, genetic 

predispositions (e.g. PNPLA3 p.I148M, TM6SF2 p.E167K and MBOAT7 rs641738) and 

environmental factors (e.g. Western diet).1–3 Indeed, the prevalence of NAFLD/NASH in 

patients with obesity and/or diabetes increases dramatically.2 The differential diagnosis of 

NAFLD and NASH is currently available with accurate non-invasive methods based on 

serum metabolomics and/or imaging approaches,4,5 and the determination and monitoring of 

liver fat concentration is also possible by magnetic resonance imaging.6 However, the 

precise determination of hepatocyte ballooning, inflammation and fibrosis still requires 

histological characterization by liver biopsy. The EASL–EASD–EASO clinical practice 

guidelines7 recommend a Mediterranean diet and weight loss (7–10%) to obese patients, 

which have been shown to significantly improve the NAFLD activity score (NAS score).8 

However, since lifestyle modifications are often not completely successful, current research 
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is aimed at unravelling the molecular mechanisms that trigger the development and 

progression of NAFLD. Such advances will aid the ultimate goal of providing new potential 

targets for pharmacological therapy, as well as discovering biomarkers for prognosis and 

response to therapy.

Fatty liver is associated with increased hepatocellular death in patients and in experimental 

models of steatohepatitis. While historically much emphasis was placed on apoptosis (i.e., 
programmed cell death) and necrosis (i.e., non-programmed cell death) in NAFLD, more 

recently it has become clear that other types of programmed cell death, such as necroptosis 

and pyroptosis, may also play a role in NAFLD.9 Notably, there is also crosstalk and/or 

overlap between the different cell death pathways.10 Apoptosis, a caspase-dependent 

pathway, is characterized by nuclear condensation and cellular fragmentation into apoptotic 

bodies, which are phagocytosed and degraded by macrophages.11 This non-lytic pathway 

has minimal effects on the surrounding cells. In contrast, lytic cell death is highly 

inflammatory, and includes not only necrosis but also the programmed cell death pathways 

necroptosis12 and pyroptosis.13 Pyroptosis, the most recently described form of programmed 

cell death is downstream of inflammasome activation. While pyroptosis is morphologically 

similar to necrosis (i.e., it leads to membrane rupture and/or pore formation), it is also 

dependent on caspase activation, similar to apoptosis.14

A major executor of pyroptosis is gasdermin D (GSDMD),15,16 which is a generic substrate 

of inflammatory caspases. GSDMD acts as a pyroptosis executor via its caspase-cleaved 

gasdermin-N domain (GSDMD-N) that triggers pyroptosis and causes inter-leukin (IL)-1β 
release. Recently, Khanova et al. demonstrated a crucial role of GSDMD-induced pyroptosis 

in the pathogenesis of alcoholic hepatitis.17 However, the role of GSDMD during NAFLD 

pathogenesis and the underlying mechanism(s) were still unknown. In the current issue of 

Journal of Hepatology, Xu et al. showed that protein levels of GSDMD and its pyroptosis-

inducing fragment GSDMD-N were increased in liver tissues of human NAFLD/NASH 

compared to normal controls.18 Moreover, the authors demonstrated that GSDMD-N levels 

correlated with the NAFLD activity score (NAS) and fibrosis. In line with these results, in an 

experimental model of NAFLD, Gsdmd−/− mice fed a methionine and choline deficient diet 

(MCD) were protected from steatohepatitis and fibrosis, suggesting a causal role for 

GSDMD in NAFLD. Mechanistically, the authors showed that GSDMD induced the 

expression of pro-inflammatory cytokines (IL-1β, TNF-α and MCP-1), caused activation of 

the NF-κB signaling pathway and subsequent macrophage recruitment. Moreover, in MCD-

fed Gsdmd−/− mice, the phosphorylation of p65 was partially enhanced by transfer of WT 

macrophages, indicating an important role in the pathogenic effects of GSDMD in 

steatohepatitis (Fig. 1).

The literature suggests that although steatosis can occur without a significant inflammatory 

component (i.e., simple steatosis vs. steatohepatitis), steatosis also appears to play a 

significant role in the progression of severe stages of NAFLD.19 Increasing evidence has 

also identified crosstalk between steatosis and cell death signaling (e.g., autophagy).20 In 

this context, the finding that GSDMD contributes to lipogenesis, not only indirectly but also 

via direct signaling, yields a novel mechanistic insight. Specifically, Gsdmd−/− mice were 

protected from steatosis via downregulation of the lipogenic gene Srebp1c and induction of 
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lipolytic genes, including Ppara, Aco, Lcad, Cyp4a10 and Cypa14. Importantly, 

overexpression of the GSDMD-N domain could spontaneously induce liver injury even 

without a secondary factor, indicating that GSDMD-N-induced pyroptosis is a crucial 

mechanism involved in the pathogenesis of steatohepatitis. Moreover, the finding that 

GSDMD expression increases with NASH severity may yield important clues for future 

work.

This study contributes to our knowledge of the role of inflammation and pyroptosis in the 

development and progression of NAFLD. However, new questions arise and need to be 

addressed in the future. For instance, the correlation of hepatic GSDMD and GSDMD-N 

expression with the NAS score and fibrosis index should be validated in a larger and 

independent cohort of patients, and their expression should also be compared to advanced 

stages of disease, such as NAFLD-cirrhosis and/or NAFLD-HCC. This information could 

contribute to determine their prognostic value and the appropriate disease stage for potential 

therapeutic interventions. Moreover, the determination of the expression and role of 

GSDMD/GSDMD-N in steatotic livers from lean NAFLD, diabetes or alcoholic 

steatohepatitis (ASH) patients may provide knowledge on their etiopathogenic role. 

Meanwhile, the fact that a proportion of patients with NAFLD and NASH present with 

similar hepatic GSDMD and GSDMD-N expression levels as healthy controls, suggests that 

their overexpression may be associated with genetic predispositions associated with the 

pathogenesis of NAFLD/NASH.3 Finally, future studies should characterize the molecular 

mechanisms that trigger the overexpression of GSDMD and GSDMD-N in NAFLD/NASH 

and their potential therapeutic regulatory value.

In summary, the study by Xu et al. provides the first insights of the relevant role of 

gasdermin D in the development and progression of obese-related NAFLD by promoting 

liver lipogenesis, inflammation and pyroptosis. These data point to gasdermin D as a 

potential biomarker of disease progression and a therapeutic target that deserves future 

attention.
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Fig. 1. 
Schematic depiction of hepatocellular mechanisms of gasdermin D-induced pyroptosis 

during NASH. Caspase-cleaved gasdermin D (GSDMD) acts as a pyroptosis executor 

directly by causing an increase in proinflammatory cytokines, and indirectly by activating of 

the NF-κB signaling pathway and subsequent macrophage recruitment. GSDMD also 

contributes to steatohepatitis via increased lipogenesis and decreased lipolysis. NASH, non-

alcoholic steatohepatitis.
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