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Precisely measured protein lifetimes in the mouse
brain reveal differences across tissues and
subcellular fractions
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The turnover of brain proteins is critical for organism survival, and its perturbations are linked

to pathology. Nevertheless, protein lifetimes have been difficult to obtain in vivo. They are

readily measured in vitro by feeding cells with isotopically labeled amino acids, followed by

mass spectrometry analyses. In vivo proteins are generated from at least two sources: labeled

amino acids from the diet, and non-labeled amino acids from the degradation of pre-existing

proteins. This renders measurements difficult. Here we solved this problem rigorously with a

workflow that combines mouse in vivo isotopic labeling, mass spectrometry, and mathe-

matical modeling. We also established several independent approaches to test and validate

the results. This enabled us to measure the accurate lifetimes of ~3500 brain proteins. The

high precision of our data provided a large set of biologically significant observations,

including pathway-, organelle-, organ-, or cell-specific effects, along with a comprehensive

catalog of extremely long-lived proteins (ELLPs).
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Aged proteins must be replaced by newly produced ones in
a precisely coordinated fashion, to avoid the accumulation
of damaged molecules, and to prevent over- or under-

production. This process, termed protein turnover, can be
reduced to one basic parameter, the protein lifetime, which is the
average amount of time spent by each protein before its eventual
degradation. We currently lack basic information on protein
lifetimes in the native brain, and on how the lifetimes are regu-
lated in different brain structures, cells, or subcellular locations.

The stability of proteins has been analyzed in a number of
studies, both in vivo and in cell culture. Most proteins seem to be
degraded on a scale from ~1 day to a few weeks. While the
majority of the proteome is probably exchanged fast, a few
unusually long-lived proteins have been found in the eye lens, in
myelin, in nucleosomes and in nuclear pores from the brain1–4.
Such proteins have been identified by feeding animals with iso-
topically labeled diets (i.e., pulsing the animals), followed by long
chase periods, in the absence of the isotopically labeled diet. The
proteins that remain isotopically labeled after the chase are then
detected by mass spectrometry, and have been termed long-lived
proteins (LLPs) or extremely long-lived proteins (ELLPs)3. Such
findings are valuable, but only reveal a minority of unusually
stable proteins. They give no information about the wide majority
of the proteins, whose lifetimes remain unknown.

To address this, several studies attempted to measure lifetimes
in the brain in an unbiased fashion, by pulsing the animals with
isotopically labeled diets for several different lengths of time, and
then measuring the results in mass spectrometry5,6. These studies
relied on a diet composed of blue-green algae (Spirulina) grown
on 15N-containing medium. This implies that multiple 15N-
containing amino acids are introduced into the proteins, resulting
in complex mass spectrometry analyses. Relatively few lifetimes
have been obtained (1000 or lower), and their precision was later
questioned.

Analyses in cell cultures have been easier to perform, and
several studies have been already performed in primary cultured
neurons4,7–9. Unfortunately, in spite of the elegant pulse- or
pulse-chase designs of these studies, the resulting protein lifetimes
hold only limited information for the in vivo situation. All life-
times are fairly short in culture, and tend to conform to a
Gaussian distribution, which does not enable strong discrimina-
tion between the lifetimes of proteins in different cell compart-
ments or pathways (e.g., between pre- and postsynaptic proteins,
or between synaptic and non-synaptic proteins).

Overall, although protein turnover has been linked to the
regulation of synaptic function4,10 and of neuropathology devel-
opment11,12, a global resource for the lifetimes of proteins in the
brain is not currently available. One of the major problems that
have impaired in vivo studies is that pulse-chase protocols with
isotopic amino acids have been designed for in vitro studies. Here
proteins are derived from only one pool of amino acids: those that
are added (or replaced) into the cell medium. In vivo at least two
pools need to be considered: the isotopically labeled pool from the
diet, and the non-labeled pool resulting from the degradation of
the animal’s pre-existing proteins. The second pool slowly
becomes labeled over time, which increases the complexity of the
modeling. Multi-compartment mathematical models have been
attempted for animals fed with 15N-containing Spirulina13, but
due to complexities in amino acid metabolism their applicability
remains limited, and their precision is questionable, as mentioned
above.

To address all of these issues we developed a rigorous approach
to the analysis of mouse brain turnover. We pulsed the mice with
the essential amino acid lysine containing stable 13C isotopes14,
relying on a standard diet that is easily accepted by the animals
(unlike Spirulina chow), followed by mass spectrometry analysis.

We developed a mathematical model that solved the issue of
amino acid pools for lysine, and we tested the results by multiple
approaches, ranging from double pulse-chasing with amino acids
carrying different isotopes, to the analysis of peptides containing
multiple lysines. Importantly, we have also designed new
approaches to independently verify the mathematical model, by
measuring the amino acid pools directly via gas-chromatography
mass spectrometry, and by measuring the isotopic labeling of
proteins produced on cue in the brains of tamoxifen-inducible
mice.

This enabled us to determine the lifetimes of more than 3500
proteins in the brain, focusing on the cortex and on the cere-
bellum, on isolated synapses, on purified synaptic vesicles, and
also on mice that underwent a prolonged environmental
enrichment protocol, which is known to enhance synaptic plas-
ticity and cognition15. We also compared the brain turnover
measurements with the measurement obtained from the heart
and the leg muscle tissue. Finally, we measured protein and
mRNA abundance values, determined by next-generation
sequencing and quantitative iBAQ mass spectrometry16.

Results
A method for in vivo protein lifetime determination. As indi-
cated in the Introduction section, we argue that a major problem
for in vivo isotopic pulsing is that for essential amino acids, two
pools of amino acids need to be taken into account, the iso-
topically labeled one from the diet, and the initially non-labeled
pool resulting from the degradation of the animal’s pre-existing
proteins (Fig. 1a). We have optimized a thorough protocol to deal
with this, which is explained in Supplementary Figs. 1–9, and is
shown in graphical fashion in Fig. 1b. We are not aware of any
comparable protocols in the literature, especially since 7 of its 10
main steps have never been performed in the past in vivo.

We have first optimized an in vivo metabolic pulse assay, as an
extension of the stable isotope labeling with amino acids in cell
culture (SILAC) technique14. We pulsed mice for three time
periods (5, 14, or 21 days), by feeding them with a conventional
SILAC diet (Supplementary Fig. 1a). In this diet, the essential
amino acid lysine is substituted with an isotopically stable 13C6-
lysine, which is an essential amino acid incorporated in newly
produced proteins that can be detected by mass spectrometry
(MS). The 13C6-lysine-containing proteins were produced at
different rates (Supplementary Fig. 1b), suggesting that they turn
over with different kinetics. This was not due to problems with
peptide detection, since the detection of 13C6-lysine-containing
proteins was as good as that of unlabeled proteins (Supplemen-
tary Fig. 2).

A mathematical model of protein turnover in vivo. We then
turned to an analysis of protein turnover in theoretical terms,
considering the origin of the lysines used in protein synthesis.
While the approaches used in vitro to calculate protein turnover
can rely simply on a rapid substitution of the medium to easily
determine protein half-life (t1/2; referred in this work as lifetime),
the situation in vivo is more complex (Supplementary Fig. 3a, b).
Animals absorb essential amino acids from the diet, but these can
also be recycled following protein degradation, and re-enter the
pool available for protein neo-synthesis (Supplementary Fig. 3c).
As a consequence, in order to determine protein lifetimes in vivo
it is necessary to study 13C6-lysine availability in the brain. Before
the SILAC pulsing, the amino acids provided by protein degra-
dation lack 13C6-lysine. During the pulse both 13C6-lysines (from
SILAC food) and normal 12C6-lysines (recycled from degraded
proteins) will be incorporated during the subsequent protein
synthesis. To address this, we initially used a mathematical model,
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as detailed in Supplementary Fig. 3c (see also Methods). In order
to account for the re-use of lysine from the degradation of pro-
teins, we also included a pulse-chase approach, where we pulsed
mice for two weeks and chased them for one week (Supple-
mentary Fig. 3e). We adjusted the parameters of the lysine pool to
obtain the best overall fit for all of the proteins measured by MS
(Supplementary Fig. 3d–i). The optimized model indicates that
~50% of the lysines used in protein synthesis in the brain origi-
nate directly from the food intake, with the rest recycled through
protein degradation. This model also predicts that the amount of
lysines deriving from the food is rapidly saturated with 13C6-
lysine (within ~1 day), while lysines derived from the degradation
of previously existing proteins are exchanged far more slowly
(Supplementary Fig. 3h). We tested the validity of this model by
comparing it with a single exponential change of lysine avail-
ability, and we found that our model describes reliably 13C6-
lysine availability in vivo in the brain (Supplementary Fig. 3i).

Independent controls to test the mathematical model. To
experimentally verify the model, we performed some initial con-
trols in vivo. First, we measured the soluble 13C6-lysine pool,
through a gas-chromatography MS approach applied on the
mouse blood plasma, which should closely reflect the free soluble
lysine pool that is available in the organism for protein synthesis.
We found that that the content of 13C6-lysine in the plasma was
indeed overlapping to that predicted by our model (Supplemen-
tary Fig. 4a, b). Second, to verify that actual proteins synthesized
in the brain use this same lysine pool, we measured by a targeted
MS approach the incorporation of lysines in an exogenous protein
that was expressed on cue in the mouse cortex, using a tamoxifen-
inducible system17. The amount of 13C6-lysine incorporated in
this protein gives a direct measurement of the 13C6-lysine/12C6-
lysine fractions that are available for protein synthesis. We found
that 13C6-lysine incorporation was in good agreement with the
one predicted by our model (Supplementary Fig. 4c–f). We then
used the model to fit the different MS datasets (see examples in
Supplementary Fig. 5). The model was able to fit the actual MS
data with great precision (Supplementary Figs. 6–7), allowing us to
calculate the protein lifetimes.

Further controls to validate the mathematical model. Once we
obtained the protein lifetimes, we designed some additional
experiments to check the reliability of our measures, and per-
formed some additional MS controls. First we checked that the
lifetimes were in line with the labeling of peptides containing two
lysines, by investigating the zero-, one- and two-13C-lysine
versions of these peptides (Supplementary Fig. 8). Second, we
tested with an in vivo double-labeling approach that the labeling
of the peptides was in line with our predictions, relying on a 2-
week pulse with 13C6-lysine, followed by a 1-week chase with
13C6-15N4-arginine (Supplementary Fig. 9). In both cases the
model and the experimental measures were in good agreement.
We also tested whether our dataset contained proteins whose
stability diverged significantly from the model, relying on the
chase data that was used for the precise estimation of the lysine
pool (from Supplementary Fig. 3h, i). We found few significant
results (Supplementary Fig. 10a, b and Supplementary Data 1), in
line with the idea that non-exponential degradation in the pro-
teome is a rare event, which is expected to affect <10% of
proteins18.

An overview of protein lifetimes in the brain cortex. Having
verified the validity of our lifetime measurements, we then stu-
died the distribution of our results, first focusing on the lifetimes
of proteins from the mouse cortex, which spread from ~1 day to

several hundred days, albeit most were between 3 and 13 days
(Fig. 2 and Supplementary Data 1). We first categorized the
lifetimes of ~1200 proteins by integrating previously published
databases of protein organelle location and functional affilia-
tion19–24 (Fig. 2a and Supplementary Data 1). Proteins transiently
binding to DNA, and several proteins related to signaling, RNA
processing and protein production were among the shortest-
living proteins, while histones, myelin components and extra-
cellular matrix constituents were significantly longer lived than
the average of all proteins. Since protein stability parameters have
been previously linked to biophysical protein measurements and
to protein and mRNA abundances25–32, we checked the corre-
lation of our dataset with these values, which we either estimated
with bioinformatics tools or we determined by iBAQ MS16 and
next generation sequencing. Although all of these measurements
correlated in a highly significant fashion with the lifetimes (with
the exception of the mRNA abundance), the coefficients of
determination are very modest (Fig. 2b), hinting at a related but
different regulation of, e.g., protein abundance and protein life-
time. The lifetimes of proteins from the same organelle, family or
protein complex were also correlated, as suggested by the life-
times of protein from different organelles (Fig. 3) and by a
thorough analysis of different protein complexes and families
(Supplementary Fig. 10c–e).

Comparison to previous studies. We have compared our data
first with the largest data set of brain lifetimes available, from the
seminal study of Price and collaborators5. Overall, our results
correlate reasonably to the previous values, but several hundred of
the previously published lifetimes seem to have been derived from
less precise fits based on a single peptide measurements (see
Supplementary Figs. 11, 12). We have also compared our data to
those from four studies of primary cultured neurons in vitro4,7–9

(Supplementary Fig. 13). In brief, protein lifetimes in cultured
neurons correlate with those in vivo, albeit not extremely well.
The main difference lays in the fact that lifetimes in vitro are far
shorter and are clustered together much more closely, which
obscures many biologically relevant differences. For example,
synaptic vesicle proteins tend to have about the same lifetime
in vitro, but in vivo they separate into different sets of lifetimes
(Supplementary Fig. 13d, e).

Protein lifetimes in different organelles. We followed this up
with an analysis of the cytoskeletal, mitochondrial and synaptic
proteins (Fig. 3a). This revealed several interesting effects, such an
unusually long lifetime of neurofilaments, or of mitochondrial
proteins belonging to some of the oxidation chain complexes
(Complexes V and III). Mitochondria proteins, albeit long-lived
as a group, were fairly heterogeneous. The short-lived proteins in
the mitochondrion tended to be either implicated in fatty acid
metabolism (KEGG pathway mmu01212; false discovery rate,
FDR, <0.001), or were connected with peroxisome function
(KEGG pathway mmu04146; FDR < 0.001). We also found some
notable differences in synapses. For example, the endocytosis
machinery was very long-lived (Fig. 3b). Among synaptic adhe-
sion molecules NCAM-1 was particularly long-lived (~20d), while
several neurexins and neuroligins are turned over almost at twice
the speed (with a lifetime of ~10d; Fig. 3b). Among neuronal
receptors, some metabotropic receptors are almost twice as long-
lived as the ionotropic ones (as an example mGlur-2 has a life-
time of ~21d while GluRs have a lifetime of ~9–10d). Interest-
ingly, the structural components and the proteins with higher
hydropathy (such as transmembrane proteins) were the most
stable components of the synapse (Fig. 3c). At the level of the
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synaptic vesicle, the accessory proteins tended to be short-lived,
while the core proteins are were longer-lived, on average (Fig. 3d).

To categorize protein lifetimes in a complementary
unbiased approach, we used a fuzzy c-means clustering
algorithm, coupled to a functional enrichment33 analysis of
the identified proteins in non-redundant gene ontology (GO)-

enriched terms for biological process, cellular component and
molecular function categories (Supplementary Fig. 14). This
revealed, for example, that the shortest lifetime group in the
cortex is enriched for proteins involved in the regulation
of RNA splicing and helicase activity, while clusters of
stable proteins correspond to myelin, mitochondria, and
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structurally stable elements such as the cytoskeleton and
nuclear pore.

ELLPs and LLPs. Due to their peculiarity and low number, the
most stable proteins in the proteome have been the focus of
several reports2–4. While our pulse scheme was designed to cover
in greater detail the lifetime of the majority of the proteome, we
argued that some exceptionally LLPs might not be efficiently
labeled at 21 days to allow the determination of their lifetimes.
For this reason, we included two additional long-pulsing steps (30
and 60 days), specifically designed for the analysis of long-lived
proteins. This allowed us to confirm and extend the list of pre-
viously defined ELLPs, while also providing their lifetimes for
mice (Supplementary Table 1). To formally define ELLPs, we
turned to a statistical description of the protein lifetime dis-
tribution. Lifetimes in different branches of science and industry
have been analyzed for decades relying on the Weibull distribu-
tion (e.g., refs. 34,35). A Weibull distribution fit overlapped well
with the distribution of protein lifetimes in the cortex (r2= 0.93)
for most of the lifetimes, but not above ~20–25 days. The fit
suggested that <0.5% of the proteins are expected to have life-
times greater than ~26 days, while in reality ~5% of the proteins
have such lifetimes (10-fold more than expected). Moreover, the
Weibull fit was virtually at 0 above lifetimes of ~33 days (0.02% of
the proteins), although such lifetimes still accounted for ~2% of
all proteins (100-fold more than expected). We have therefore
formally defined ELLPs as the proteins that were in the upper
98th percentile of the proteome in term of stability. This list
overlaps well with previous results3 and includes nuclear proteins
(such as Histones and NUPs), myelin components, extracellular
matrix proteins, and some other specific proteins (Supplementary
Fig. 15). Following the results of the Weibull fit, we have also
defined as “normal” LLPs those comprised from the 95th to the
98th percentile of the proteome in terms of stability. This group
was mostly populated by mitochondrial proteins, enriched for the
inner matrix and for some oxidation chain complexes (Supple-
mentary Fig. 16), but contained also a number of signaling pro-
teins and the neuronal exocytosis SNARE syntaxin-
1A (Supplementary Table 1).

Correlations of lifetimes to protein and mRNA abundances.
We also evaluated the potential relations between protein life-
times and protein and mRNA abundance, to obtain a global
overview of protein homeostasis. For this, we relied on the data
presented in Fig. 2b, and we subdivided the 3D scatter of the three
datasets in 27 bins, as described in Supplementary Fig. 17. This
analysis revealed a number of interesting protein classes. These
include proteins with a short lifetime and low protein abundance,
but with a relatively high mRNA abundance, which belong to
regulatory processes such as protein polyubiquitination, response
to radiation and to lipid changes (Supplementary Fig. 17c). At the
same time, there are several processes that rely on proteins with
long lifetimes, and large mRNA and protein abundances. These
include many mitochondrial and cytoskeletal pathways.

Lifetimes across cell types, brain regions, and fractions. To
address differences between neurons and glia, we combined our
metabolic pulsing scheme with the sorting of NeuN+ neuronal
nuclei and NeuN− glial nuclei, and we calculated protein lifetimes
in neurons and in glial cells separately (Fig. 4). While the lifetimes
were in good correspondence (r2= 0.88; Fig. 4d, Supplementary
Data 1), some protein groups were strikingly different, including
several subunits of the ribosomes associated with the nuclear
envelope (longer-lived in neurons; P-value < 0.001). We also
performed a functional categorization36 aimed at revealing
functional networks to the proteins that were either significantly
longer lived in neuron or in glial nuclei (respectively Fig. 4e, and
Supplementary Fig. 18). This analysis also suggested, among other
results, that gene expression regulators are more stable in neuron
than in glial nuclei, and that some components of the nucleo-
plasm are longer-lived in glia nuclei (as detailed in Supplementary
Fig. 18 and Supplementary Data 1).

We also relied on published data on the categorization of
proteins enriched in different cell subtypes in the brain37 or in
GABAergic and glutamatergic neuron subtypes38 (Supplementary
Fig. 19). Oligodendrocytes are the only cell type for which we
found significantly longer-lived proteins in the brain. This is due
to the fact that these cells produce myelin, which is extremely
long-lived. After excluding the proteins that compose myelin, no
statistical difference remained (Supplementary Fig. 19a). We
found no overall difference of protein markers from GABAergic
and glutamatergic neurons (Supplementary Fig. 19b).

We next analyzed the lifetime differences between the brain
cortex and the cerebellum, two region of the brain characterized
by very different cellular composition. While the lifetimes again
correlated well between the two brain regions (r2= 0.76; Fig. 5a,
Supplementary Data 1), a categorization of the proteins in
different classes (Supplementary Fig. 20a) revealed several highly
significant differences. For example, several endocytic proteins
and components of the clathrin endocytosis apparatus are
shorter-lived in the cerebellum than in the cortex (Fig. 5b), as
are many adhesion molecules (Fig. 5c). On the contrary, several
histones are significantly longer-lived in the cerebellum, suggest-
ing differential nucleosome stability between the two tissues
(Fig. 5d). We also combined an unbiased functional analysis to
understand if there were other processes differentially regulated
in the two brain regions (Supplementary Fig. 20b). The analysis
results confirmed our initial results, and also revealed that
proteins implicated in RNA splicing are more stabilized in the
cerebellum than in the brain cortex.

To next test the relation between protein lifetimes and
subcellular localization, we prepared synaptosomal and synaptic
vesicle fractions from the cortex and from the cerebellum
(Supplementary Fig. 21a), and measured the different lifetimes.
In all cases the correlation between the lifetime of the total
homogenate and the subcellular fractions was very good (average
r2= 0.95; Fig. 6a). The synaptic-enriched fractions were generally
longer-lived (Fig. 6a–c). These results mirror those obtained in a
recent study based on a single pulse and chase step4, in which
synaptic proteins appeared to be longer-lived. However, the

Fig. 2 The lifetimes of brain proteins. a Upper panel: distribution of 2381 lifetimes calculated in the brain cortex homogenate. Lower panel: lifetimes of 1266
proteins organized in 36 groups, accordingly to their organelle and/or functional affiliation, performed by integrating previously published
categorizations19–24 (see also Supplementary Data 1). Each data point corresponds to a single protein lifetime. The black lines indicate the mean and the
standard error of the mean (SEM) for each group. The analysis of variance (ANOVA) on the right summarizes P-values for the indicated comparisons,
following Bonferroni post hoc test (*≤0.05, **≤0.01, ***≤0.001). b Lifetimes are positively correlated to protein abundances (determined with iBAQ),
isoelectric point, and grand average of hydropathy (GRAVY). Lifetimes are negatively correlated to protein length and intrinsic disorder, while the
correlation to mRNA abundances is not significant. The lines with error bars indicate averaged bins of 2 days, with SEM. Brain cortex homogenate data
have been used in this figure and the protein and mRNA abundances were measured in this study, in the same preparation (brain cortex of the same mice)
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precision with which we can derive accurate lifetimes, coupled
with confidence intervals, enabled us to determine that several
proteins were significantly shorter-lived in synapses. These
include proteins that have been linked to plasticity, and that are
thought to be highly dynamic in synapses (Fig. 6c).

The proteins stabilized in synaptic fractions included several
exo-endocytosis cofactors, tubulin subunits and adhesion mole-
cules (Supplementary Fig. 21c–f). Interestingly, some proteins are
stabilized in the synaptic fractions of the cerebellum (e.g.
mitochondria matrix components), but not in those of the cortex
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bouton (ANOVA P-values≤ 0.05). d A 3D view of a modeled synaptic vesicle, showing the lifetimes of 20 proteins (or protein complexes), as determined
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(Supplementary Fig. 21d), and vice versa (e.g., microtubules in
the cortex, Supplementary Fig. 21e).

Protein lifetimes following physiological perturbation. Having
thus observed that both protein function and protein location
influence the brain protein lifetimes, we turned to investigating

how protein lifetimes change after physiological perturbation of
brain activity (Fig. 7, Supplementary Table 2 and Supplementary
Data 1). We therefore compared the lifetimes in the cortex with
those of environmentally enriched (EE) mice, for both the overall
brain homogenate and for the synaptosomal fraction. In both
cases the correlation between datasets was very high (r2= 0.97;
Fig. 7a, b), albeit several proteins changed their lifetimes

13C6-lysine food pulse

a

Adult mice

5 days

21 days

14 days

Nuclei isolation and staining MS Turnover

t1/2 protein x

m/z

t1/2 protein y

t1/2 protein ...

6 Da

t1/2 protein n

FACS sorting

Brain

Cortex

Dissociation

Sucrose
gradient

separation

Cortical
nuclei

Neuron
(NeuN)
staining

Neurons
(NeuN+)

Glia
(NeuN–)

Neuronal
lifetimes

m/z

6 Da

Glial
lifetimes

50

100

102 103 104 105

0

20

40

60

80

b

NeuN fluorescence intensity

C
ou

nt
 (

a.
u.

)
F

S
C

-H
 (

×
 1

03 )

N
eu

N
+

DAPI NeuN
c

0 10 20 30 40

0

10

20

30

40
r 2 = 0.8880

Lifetime neurons (d)

Li
fe

tim
es

 g
lia

 (
d)

d e

R
pl

10
 Q

m
R

pl
6

R
pl

21
R

pl
7a

R
pl

18
a

R
pl

4
R

pl
31

R
pl

23
a

R
pl

35
R

pl
34

R
pl

7
R

pl
8

R
pl

18
R

pl
17

R
pl

p0
R

pl
9

R
pl

13
a

R
pl

11

R
ps

13
R

ps
6

R
ps

16
R

ps
3

R
ps

10
R

ps
17

R
ps

9
R

ps
4x

R
ps

2
0

5

10

15 Glia
Neurons

Li
fe

tim
e 

(d
)

Large ribosomal subunit Small ribosomal subunit

Ribosomes from nuclear envelope /
rough endoplasmic reticulum

t1/2 protein x
t1/2 protein y

t1/2 protein ...

t1/2 protein n

All adj. P-values < 0.001

102 103 104 105

N
eu

N
–

Fig. 4 Lifetimes of proteins from sorted neuronal and glia cell nuclei. a Schematic representation of the pulsing strategy, followed by fluorescence-activated
cell sorting (FACS), mass spectrometry analysis, and lifetime determination. b Representative scatter plot of sorting events, with the positive (green) and
negative (blue) sorted populations highlighted vs. the forward scatter height (FSC-H). c Representative images of sorted neuronal (NeuN+) and glial
(NeuN−) nuclei. d Scatter plot of protein lifetimes for neuronal and in glial nuclei. e Detailed lifetimes for components of the large and of the small
ribosomal subunit. All differences are significant, with a Bonferroni adjusted P-value < 0.001. In all cases the ribosomes that are enriched in the nuclear
envelope/rough endoplasmic reticulum are shorter-lived in glial cells than in neurons. See also Supplementary Data 1 for a detailed list of protein lifetimes
in the nuclei of neurons and glial cells. See also Supplementary Fig. 18 for the string analysis of proteins either significantly longer-lived in neurons or in glial
cells. Ribosomal constituents, focal adhesions and nuclear parts are significantly longer-lived in neurons vs. glial cells. The lower false discovery rates (FDR;
an adjusted form of P-value to account for false-positive hits) observed in glia cells indicate that overall there are fewer long-lived groups of proteins in
these cells

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-06519-0

8 NATURE COMMUNICATIONS |  (2018) 9:4230 | DOI: 10.1038/s41467-018-06519-0 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


significantly (adjusted P-value < 0.001; Fig. 7c, d). Among the
highly significant changes we identified mostly proteins that were
shorter-lived in the environmentally enriched mice (Fig. 7e and
Supplementary Table 2), with only two myelin proteins (PLP1
and Cldn11) being longer-lived in these mice. The shorter-lived
proteins include some well-known synaptic proteins such as
Synapsin-1, CASK, Syngap1, and Neurexin-4, and some mito-
chondrial proteins that are involved in glutamate metabolism
(Fig. 7f). A gene ontology analysis of these groups confirmed their
involvement in myelin formation, mitochondrial function and
nervous system development (Supplementary Table 2).

These results are at odds with those obtained in a recent study
based on a single pulse and chase step4, which suggested that
virtually all proteins increased their turnover after the EE
procedure. This result is difficult to accept, since such a massive
change in brain turnover has never been reflected by any of the
previous studies in the EE literature. We suggest that the
apparently higher turnover is due to differences in the feeding
rates. Mice subjected to EE run and move more, thus feed more.
The amino acid pools change, due to the different feeding
behavior, and thus proportionally more isotopically labeled
amino acids become available for daily protein production than
before. This in turn translates into different protein labeling,
which will be interpreted as differential protein stability.

Protein lifetimes in neuronal cultures and other organs.
Finally, we compared the protein lifetimes from the brain cortex
with lifetimes measured in rat primary hippocampal neurons by
Ziv and collaborators7 (taken as representative for the different
in vitro studies, Supplementary Fig. 13) as well as with the protein
lifetimes that we measured in the mouse heart and leg muscle
(Fig. 8 and Supplementary Table 3). Overall, long-lived proteins
in the cortex remained long-lived in these fractions, although the

r2 values were on average lower (~0.28). A differential analysis
revealed several interesting trends. For example, most proteins
were shorter-lived in culture than in the brain, but presynaptic
proteins were especially short-lived in cultured neurons, when
compared to the brain. This difference might be due to the spe-
cific developmental pattern of neuronal cultures in vitro versus
the brain cortex in vivo (Fig. 8a). As another example, the overall
turnover of mitochondrial proteins in the heart is similar to that
in the brain, while this is not the case for most other proteins,
which are shorter-lived in the heart (Fig. 8b). A gene ontology
analysis revealed that the proteins involved in the cell cycle are
also differentially regulated (Supplementary Table 3). The muscle
turnover also showed a large difference between mitochondrial
and non-mitochondrial proteins (Fig. 8c), while also revealing a
faster turnover than in the brain for proteins such as those
implicated in the biosynthesis of DNA, probably because of the
limited cell renewal observed in the nervous system (Supple-
mentary Table 3).

Lifetime correlations point to similarly regulated proteins. A
potential use of our data is the investigation of homeostasis
links between proteins. We have argued that, since protein life-
times are correlated to their functional interactions, and
since different protein complexes and pathways are differentially
used across tissues, the variation in protein lifetimes across
tissues may reveal functionally or homeostatically related groups
of proteins. To test this, we studied the correlation of ~450
proteins whose lifetimes were measured in seven different tissues
or cellular compartments (cerebellum and cortex homogenates,
synapse fractions and synaptic vesicle fractions, along with
heart samples). The overall changes across tissues and fractions
were positively correlated for all of the ~450 proteins, when
taken as a whole (correlation coefficient of ~0.58). Nevertheless,
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the changes in the lifetimes of members of several known func-
tional complexes correlated very strongly (correlation coefficients
higher than 0.9; Supplementary Fig. 22). Proteins that are not
expected to function together, such as the different annexins, did
not correlate (Supplementary Fig. 22c). In contrast, proteins
known to function together, such as those involved in vesicle
endocytosis, correlated strongly. While considering proteins
whose functional interactions are unclear, we observed an
extremely high correlation between several Rab proteins39,
between two Vps proteins (which have been suggested to form a
sub-complex40), or between several Arp proteins41. This suggests
that there may be coordinated functional and/or homeostatic
interactions between these molecules. This kind of analysis could
serve as a guide for the development of new hypotheses on
protein interactions, which would then be tested by independent
experiments.

Comparing in vivo lifetimes with in vitro manipulations. At
the same time, our data can be employed to study the relation of
protein lifetimes to the results of various cellular manipulations.
More generally, it could be the basis for works that mechan-
istically dissect how different protein production and degradation
forces shape the proteome, by integrating our in vivo lifetime
analysis with in vitro results on manipulations of neuronal cul-
tures. To showcase this possibility, we have considered some
recently published results42 on the deceleration of protein
degradation measured in rat in vitro neuronal cultures. We have
compared our lifetime data with these results, and we could
confirm the idea that shorter-lived proteins are those first to be
increased in amounts following proteasome inhibition (Supple-
mentary Fig. 23a). We could confirm this also in our own
experiments (Supplementary Fig. 23b, c). Conversely, inhibiting
protein translation by Cycloheximide decreased the level of short-
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living proteins, while longer-living proteins were apparently
increased (Supplementary Fig. 23d). Similar approaches could
potentially be extended to other drug treatments (e.g., lysosome
inhibition), to decipher the links between protein lifetimes and
various turnover pathways.

Comparing in vivo lifetimes with protein surfaces. Protein
lifetimes could also be correlated to other types of parameters, to
reveal the regulatory mechanisms that are at the basis of protein
turnover. One simple hypothesis that we have explored is if the
size of the exposed surfaces of proteins can play a role in their
stability, also in the light of the observation that more structured
membrane proteins are more stable at the synapse (Fig. 3c). To do
that, we analyzed the turnover of 72 proteins or protein com-
plexes from the presynaptic compartment, whose surfaces we
have analyzed in the past23, and found that the size of the surface
exposed to the cytosol was negatively correlated to the lifetime

(Supplementary Fig. 23e), in line with the observation that large
proteins tend to be shorter-lived (Fig. 2b).

Discussion
In this study we examined the proteome turnover in several
samples, encompassing different organs, tissues, cells, organelle
fractions, and activity modulations. Our work constitutes the
largest available dataset of protein lifetimes in the nervous system,
complementing and substantially improving the knowledge
accumulated by previous protein turnover studies2–5.

We have developed here, an in vivo pulsing strategy workflow
that utilizes isotopically stable 13C6-lysine, coupled to a
proteome-wide mathematical description of lysine metabolism.
This strategy brings several improvements for the determination
of lifetimes, including a simple and robust interpretation of mass
spectrometry results, which allows obtaining data for several
peptides for each protein. This is a major advantage with respect
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to approaches based on 15N diets that limit the analysis to fewer
arbitrarily selected peptides5, thereby rendering our lifetime
determinations much more accurate. The development of this
strategy also gave us the chance to clarify some general aspects of
essential amino acid re-usage, with potential implication for other
metabolic studies and possibly opening new avenues for similar
studies.

At the same time, we introduced four different ways of testing
the accuracy of in vivo results: double-labeling of mice with
amino acids containing different isotopes, an analysis of peptides
containing multiple isotopically labeled amino acids (e.g., pep-
tides with two lysines), a direct analysis of the amino acid pool by
gas chromatography mass spectrometry (GC-MS), and a direct
analysis of a protein expressed on cue in the brain of isotopically
pulsed mice. This is a new toolbox for in vivo mass spectrometry,
whose applications reach far beyond this study.

The overall description of how the proteome is exchanged over
time indicates that in the brain a large majority of proteins have
lifetimes between 3 and 13 days. While our approach was tuned
to have the best dynamic range in this short period, we could also
confirm and expand the previous categorization of ELLPs. Due to
their peculiarity these stable proteins have been the focus of
several studies2,3, including a very recent work4. For example, it is
appealing to speculate that the ELLPs are somehow more relevant
than other proteins, since some may be long-term carriers of
positional and functional information within the brain43. At the
same time, the definition of the “extremely stable proteins” is
somehow arbitrary when performed without exact knowledge of
the other protein lifetimes. For example, our large collection of
lifetimes allowed us to distinguish between LLPs (roughly
between the 95th and 98th percentile most stable proteins) and
ELLPs (98th to 100th percentile most stable proteins), which we
found to have different functional implications.

Similar analyses also provided several quantitative conclusions.
For example, it is clear that protein lifetimes are conserved across
different organs, albeit the overall proteome turnover can be
faster or slower in each tissue (e.g., brain, heart, or muscle), to
cope with their specific metabolic needs. At the same time, pro-
found differences can be found at the level of particular pathways
and organelles. These changes might reflect a distinct usage of
these proteins in the different conditions, or more simply may
represent an alternative regulation of their production/degrada-
tion rates. Independent from the cause of these changes, specific
differences in the stability of proteins may be essential for
understanding the function and regulation of the particular
pathways. The cytoskeleton is a good example, since it contains
molecules with apparently similar functions, but different life-
times. Its most stable components are neurofilaments, followed by
tubulins and intermediate filaments, while the lifetime of actins is
very close to the average lifetime of the entire proteome (Fig. 3a).
Similarly, proteins associated to microtubules are more stable
than proteins associated to actin, along with the suggestions from
the literature that the microtubule cytoskeleton is a more stable
component of the cell than the highly dynamic actin network.

Our results on the subcellular fractionation indicate that
localization to synapses and to synaptic vesicles extends the
lifetime of most proteins, probably reflecting a differential reg-
ulation of protein degradation in these compartments. At the
same time, the precise determination of lifetimes with confidence
intervals allows us to pinpoint specific changes of several proteins
that are especially stabilized or destabilized at the synapse.
Among these, several adhesion molecules are more stable in
synapses than elsewhere, potentially due to mechanisms that
remove adhesion molecules if they are not engaged in synaptic
contacts. Interestingly, among the most destabilized proteins in
synapses there is the adhesion molecule Nr-CAM (along with its
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binding partner Ankyrin), which is implicated in directional
signaling during axonal cone growth and synapse formation, and
might be specifically removed from mature synapses.

We have alluded in the Introduction and in Results to several
important previous studies dealing with protein stability or pro-
tein lifetimes. Our results complement the databases of long-lived
proteins presented in previous works2–4. Importantly, our data
provide a clearer perspective for such proteins, by comparing
them accurately with normal proteins. For example, nuclear pore
proteins or histones are well-known ELLPs, but many of them do
not live far longer than, for example, the fusion SNARE protein
Syntaxin 1A (Supplementary Table 1). At the same time, it is
extremely interesting that SNAP25, the closest functional partner
of Syntaxin 1A, only lives 4 days in vivo (8-fold shorter than
Syntaxin 1A). In view of such data it is evident that a discussion
of ELLPs alone, without information on the other proteins, has
only a limited use.

Our data extend widely the previous lists of protein lifetimes in
the brain5,6. Importantly, we also updated and rectified these lists,
thereby removing much uncertainty from the field (Supplemen-
tary Fig. 11–12). We also extend and correct several aspects
determined in vivo by single pulse and chase procedures4,
including descriptions of protein lifetime differences between
synapses and brain homogenates, or between normal and envir-
onmentally enriched mice.

Finally, our data offer a new perspective on protein lifetime
determinations in vitro, in cultured neurons4,7–9. In spite of the
excellent technical setups behind these experiments, which are
aided by the ease with which cell cultures can be manipulated, the
in vitro results are far more limited than the in vivo ones, due to
the short lifetime of the cells. This implies that most protein
lifetimes are short (Supplementary Fig. 13), and biologically
interesting differences are far harder to detect than in vivo.

We therefore conclude that our data will serve as a useful
resource for different studies, ranging from the modulation of
proteome homeostasis and metabolism to the planning of down-
regulation and inducible knockout approaches in vivo. At the
same time, our method for determining precise lifetimes can be
easily reproduced in different mouse models, and should there-
fore prove useful for the study of brain physiology and pathology.

Methods
Mice. All mouse experiments were approved by the local authority, the Lower
Saxony State Office for Consumer Protection and Food Safety (Niedersächsisches
Landesamt für Verbraucherschutz und Lebensmittelsicherheit). Adult
(>3.5 months old) wild-type male mice (C57BL/6JRj) were purchased from Janvier
Labs (Germany). The R26R LacZ reporter mouse line44 was crossed to the
tamoxifen-inducible CaMKCreERT2 driver line expressing the CreERT2 fusion
protein under the control of the regulatory elements of the CaMKIIα gene17.
Expression was triggered by a Tamoxifen intraperitoneal injection at a dose of 2 mg
dissolved in corn oil (Sigma) twice per day before brain harvesting and tissue
processing. For the enriched environment (EE), mice were housed in large plastic
cages in groups of 5–8 and provided with a series of toys. The latter consisted of
running wheels, tubing, a housing item, as well as a variety of objects of different
size and texture. To ensure novelty, at least two of the items, excluding the housing
item and the running wheels, were exchanged for two novel objects every other
day. The remaining toys were rearranged in the cage to ensure spatial novelty. Mice
were enriched for 6 weeks before the beginning of the SILAC labeling and during
the SILAC labeling. We have previously shown that this enrichment protocol
results in enhanced memory function45.

SILAC mouse labeling. The L-12C6-lysine, the L-13C6-lysine and the L-13C6–15N4-
arginine SILAC diets14 were purchased from Silantes, Martinsried, Germany. For
pulsing experiments mice were first habituated to the unlabeled L-12C6-lysine diet,
before starting feeding the L-13C6-lysine diet. We performed this to avoid unde-
sired effects, such as weight loss, which can occur due to the dietary switch. Several
different labeling pulses have been used in this work. For the overall determination
of protein lifetimes we relied on short pulses (0, 5, 14, and 21 days), which we
estimated after a preliminary study to be the best pulsing times for picturing the
large majority of the proteome (which has a median lifetime of 8.12 days and an
average of 10.7 days). For the long-living proteins we added two additional longer

pulses (30 and 60 days), to better picture the change in the most stable fraction of
the proteome. We also included a pulse and chase approach where we pulsed for
14 days and we chased with the light L-12C6-lysine diet for 7 days (used for the
estimation of the lysine pool in Supplementary Fig. 3 and for the determination of
the more- or less-stable proteins in Supplementary Fig. 10). Finally we included a
pulse and chase approach where the chase was concurrent with a second pulse, for
the confirmation of the validity of our model (as detailed in Supplementary Fig. 9).
All animals were fed ad libitum and had unrestricted access to water. Food con-
sumption was monitored daily, to exclude mice that were not eating regularly from
the study. The brain of the “full SILAC” mouse used in Supplementary Fig. 3 (>2
generations on L-13C6-lysine SILAC diet) was also purchased from Silantes.

Determination of free 13C6 lysine in blood plasma. Blood serum was extracted
with two volumes of extraction buffer (methanol/chloroform/water 32.25:12.5:6.25
[v/v/v]). The mixture was vortexed and centrifuged for 5 min at 2000 × g at 4 °C. A
volume of 20 µl of the upper polar phase was dried under nitrogen stream, ren-
dered volatile with methoxyimino (MEOX)- and trimethylsilyl (TMS) derivatives,
and analyzed by GC-MS as recently described46. For quantification of lysine, the 4
TMS derivatives were analyzed. The 12C6 to 13C6 ratio of lysine was determined by
quantifying the mass-to-charge ratios 317 Da/e and 322 Da/e. A total of 33 inde-
pendent experimental measures were included in this experiment, corresponding to
one animal each. The variation depends on the feeding behavior of each animal.
This is not a problem in the MS determinations, where each biological sample
corresponded to a pool of four animals (that was necessary to obtain sufficient
material for the subcellular enrichment of synaptic fractions).

Immuno-enrichment of β-galactosidase. Beta-galactosidase was enriched
through immunoprecipitation with Anti-β-Galactosidase (Promega, Mannheim,
Germany; mAb Z3781) and pull-down with Dynabeads Protein A (ThermoFisher
Scientific, Germany). In brief, the mouse cortex was dissected, homogenized,
sonicated and treated with Benzonase-nuclease (Sigma) to remove nucleic acids.
For 20 mg of homogenate sample, 300 µl of Dynabeads Protein A were loaded with
70 µg of anti-β-galactosidase antibody, following the protocol of the producer.

Preparation and characterization of brain fractions. To obtain enough material
for fractionation, the tissues (cortex or cerebellum) from 4 mice were pooled for
each biological replicate. Following brain extraction, brain fractions were purified
from mouse cortex and cerebellum as described22,47. Briefly, after dissection the
tissues were homogenized in ice-cold sucrose buffer (320 mM Sucrose, 5 mM
HEPES, pH 7.4) with a glass-Teflon homogenizer at 900 rpm. Following the col-
lection of sample of the homogenate, for further analysis, samples were subjected to
a 2 min 1000 × g centrifugation (to discard large cellular debris, P1) and to a 12 min
15,000 × g centrifugation to pellet the P2 fraction (Supplementary Fig. 21a). To
obtain axonal fractions, a further fractionation step was performed, by applying a
step-gradient centrifugation (6, 9 and 13% Ficoll in sucrose). The two fractions at
the two interfaces of the 9% Ficoll medium were pooled (in what is termed P2’),
were washed in sucrose buffer, and were further processed for hypo-osmotic lysis.
Upon lysis, synaptosomal membranes were pelleted for 15 min at 17,000 × g, and
the supernatant was centrifuged for 2 h at 300,000 × g, to obtain the axonal (pre-
synaptic) pellet (termed LS2). Immediately after purification, each fraction was
snap frozen in liquid nitrogen and was stored at −80 °C until used in further
experiments. The quality of brain fractions was confirmed by immunoblotting
(Supplementary Fig. 21b) with the antibody listed in Supplementary Table 4.

Mass spectrometry. The protein concentration of individual samples was deter-
mined with a BCA kit (ThermoFisher Scientific). For each sample, 100 µg of total
protein was loaded on pre-casted NuPAGE gels (4–15%, ThermoFisher Scientific).
Gels were run at constant voltage, stained overnight with Coomassie Blue, and were
destained with water. After destaining, each lane was cut into 23 gel pieces using an
in-house-made gel cutter, and processed for in-gel digestion using trypsin48

(Serva). The eluted peptides were dried and resuspended in 5% acetonitrile and
0.1% formic acid solution, and were further processed for LC-MS in an online
UltiMate 3000 RSLCnano HPLC system (ThermoFisher Scientific) coupled online
to the Q-Exactive-HF. Peptides were desalted on a reverse phase C18 pre-column
(3 cm long, 100 μm inner diameter 360 μm outer diameter) for 3 min. After 3 min
the pre-column was switched online with the analytical column (30 cm long, 75 μm
inner diameter) prepared in-house using ReproSil-Pur C18 AQ 1.9 μm reversed
phase resin. The peptides were separated with a linear gradient of 5–50% buffer B
(80% acetonitrile and 0.1% formic acid) at flow rate of 10 nl/min over 88 min and
58 min gradient time. The temperature of the pre-column and of the column was
set to 50 °C during chromatography. The MS data were acquired by scanning the
precursors in mass range from 350 to 1600 Da at a resolution of 60,000 at m/z 200.
The top 30 precursor ions were chosen for MS2 by using data-dependent acqui-
sition (DDA) mode at a resolution of 15,000 at m/z 200 with maximum IT of 50
ms. For MS2, HCD fragmentation was performed with the AGC target fill value of
1e5 ions. The precursors were isolated with a window of 1.4 Da. The lock mass
option (m/z 445.1200) was used for internal recalibration. For the experiment in
Supplementary Fig. 2 the homogenate of the brain of the “full SILAC” mouse was
mixed with normal brain homogenate, in-solution digested and processed for MS.
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For the targeted detection of the β-galactosidase, the enriched protein was “on-
bead” digested using Trypsin (Promega). Briefly, the beads were resuspended in
30 μl of 1% RapiGest (Waters) and heated to 95 °C for 5 min. Further, 20 μl of 55
mM dithiothretol was added and incubated for 1 h at 750 rpm at room temperature
followed by addition of 20 μl of 100 mM iodoacetamide for 20 min, 750 rpm at
room temperature in dark. After diluting the detergent concentration to 0.1%, 10 μl
of 0.1 μg/μl Trypsin (Promega) was added and incubated overnight at 750 rpm, 37 °
C. The trypsin was quenched by adding 20 μl of 10% Formic acid. The undigested
peptides were pelleted while the supernatant was desalted and dried. The peptides
were resuspended in 40 μl of 5% acetonitrile containing 0.1% formic acid. A
volume of 5 μl of resuspended peptides were injected on a reverse phase C18 pre-
column (3 cm long, 100 μm inner diameter 360 μm outer diameter) followed by
analytical column (30 cm long, 75 μm inner diameter) prepared in-house using
ReproSil-Pur C18 AQ 1.9 μm reversed phase resin. The peptides were separated
with a linear gradient of 5–50% buffer B (80% acetonitrile and 0.1% formic acid) at
flow rate of 10 nl/min over 58 min gradient time on a TSQ Vantage Triple
Quadrupole Mass spectrometer for targeted MS.

Mass spectrometry data analysis. The acquired RAW data was analyzed using
MaxQuant software49 version 1.5.2.8 based on the Andromeda search engine50.
The mouse UniProt database (downloaded on 2015.11; containing 16,727 reviewed
entries) was used for identifying proteins. For defining the label on peptides, the
multiplicity was selected to “2” and the label 13C6-lysine was ticked as heavy.
Protein quantification was based on “unique and razor peptides” for a given
protein. For each protein, at each one of the three time points (5, 14, and 21 days),
three biological replicates and three technical replicates were measured (27 mea-
surements in total for each type of sample, although not all proteins were always
detected in all fractions; see Supplementary Figs. 6–7 for a detailed description of
the error estimation in the calculation of the lifetimes). The median H/L (Heavy to
Light) ratios among detected peptides (>3) was determined for each protein. Ratios
were used for the determination of protein lifetimes, following the modeling of the
amino acid pool, as described below. For the analysis of long-living proteins
(Supplementary Table 1 and Figs. 15–16) we defined ad hoc a database of proteins
that had longer lifetimes in our results, but we also included the previously
described long-living proteins2,3 and the proteins that were identified only in the
label-free fraction in all measured samples. For a more appropriate determination
of the lifetimes of these LLPs we also used longer pulses (30 and 60 days), and we
reported the position of the each specific protein with respect of the entire pro-
teome as “unlabeled percentile rank” which is positively correlated with their
stability. For the analysis of the peptides containing two lysines (mis-cleavage
analysis; Supplementary Fig. 8), we designed a set of specific experiments, because
we identified very few peptides containing two lysines in our original dataset (~15),
indicating that our 16 h digestion protocol is particularly efficient. This would be
regarded per se as a positive aspect in MS measurements, but it is not useful for this
kind of analysis. For this, first, we optimized a protocol that would allow us to
detect peptides with two lysines in the different labeling forms. We in-solution
digested the brain homogenate of our 21-day pulsed mice using three different
proteases, i.e., Chymotrypsin, GluC, ArgC, Trypsin (ProMega) for short-time
periods. Briefly, 20 μg of homogenate was denatured using 10 μl of 1% RapiGest
(Waters) at 95 °C for 5 min. The disulfide bonds were reduced using 10 mM DTT
followed by alkylation using 55 mM iodoacetamide for 30 min each at 37 °C, 750
rpm. The proteins were digested using 1:100 enzyme-to-protein ratio using the 4
proteinases all separately for 2 and 4 h. The digestion reaction was quenched by
acidifying using 20 μl of 10% TFA. The undigested proteins were pelleted by
centrifuging at max speed (10,000 rpm) for 15–20 min in a table-top centrifuge.
The supernatant was desalted using StageTips. Among the conditions tested, we
obtained the best results from a 2 h incubation with trypsin. In this case we
observed the highest number of peptides containing two lysines (~170 peptides).
Among these, 34 were reliably measured in three different biological replicates in
their zero-, one- and two-13C-lysine form and are reported in Supplementary
Fig. 8. For the analysis of the in vivo double pulse data (Supplementary Fig. 9) we
used only the unique peptides that were reliably detected in all four forms (light,
Lys6, Arg10 and Lys6-Arg10) with this pulsing scheme (Supplementary Fig. 9a).
The percentages reported in Supplementary Fig. 9c-h are related to the total
obtained from the sum of all intensities (light, Lys6, Arg10 and Lys6-Arg10). Since
we have not measured the pool of arginine, we estimated the lysine efficiency from
optimizing only its associated parameter b (1 / tausol) for the arginine model while
constraining all other parameters to those found in the lysine-only model. Due to
the metabolism of arginine to proline, we analyzed only peptides that contained
one lysine, one arginine and no proline. If more than one unique peptide was
detected for one protein, the values were averaged for the same protein.

The targeted MS experiments for the detection of β-Galactosidase were
analyzed using Skyline (version 3.1).

Quantification of proteins. To obtain iBAQ values of proteins, 10 μg of brain
cortex homogenate and 10 μg of the UPS2 (Universal Protein Dynamic Range
Standard mix containing purified 48 human proteins; Sigma) were processed for
in-solution digestion using Trypsin and analyzed by LC-MS/MS on an Orbitrap
Fusion Tribrid mass spectrometer. The brain cortex homogenate sample and UPS2
were measured seven times, with a total amount of 1 µg of protein on the column.

The RAW files were analyzed using MaxQuant software49 version 1.5.2.8 based on
the Andromeda search engine50. The mouse UniProt database (downloaded on
2015.11; containing 16,727 reviewed entries) and UPS2 database (downloaded
from Sigma website) was used for identifying and quantifying the proteins. The
MaxQuant iBAQ option was ticked for analysis. Further, the obtained iBAQ
values16 were plotted against the known amounts of the proteins in the
UPS2 standard. The calibration slopes were calculated as described23 by taking the
mean values of the technical replicates. The absolute amounts of proteins present in
brain fractions were calculated by linear regression. All contaminants were
removed from the protein list and protein abundance was averaged across seven
replicates following median normalization and expressed as log10+ 10 of the
normalized intensities, as it is often done with this typology of data. The quanti-
fication of cell culture protein abundances was performed by LFQ as described51.

Amino acid pool modeling and lifetime determination. Lysine in animals is
present in at least two pools: the soluble (free) lysine pool and the pool immobilized
into proteins52. By feeding the SILAC diet, 13C6-lysines (heavy lysines, Hsol) are
incorporated into the free lysine pool (Supplementary Fig. 3c), mixing with the
unlabeled lysines (light lysines, Lsol). Since the soluble lysine pool is used for
protein synthesis, the heavy lysines from this pool enter into the pool immobilized
within proteins (Hprot). At the same time, protein degradation mobilizes lysines
from the previously existing proteins (Lprot, and later also Hprot) into the soluble
lysine pool. Eventually, lysines are eliminated by excretion. During the feeding with
13C6-lysines, these four populations of lysines (Lsol, Hsol, Lprot, Hprot) change with
time (t). Since the mice used in this study are adult, we consider that the overall
amount of proteins in adult animals is unchanged over time. The system can then
be described with the following set of coupled differential equations:

dLprot
dt

¼ �a ´ Lprot þ a ´ Lsol ð1Þ

dHprot

dt
¼ �a ´Hprot þ a ´Hsol

ð2Þ

dLsol
dt

¼ �r ´ a ´ Lsol þ r ´ a ´ Lprot � b ´ Lsol ð3Þ

dHsol

dt
¼ �r ´ a ´Hsol þ r ´ a ´Hprot � b ´Hsol þ c ð4Þ

where a ¼ 1=τdegr, b ¼ 1=τsol , and c are the respective rates for protein degrada-
tion, lysine excretion, and heavy lysine feeding. Considering that the overall
amount of soluble lysines is conserved, the lysines that are absorbed also need to be
excreted. The fourth equation can therefore be further simplified by using:

c ¼ b ´Hsol þ b ´ Lsol ð5Þ

The parameter r accounts for the sizes of the two pools, namely:

r ¼ N ´ Sprot
Ssol

ð6Þ

Sprot indicates the overall number of proteins, Ssol the overall number of freely
available lysines, and N the average number of lysines incorporated in one protein.
Thus r is the ratio of the number of lysines that are incorporated in proteins and
the number of freely available lysines.

a, b, and r are the only independent equation parameters. Solving the coupled
set of differential equations using the initial conditions Hsol 0ð Þ ¼ 0, Hprot 0ð Þ ¼ 0,
Lsol 0ð Þ ¼ 1, and Lprot 0ð Þ ¼ 1, we find an analytical expression for Hsol tð Þ, Hprot tð Þ,
Lsol tð Þ, and Lprot tð Þ. The required measure for understanding the turnover of
individual proteins is Hsol tð Þ. The solution for Hsol tð Þ reflects a double exponential
convergence:

Hsol ¼ 1� A ´ e�t=τ1 � 1� Að Þ ´ e�t=τ2 ð7Þ

with τ1, τ2 (time constants) and A (amplitude) being connected to the equation
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parameters a, b, and r in the following way:

τ1 ¼
2

aþ bþ a ´ r þ C
ð8Þ

τ2 ¼
2

aþ bþ a ´ r � C
ð9Þ

A ¼ � a� bþ a ´ r � C
2 ´C

ð10Þ

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�4 ´ a ´ bþ ðaþ bþ a ´ rÞ2
q

ð11Þ

Note that a double exponential “biphasic” pool dynamics has previously been
observed5, however without a formal mathematical treatment.

After modeling the pool of soluble lysines, we have taken into consideration the
individual proteins of interest (POI). In the following we again assume that the
overall amount of POI is conserved over time. For simplicity we have not taken
into consideration the minor contribution of the lysines released from a single POI
into the soluble pool. The dynamics of an individual POI are then described by the
following differential equation:

dHpoi

dt
¼ � 1

τpoi
´Hpoi þ

1
τpoi

´Hsol ð12Þ

where 1=τpoi is the rate at which the POI is degraded. Using the above mentioned
double exponential convergence of the heavy lysine population Hsol with
amplitudes A and 1− A, time constants τ1 and τ2 as well as the initial condition
Hpoi 0ð Þ ¼ 0 we find an analytical expression forHpoi tð Þ:

Hpoi tð Þ ¼ 1� e�t=τpoi ´ 1� A ´ τ1 1� et=τpoi�t=τ1
� �

τ1 � τpoi
� 1� Að Þ ´ τ2 1� et=τpoi�t=τ2

� �

τ2 � τpoi

 !

ð13Þ

This result is in agreement with the work of Guan and collaborators13.
For the chase experiments, SILAC diet is replaced again with food containing

light lysines. The differential equations need to be adjusted accordingly for the
terms describing lysine uptake and excretion (terms marked with stars refer to the
chase model):

dL�sol
dt

¼ �r ´ a ´ L�sol þ r ´ a ´ L�prot þ b ´H�
sol ð14Þ

dH�
sol

dt
¼ �r ´ a ´H�

sol þ r ´ a ´H�
prot � b ´H�

sol ð15Þ

The initial conditions are those of the pulse phase model at the end of the pulse:
H�

sol 0ð Þ ¼ Hsol tendð Þ, H�
prot 0ð Þ ¼ Hprot tendð Þ, L�sol 0ð Þ ¼ Lsol tendð Þ, and

L�prot 0ð Þ ¼ Lprot tendð Þ. The analytical expression for H�
sol tð Þ for the time after the

end of the pulse is then again a double-exponential convergence:

H�
sol tð Þ ¼ A1 ´ e

�t=τ1 þ A2 ´ e
�t=τ2 ð16Þ

Using amplitudes:

A1 ¼
C � aþ bþ a ´ rð Þ ´Hsol tendð Þ � 2 ´ a ´ r ´Hprot tendð Þ

2 ´C
ð17Þ

A2 ¼
C þ a� b� a ´ rð Þ ´Hsol tendð Þ þ 2 ´ a ´ r ´Hprot tendð Þ

2 ´C
ð18Þ

For the solution of H�
poi tð Þ, with the initial condition being the condition at the

end of the pulse, H�
poi 0ð Þ ¼ Hpoi tendð Þ, the analytical expression is:

H�
poi tð Þ ¼ e�t=τpoi ´ Hpoi tendð Þ � A1 ´ τ1 ´ 1� et=τpoi�t=τ1

� �

τ1 � τpoi
� A2 ´ τ2 ´ 1� et=τpoi�t=τ2

� �

τ2 � τpoi

 !

ð20Þ

In order to determine the lifetimes (t1/2) of all proteins one can fit the
experimental data for every single POI with the function for Hpoi tð Þ as given above.
However, since all proteins are built from the same amino acid pool, we treat the
equation parameters a, b, and r as global, i.e., common for all proteins, and extract

only the protein half-lives from the individual fits, thereby obtaining much more
robust fit results. We performed an optimization of the equation parameters in
order to obtain the values {a, b, r} of the soluble pool Hsol tð Þ which best describes
our experimental data. Therefore, we fitted the labeling dynamics of all POIs that
were reliably detected at all times in the brain cortex homogenate (2409) with
different global equation parameter combinations. To account for possible effects
due to the degradation of the entire proteome, we included in this fitting also the
data obtained from the pulse-chase experiments as schematized in Supplementary
Fig. 3e–f. We compared the sum of square deviations of the measured data points
from the fitted curves for the complete dataset. The minimum of this value,
indicating the best equation parameter combination, was used to fit the
experimental data of all POIs using the function Hpoi tð Þ (Supplementary Fig. 3 and
see Supplementary Fig. 5 for some fitting examples). In addition, we also verified
that the soluble pool Hsol tð Þ, obtained from equation parameter optimization,
agrees well with all other experimental measures that we observe from other five
completely different sets of experiments (the GC-MS measurements of the plasma
in Supplementary Fig. 4b, the transgenic approach in Supplementary Fig. 4f, the
mis-cleavages analysis in Supplementary Fig. 8, the in vivo double pulse approach
in Supplementary Fig. 9 and the pulse and chase approach in Supplementary
Fig. 3i).

RNA extraction sequencing and quantification. Total RNA was extracted from
flash-frozen tissue homogenate using the QIAzol Lysis reagent (Qiagen GmbH)
processed with RNeasy spin columns and DNase to purify RNA and remove
residual contaminating genomic DNA. Library preparation for mRNA sequencing
was performed according to Illumina standard protocols using the TruSeq RNA
Sample Prep Kit v2. Libraries were quality controlled and quantified using a
NanoDrop 2000 (ThermoFisher Scientific), an Agilent 2100 Bioanalyzer (Agilent
Technologies) and Qubit (ThermoFisher Scientific). Single-end 50 bp sequencing
data were generated on an Illumina HiSeq2000™ using Illumina TrueSeq SBS kits.
The data represented in Fig. 1b are expressed as log10 of the mRNA counts
expresses as fragments per kilobase million.

Cell-type-specific sorting of nuclei. Neuronal and glial nuclei sorting were per-
formed as described53 with slight modifications. Briefly, flash frozen mice cortices
were homogenized, cross-linked (1% formaldehyde) and quenched (0.125M gly-
cine) in room temperature for both 5 min. The crude nuclei pellets were further
purified through sucrose gradient, stained with conjugated anti-NeuN-Alexa488
(MAB377X, 1:1000) for 20 min and re-suspended into nuclei suspension buffer
(0.2% tween-20, 1% BSA, 1x Roche complete EDTA-free protease inhibitor cocktail
in 1× PBS). As a negative control, anti-mouse-Alexa488 (A-11029, 1:2000) was
used. Sorting was done with BD FACSARIA III containing 85 µm nozzle. Gating
was done based on nuclei size, aggregate exclusion and Alexa488 fluorescence.
Nuclei were sorted into BSA-coated falcon tubes, spun down, flash-frozen and
stored at −80 °C until further processing. The effectiveness of the sorting was
confirmed by mounting a small fraction of the sorted nuclei and imaging in an
inverted Nikon Ti epifluorescence microscope (Nikon Corporation, Chiyoda,
Tokyo, Japan) equipped with a ×20 air objective. Following sorting the nuclei were
in-gel digested and processed for MS as explained in the Methods.

Hippocampal cultures and pharmacological treatments. First coverslips were
prepared by cleaning them with nitric acid overnight. After acid treatment, cov-
erslips were washed thoroughly with double distilled water, were sterilized and
were coated overnight with 1 mg/ml PLL. After coating, coverslips were washed
thoroughly with sterile water, and were incubated with plating medium (MEM
supplemented with 10% horse serum, 3.3 mM glucose, and 2 mM glutamine).
Neuronal hippocampal cultures were obtained from dissociated hippocampi of E18
mice54. In brief, brains were extracted from the skulls of E18 mice, and the hip-
pocampi were isolated under a dissection microscope. Following three washes with
HBSS (Invitrogen, Waltham, MA, USA) to remove tissue debris, the hippocampi
were incubated for 15 min in enzyme solution, as described54. Following dissection,
neurons were plated at a concentration of ~30,000/cm2 and were left to adhere for
1–4 h at 37 °C in a 5% CO2 cell-incubator. After adhesion, the medium was
changed to Neurobasal-A medium (Gibco, Life Technologies, Carlsbad, CA, USA)
containing 1:50 B27 supplement (Gibco) and 1:100 GlutaMAX (Gibco). Neurons
were kept in culture at 37 °C and 5% CO2 for 15 days before pharmacological
treatments. Cultures were treated for 24 h with either Lactacystin (Santa Cruz; CAS
133343–34–7) at the final concentration of 10 µM42 or Cycloheximide (SIGMA;
C4859) at a final concentration of 75 µM. No evident signs of cellular stress were
observed after the treatments. Samples were extracted in 8 M Urea and precipitated
using 4 volumes of acetone. Resuspended lysate after protein estimation was
trypsinized in-solution overnight, and loaded on Q-Exactive Hybrid Quadrupole
Orbitrap mass spectrometer. Protein abundance was determined by LFQ as
described51, and the relative difference in protein abundance was defined with
respect to an untreated control. Three biological replicates corresponding to three
independent neuronal cultures were used for these experiments. The protein
abundance change following treatment vs. the control is plotted in Supplementary
Fig. 23 against the protein lifetimes that were measured in vivo in the brain
homogenate sample.
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Determination of protein surfaces. Protein surface estimates (Supplementary
Fig. 23e) were derived from information on protein structures obtained from the
protein database (PDB). The following proteins have been analyzed: actin,
AMPAR, amphiphysin, AP1 beta, AP1 mu, AP180, bassoon, CAMKII kinase,
citrate aconitase, citrate synthase, clathrin Heavy Chain, clathrin Light Chain,
ClC3, complex 1, complex 2 and complex 3 of the mitochondrial respiration chain,
creatine kinase U type, CSP, dynamin, endophilin, epsin1, fATPase alpha, beta,
delta, epsilon and gamma, GABABR1, gephyrin, hexokinase, homer, intersectin1,
l1cam, mGluR1, mGluR5, monoamine oxidase a, munc18, neurexin, neuroligin,
NFL, NMDAR, nrcam, piccolo, PIPKIgamma, psd95, rab3a, rab3b, rab3c, RIM1,
SCAMP1, shank2, SNAP25, SNAP29, SV2a, SV2b, SV2c, synapsin1, synapsin2,
synapsin3, synaptobrevin2, synaptophysin1, synaptotagmin1, syndapin, syntax-
in1a, tubulin, VAMP4, vGlut1, vGlut2, vti1b, the vATPase a, c, and d subunits, and
the soluble vATPase complex (subunits A-H). Most structures have been pre-
viously described in our publications22,23. For the proteins that were not in our
previous publications, complete structures were created by combining the struc-
tural data from the protein data bank (www.rcsb.org) to additional information
based on similar proteins. In detail the following PDB IDs were used: AMPAR,
3KG2; neuroligin 3BIX and 3BIW; neurexin 3BIW and 2H0B; l1cam, 1CFB;
tubulin, 1JFF. The triangle mesh based solvent accessible surface (SAS) was cal-
culated subtracting the meshes, which were shielded by other proteins or lipid
membranes, resulting in the best polygon surface approximation for the exposed
surface.

Bioinformatics, date representation, data analysis, and statistics. Protein
information such as protein length was retrieved from The Universal Protein
Resource (UniProt Consortium55). The isoelectric point was calculated with
ExPASy (https://web.expasy.org/compute_pi/) and the grand average of hydro-
pathy (GRAVY) was calculated with the online sequence manipulation tool (http://
www.bioinformatics.org/sms2/protein_gravy.html). For disorder prediction,
IUPred56 was used with a cutoff of 0.5 for disorder definition in mode “short or
long” with canonical protein sequences acquired from Uniprot. Percentage of the
sequence that is above this threshold is reported for every protein. Due to the
incongruence of protein classification and localization information for brain pro-
teins, for protein categorization we relied on a database that we built by manual
integration of three other databases (Synprot19, SynaptomeDB20 and G2C:Genes to
Cognition21), alongside with previous publications22,23 obtaining the reliable
localization/affiliation of ~1200 proteins as detailed in Supplementary Data 1. We
have used this categorization for the classification presented in Figs. 2, 3 and
Supplementary Fig. 20. For the protein family and the molecular complex affilia-
tion we relied on previously published data55. All analyses were performed with the
help of Matlab (The Mathworks Inc., Natick, MA, USA), GraphPad Prism
(GraphPad Software) or SigmaPlot software (Systat Software), using self-written
routines. For the fuzzy c-means clustering we used the appropriate function of the
Fuzzy Logic Toolbox. Lifetimes were determined as explained above, in the section
“Amino acid pool modeling and mathematical lifetime determination”. Functional
enrichment analysis was performed with the WEB-based GEne SeT AnaLysis
Toolkit57 or with STRING36, a functional protein association tool to analyze and
visualize protein networks. For the functional enrichment analysis, we relied on the
overrepresentation enrichment analysis (ORA) and on the non-redundant gene
ontology modules, to avoid synonym terms. The P-values for this analysis were
adjusted with the Holm-Bonferroni method and the false discovery rates were
reported as –log10 (where higher values indicate more relevant significance). The
3D representation of the synapse and of the synaptic vesicle with the appropriate
number of molecules was adapted from our previous work23. For the sorted nuclei,
to avoid any possible detection bias, protein lifetimes were calculated only for
proteins that were found both in neurons and in glial cells where the difference in
intensity between the two cell types was ≤500%. The cellular expression specificity
for microglia, neurons, astrocytes, and oligodendrocytes was defined from the data
published by Sharma and collaborators as were >10-fold more abundant in one cell
type compared with all the others cell types37 (following the principle proposed by
the authors). The data for the GABAergic and glutamatergic neurons was obtained
from a previous work38. The results on the reduction of protein degradation were
obtained from the work of Hakim and collaborators42, and expressed as in the
original work as log2H/M. Venn diagrams were initially plotted with Venny (http://
bioinfogp.cnb.csic.es/tools/venny/). The calculation of the error in the determina-
tion of the lifetimes is summarized for the brain datasets in Supplementary Fig. 6–
7. The average r2 of the fittings and the average 95% confidence interval in Sup-
plementary Fig. 6b, c are reported for all the datasets and they are largely over-
lapping. The surfaces of the proteins were determined as indicated in the previous
section. The exposed surfaces for soluble proteins were considered to be equal to
their actual surfaces. For transmembrane or membrane-attached proteins, we
considered the membrane-facing sides as non-exposed, and reduced the exposed
surfaces accordingly. The same was performed for proteins that were members of
protein complexes, since surfaces covered by partner proteins were not considered
to be exposed. A further reduction was performed for proteins that are found in
polymers of complexes, such as tubulin. For protein lifetimes we relied on the 95%
confidence interval, since it is the most appropriate measure of error for the
typology of data that we are reporting58. All P-values for multiple comparisons

were adjusted with the Bonferroni correction and they were calculated from the
confidence intervals as reported elsewhere59.

Data availability
The proteomic datasets are accessible with the PRIDE ID PXD010859
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