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Establishment of porcine 
enterocyte/myofibroblast  
co-cultures for the growth of 
porcine rota- and coronaviruses
Tingting Cui1, Sebastiaan Theuns   1, Lowiese M. B. Desmarets1, Jiexiong Xie1, 
Gaëtan M. A. De Gryse1, Bo Yang1, Wim Van den Broeck2 & Hans J. Nauwynck1

A stable culture of primary porcine enterocytes is necessary to study porcine enteric virus replication 
characteristics. Because the direct cultivation of primary porcine enterocytes is difficult, alternatives 
have to be considered. As subepithelial myofibroblasts secrete extracellular matrix and growth factors 
contributing to the attachment, proliferation and differentiation of epithelial cells, co-cultures of 
primary porcine enterocytes (ileocytes and colonocytes) with myofibroblasts were developed and 
evaluated for their susceptibility to enteric viruses. First, it was demonstrated that the co-cultured 
ileocytes and colonocytes were susceptible to an archival rotavirus strain RVA/pig-tc/BEL/RV277/1977/
G1P[7] and different other rotavirus genotypes (fecal samples containing G5P[7], G5P[13], G9P[23], 
G4P[6]). Next, the TGEV Purdue strain infected both ileocytes and colonocytes whereas the Miller strain 
only infected ileocytes. Last, the PEDV CV777 Vero adapted and non-adapted (fecal suspension) strains 
could infect co-cultured ileocytes but not colonocytes. The infectivity of the CV777 Vero adapted strain 
was higher when the cells were cultured without fetal bovine serum and the CV777 fecal suspension 
only infected the ileocytes cultured without fetal bovine serum. In conclusion, a novel co-culture of 
porcine enterocytes with myofibroblasts was established, which can be used for the investigation of the 
replication of enteric viruses.

Enteric viruses are common causes of diarrhea in humans and animals. Porcine rotavirus, transmissible gastro-
enteritis virus (TGEV) and porcine epidemic diarrhea virus (PEDV) are well known enteric viruses, leading to 
high morbidity and mortality in piglets and causing economic losses in swine-producing countries. Rotavirus 
belongs to the genus rotavirus within the family Reoviridae. It consists of a triple-layered capsid encapsulating a 
genome consisting of eleven segments of double-stranded RNA (dsRNA) that encodes six structural (VP1-VP4, 
VP6 and VP7) and six non-structural (NSP1-NSP6) proteins. According to the inner capsid protein VP6, 10 
different species/groups (A-J) of rotavirus have been identified using a 53% amino acid cut-off value sequence 
classification system1–3. Rotavirus group A, B, C, E and H have been detected in pig feces4–8. The glycoprotein VP7 
and the protease-sensitive protein VP4, which elicit neutralizing antibodies, form a genotyping system within the 
rotavirus A species9. Until now, 35 G-genotypes (VP7) and 50 P-genotypes (VP4) were identified. The most prev-
alent rotavirus group A (RVA) strains in pigs are G3, G4, G5, G9, and G11 in association with P[6], P[7] P[13] 
and P[23] and the most predominant genotype combination among porcine RVA strains is G5P[7] worldwide10,11. 
Transmissible gastroenteritis virus and porcine epidemic diarrhea virus belong to the group I coronaviruses. 
They are enveloped viruses with an approximately 28.5 kb single-stranded, positive-sense RNA genome encoding 
four structural proteins: the spike (S), membrane (M), envelope (E), and nucleoprotein (N) protein. The spike 
protein is the major target for neutralizing antibodies. It mediates the virus binding to the cell surface receptor 
aminopeptidase N and plays a role in the fusion between the viral envelope and the cell membrane12,13. The 
nucleoprotein wraps the virus genome and supports virus assembly14. The membrane protein is mostly embed-
ded in the lipid membrane and plays an important role in the virion architecture15. They cause lethal watery 
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diarrhea and dehydration in piglets and destroy villous enterocytes in the small intestine. The severity and lethal 
outcome are strain dependent16. Different non-intestinal cell lines have been used in the past for virus cultivation 
in vitro17,18, but at low efficiency. TGEV can be propagated in swine testicle (ST) and porcine kidney (PK-15) 
cells. Upon adaptation, PEDV may infect African green monkey kidney (Vero) cells. Like TGEV and PEDV, 
rotavirus is mainly transmitted by fecal-oral route and virus infection causes the destruction of mature small 
intestinal enterocytes. Similarly, most rotavirus research was conducted on non-polarized MA104 cells (African 
green monkey kidney epithelial cells) which are easy to culture and permissive for certain rotavirus strains of 
different genotypes. But there are still a lot of genotypes of rotavirus strains that do not grow in MA104 cells8. 
Data concerning the replication cycles of these enteric viruses in their target cell (mature intestinal enterocytes) 
are scarce. To this end, it is essential to obtain cultures of porcine intestinal enterocytes.

The gastrointestinal tract is lined with a rapidly proliferating simple columnar epithelium. The epithelial cells 
migrate from the crypts where mitosis takes place towards the top of the villi (small intestine) or towards the top 
of the intercrypt (large intestine) as they mature. Mature epithelial cells are replaced by a steady supply of crypt 
cells. In suckling piglets, intestinal epithelial cells renew every 2–3 days. Because of the highly dynamic and rapid 
renewal properties of intestinal epithelial cells, it is difficult to successfully culture them in vitro. In 2014, a por-
cine mid-jejunum epithelial cell line was established from neonatal piglets by immortalization upon transfection/
transduction with human telomerase reverse transcriptase (hTERT) gene19. Because the immortalization alters 
the biology of the original cells, field viruses replicate more efficiently in primary cells than in continuous cell 
lines. Therefore, it is advisable to use primary cells for virus research. Intestinal enteroids have been developed 
by culturing intestinal crypts onto Matrigel which is enriched with laminin α1 and α220. Enteroids enhanced the 
viability of the cells and were already used for the study of rotaviruses21, noroviruses22 and enteroviruses23. The 
successful cultivation of enteroids is dependent on many growth factors, critically including Wnt 3a, R-spondin, 
and Noggin, which is an expensive method.

Intestinal myofibroblasts, one of the intestinal mesenchymal cells, are directly subjacent to the basement mem-
brane of epithelial cells and they have been reported to support the proliferation and differentiation of epithelial 
cells24. Myofibroblasts are identified by the expression of intracellular cytoskeletal microfilament α-smooth mus-
cle actin (α-SMA). Myofibroblasts contribute to the growth and differentiation of intestinal enterocytes by secret-
ing several growth factors (hepatocyte growth factor, transforming growth factor beta (TGF-β1)25,26, insulin-like 
growth factors (ICFs)24), extracellular matrix proteins (collagen type IV, laminin-β1 and γ1, and fibronectin), 
cytokines and chemokines. To date, a mouse colonic myofibroblast cell line established by Hirokawa has been 
reported to stimulate colonoid formation27 and human myofibroblasts isolated from small intestine were able 
to support human intestinal epithelial cell growth in vitro28. All the information suggested the potential role of 
myofibroblasts in intestinal enterocytes cultivation in vitro.

In this study, a porcine co-culture system of primary intestinal enterocytes with intestinal myofibroblasts 
was established which mimics the enterocytes growth in vivo. The morphological and functional features of 
co-cultured enterocytes were characterized. To determine the usability of this co-culture system, enteric rota- 
and coronaviruses were used to infect the co-cultured enterocytes.

Results
Localization of epithelial cells and myofibroblasts in ileum and colon of a three days old pig-
let.  After euthanasia of a three-day old piglet, ileum and colon tissues were embedded immediately and cryo-
sections were made to visualize the distribution of epithelial cells and myofibroblasts in vivo. Immunofluorescence 
stainings were performed against the epithelial cell marker cytokeratin and myofibroblast marker α-smooth mus-
cle actin. In the porcine ileum, a lot of myofibroblasts were located in the lamina propria directly underneath the 
epithelial cell layer of the villi, representing the largest cell population in the lamina propria. Fewer myofibroblasts 
(<5%) were observed in the lamina propria underneath the epithelial cell layer in colon. In contrast, the myofi-
broblasts formed an integral line underneath the epithelial cell layer in the colon crypts (Fig. 1). These results 
show that porcine small and large intestinal epithelial cells grow in close contact to myofibroblasts in vivo. The 
contact communication between these two cell types is supposed to be an important element for the support of 
myofibroblasts in the attachment, proliferation and migration of epithelial cells.

Isolation and characterization of ileum subepithelial myofibroblasts.  Myofibroblasts were iso-
lated from the subepithelial layer of porcine ileum. Cell clusters were observed 5 days post isolation and had a 
cobblestone-like morphology with stellate edges. The clusters continued to grow into larger structures which con-
tain more than 200 cells. Meanwhile, the fibroblasts started to expand. The biggest cluster was marked by making 
a circle with a pen on the bottom of the plate and other cells were scraped away using a sterile tip. Afterwards, this 
circled cluster was split using trypsin. Cells maintained their morphology and could be continuously passaged 
(Fig. 2A). The obtained cells were characterized by immunofluorescence staining. Cells were stained positive for 
α-smooth muscle actin (α-SMA), vimentin and fibronectin, which are all markers of myofibroblasts. The cells 
were negative for desmin, cytokeratin and sucrase-isomaltase (Fig. 2B). These results confirmed that the cells iso-
lated from the ileum subepithelial layer were myofibroblasts. Primary ileum epithelial cells were used as control, 
which were positive for cytokeratin and sucrase-isomaltase (Fig. 2C).

Myofibroblasts serve as supporting cells for porcine enterocytes.  Twenty-four hours post seeding, 
most of the ileum epithelial cells were attached and became confluent (>90%) when seeded on porcine type I 
and III collagen coated wells. However, 2 days post seeding, the epithelial cells started to detach, and 3 days post 
seeding, most of the epithelial cells were dead. Only a few big epithelial cell clusters could be visualized. Six days 
post seeding, fibroblasts took over the wells and a few tiny epithelial clusters were still present (Fig. 3A). The use 
of 20% conditioned medium did not give an improvement: most of the epithelial cells were dead at day 3 (Fig. 3B). 
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When monolayers of myofibroblasts were used as supporting layers for ileum and colon epithelial cell cultivation, 
epithelial clusters attached to the myofibroblasts and became visible at 24 hours post seeding. The epithelial cells 
continued to expand and grew into monolayers 3 days post isolation. They maintained their polygonal morphol-
ogy and confluent layers for more than 1 week (Fig. 3C,D).

Characterization of enterocytes co-cultured with myofibroblasts.  Cells isolated from ileum 
and colon co-cultured with myofibroblasts were characterized by immunofluorescence staining 3 days post 
co-cultivation. Antibodies against cytokeratin and vimentin were used to determine the epithelial nature. In the 
co-culture system, most of the cells were found to be cytokeratin positive (95 ± 1.9% of all cells in the ileum epi-
thelial cell co-cultures and 91 ± 3.6% of all cells in the colon epithelial cell co-cultures), confirming the epithelial 
nature of the polygonal cells (Fig. 4). Interestingly, the vimentin positive cells (myofibroblasts) clustered into 
aggregates in both co-cultures, which suggests that the expansion of epithelial cell growth squeezed the myofi-
broblasts into aggregates.

Scanning electron microscopy of epithelial cells of small and large intestines (in vivo) and after 
co-culture with myofibroblasts (in vitro).  The differentiation status of porcine intestinal epithelial cells 
of 3 days old piglets and the co-cultured enterocytes were analyzed by scanning electron microscopy. As shown in 
Fig. 5, the epithelial cells of the ileum and colon had a different appearance in vivo. A few epithelial cells on the tip 
of a villus of the ileum were fully covered with microvilli, while most of the cells were immature without microvilli 
on the surface. In contrast, almost all epithelial cells of the colon had short microvilli. In the co-cultured ileum 
and colon epithelial cells, a lot of microvilli were present on the cell’s surface at three days post co-cultivation and 
showed a different appearance (some microvilli were longer). These results demonstrate that myofibroblasts could 
support the differentiation of both ileum and colon epithelial cells in vitro.

Replication kinetics of rotavirus RVA/Pig-tc/BEL/RV277/1977/G1P[7] strain in co-cultured 
enterocytes.  To determine the percentage of rotavirus infected cells in primary porcine enterocytes, cells 
were fixed at different time points (0, 3, 6, 9, 12, 24 h) post inoculation with a low-passage archival RVA strain. 
Viral antigens were stained by immunofluorescence (Fig. 6A). The first antigen-positive ileum epithelial cells 
appeared at 6 h p.i and increased over time. The percentage of rotavirus infection in ileum epithelial cells increased 
to 4.8 ± 1.3% at 24 h p.i. In colon epithelial cells, the first antigen-positive cells appeared at 9 h p.i and the per-
centage of infection increased to 3.2 ± 0.9% at 24 h p.i (Fig. 6B). To determine the kinetics of virus production in 

Figure 1.  Characterization of the epithelial cells and myofibroblasts of the ileum and colon of a 3 days old 
piglet. Immunofluorescence staining against cytokeratin and α-smooth muscle actin in ileum and colon 
cryosections. A lot of myofibroblasts are located in the lamina propria underneath the epithelial layer of both 
tissues. Scale bar: 10 µm.



www.nature.com/scientificreports/

4ScIentIFIc REporTS |  (2018) 8:15195  | DOI:10.1038/s41598-018-33305-1

ileum and colon epithelial cells, viral titers and RNA copies of supernatant (extracellular virus) and cells (intra-
cellular virus) were assessed (Fig. 6C,D). The intracellular and extracellular virus titers were determined from 0 
to 24 h post inoculation. The intracellular virus titer of ileum epithelial cells increased from 103.1±0.4 CCID50/ml to  
105.5±0.2 CCID50/ml. The extracellular virus titer of ileum epithelial cells increased from 102.6±0.7 CCID50/ml 
to 105.6±0.5 CCID50/ml. For colon epithelial cells, the intracellular and extracellular virus titers increased from 
102.5±0.6 CCID50/ml to 105.1±0.2 CCID50/ml and from 101.2±1.1 CCID50/ml to 104.1±0.6 CCID50/ml, respectively. The 

Figure 2.  Morphological characterization of the myofibroblasts isolated from porcine ileum. (A) 
Characteristics of porcine ileum myofibroblasts. Myofibroblasts could be observed at 5 days after isolation. They 
had a cobblestone like morphology. They could be further sub- passaged as a continuous cell line. (B) A third 
passage of myofibroblasts was identified by immunofluorescence staining. Cells stained characteristically for 
intestinal myofibroblasts. They were positive for α-smooth muscle actin, vimentin and fibronectin, while cells 
were negative for sucrase-isomaltase, cytokeratin and desmin. (C) Primary ileum epithelial cells were used as 
control and stained with all markers that were used for the staining of the myofibroblasts. Scale bar: 25 µm.
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RT-qPCR showed that viral RNA started to be synthesized in ileum and colon epithelial cells from 9 h p.i. Viral 
RNA increased up to 6.4 ± 0.5 log10/ml in ileum epithelial cells and 6.6 ± 0.3 log10/ml in colon epithelial cells. The 
viral RNA started to be released into the supernatant between 9 and 12 h p.i; at 24 h p.i, 6.3 ± 0.4 log10/ml RNA 
copies were detected in both ileum and colon epithelial cell cultures.

Susceptibility of primary porcine enterocytes to different rotavirus genotypes present in fecal 
suspensions of diarrheic pigs.  A major restriction of rotavirus research is the lack of cell cultures support-
ing the growth of different genotypes of field strains. Therefore, the susceptibility of primary porcine enterocytes 
co-cultured with myofibroblasts to four different genotypes of rotavirus A contained in fecal suspensions was 
tested by RT-qPCR (Fig. 7). The results showed that these four genotypes of rotavirus could infect both ileum 
and colon epithelial cells. Rotavirus 14R163 (G9P[23]) strain demonstrated the highest infectivity to primary 
enterocytes, followed by the 14R160 (G5P[7]) strain. For rotavirus 14R165 (G4P[6]) strain, an increase of more 
than 10 fold RNA copies/ml was detected at 24 h post inoculation of ileum and colon epithelial cells. Ileum and 

Figure 3.  Evaluation of different methods to support the growth of primary porcine ileum and colon epithelial 
cells. (A) Porcine ileum epithelial cells were cultured without myofibroblasts on a porcine collagen type I/III 
coated plate. They could live approximately 2 days before detaching and dying, fibroblasts took over 6 days 
after seeding. (B) Porcine ileum epithelial cells were cultured without myofibroblasts on a porcine collagen 
type I/III coated plate with medium supplemented with 20% conditioned medium collected from ileum 
myofibroblasts. Epithelial cells could be maintained for less than 3 days and a few tiny epithelial clusters were 
present at 6 days post seeding. Porcine ileum (C) and colon (D) epithelial cells were cultured in the presence 
of ileum myofibroblasts. Epithelial cells grew into a monolayer 3 days post co-cultivation and maintained their 
morphology for more than 6 days.
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colon epithelial cells were less susceptible to rotavirus 14R133 (G5P[13]) strain. These results demonstrated that 
the primary enterocytes could be infected by rotavirus field strains containing different genotypes but that the 
susceptibility of enterocytes to rotavirus differed among the different genotypes.

Susceptibility of co-cultured enterocytes to transmissible gastroenteritis virus.  Next, the sus-
ceptibility of primary enterocytes in co-cultures with myofibroblasts was tested for the TGEV Purdue and Miller 
strains. TGEV antigen expression kinetics were assessed in primary enterocytes (Fig. 8). TGEV Purdue infected 
both ileum and colon epithelial cells. At 24 h p.i, the Purdue strain had infected 3.7 ± 0.9% and 3.5 ± 1.7% of the 
ileum epithelial cells and colon epithelial cells, respectively, and the virus titer in both ileum and colon epithelial 
cells increased to 4.5 ± 0.3 CCID50/ml. TGEV Miller only infected ileum epithelial cells. The highest infection 
(1.6 ± 0.8%) appeared at 12 h p.i. No TGEV antigens of Miller strain were found in colon epithelial cells on 24 h 
post inoculation.

Susceptibility of co-cultured ileum epithelial cells to porcine epidemic diarrhea virus.  The 
PEDV CV777 Vero adapted strain and PEDV CV777 positive fecal suspensions were used to infect co-cultured 
primary ileum epithelial cells to confirm the usability of primary enterocytes. Twenty-four hours post inocu-
lation, viral antigens of Vero adapted CV777 were observed in a low number of ileum epithelial cells cultured 
with/without FBS. Two times more infection was found in epithelial cells cultured without FBS. For CV777 fecal 
suspension, virus infection was only observed in ileum epithelial cells which were cultured without FBS (Fig. 9).

Discussion
In this study, a co-culture system of porcine ileum subepithelial myofibroblasts with porcine small (ileum) and 
large (colon) intestinal epithelial cells was established and the use of this co-culture system for enteric virus 
research was assessed. The cross talk between epithelium and subepithelial myofibroblasts has been reported to 
promote epithelial cell proliferation and differentiation in both mice and humans. In this study, a myofibroblast 
cell line was established from porcine ileum which was identified by the presence of α-smooth muscle actin, 
vimentin and fibronectin. The in vivo distribution of epithelial cells and myofibroblasts shows that a lot of myofi-
broblasts directly grow underneath the epithelium in porcine ileum and that myofibroblasts form an integral 
line along colon crypts. This initial contact may be an important factor for the support of myofibroblasts towards 
epithelial cells.

At present, many mechanical and enzymatic seperation methods have been used for the isolation of intestinal 
epithelial cells from human, mice, rat, bovine, porcine and feline intestines. However, the successful cultivation of 
intestinal epithelial cells still poses a big challenge because of the rapid death/apoptosis of isolated epithelial cells 
which in vivo renew every 2–3 days. This apoptosis may be triggered by the disruption of the epithelial cell contact 

Figure 4.  Characterization of the primary porcine ileum and colon epithelial cells co-cultured with ileum 
myofibroblasts. Immunofluorescence staining against cytokeratin and vimentin for ileum and colon epithelial 
cells co-cultured with myofibroblasts 3 days post seeding. Scale bar: 25 µm.
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with extracellular matrix. A dispase and collagenase combination was used for epithelial cell isolation in the 
present study, which preserves more cell-to-cell interactions and reduce the damage of cell-matrix adhesions29. 
The contamination with stromal cells is a huge problem for epithelial cell cultivation. In order to decrease the 
contamination with mesenchymal cells, we removed these cells by D-sorbitol density centrifugation and plastic 
adhesion for 2 hours. According to the specific property that stromal cells attach to plates faster than epithelial 
cells, most stromal cells were separated from epithelial cells after 2 hours incubation. In the presence of ileum 
myofibroblasts, both ileum and colon epithelial cells are growing longer than one week and maintain their polyg-
onal, cobblestone-like morphology. In the absence of myofibroblasts, epithelial cells died after 2–3 days, even 
when supplemented with 20% conditioned medium collected from myofibroblast cultures. Our data indicate that 
the supporting effect of myofibroblasts for epithelial cell growth is very dependent on the direct contact between 
these two cell types. We also demonstrated that myofibroblasts not only support the growth of intestinal epithelial 
cells from newborn piglets, but also the epithelial cells of 6 weeks old pigs (data not shown), which confirms the 
important role of myofibroblasts on epithelial cell proliferation independently of the age of the donor. The epithe-
lial cells in co-cultures were identified by the presence of cytokeratin which is regarded as an important marker of 
epithelial cells. Most of the cells (>90%) preserved their epithelial nature with a positive staining of cytokeratin 
after 3 days of co-cultivation. Remarkably, the myofibroblasts clustered into aggregates in this co-culture system. 
It seems that myofibroblasts retracted into aggregates during the expansion of epithelial cells growth. In earlier 

Figure 5.  Scanning electron micrographs of ileum and colon epithelial cells in vivo and in vitro. Microvilli are 
present on a few epithelial cells at the top of an ileum villus of a 3 days old piglet. Cultured ileum epithelial cells 
are covered with microvilli. In the colon of a 3 days old piglet, almost all the epithelial cells were covered with 
short microvilli. A large number of microvilli were present on the colon epithelial cells at 3 days post seeding.
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reports, it was shown that myofibroblasts can migrate to wound tissue and demonstrate high contractile activities 
to generate tissue contractures, which help wound healing and organ remodeling by secretion of extracellular 
matrix proteins and exerting strong contraction force30–32. In addition, human and porcine myofibroblasts express 
S100A4 proteins which have been demonstrated to be implicated in cancer cell migration30,33. Taken together all 
this information, we hypothesize that myofibroblasts first secrete extracellular matrix proteins, such as collagen 

Figure 6.  Kinetics of rotavirus replication in primary ileum and colon epithelial cells co-cultured with 
myofibroblasts. Three days post co-cultivation, cells were inoculated with rotavirus RVA/pig-tc/BEL/
RV277/1977/G1P[7] strain at an m.o.i. = 1. At different time points post inoculation, (A) infected cells were 
visualized by immunofluorescence staining (red represents cytokeratin and green represents rotaviral antigen 
positive cells), (B) the percentage of infected epithelial cells was determined, (C) intra- and extracellular virus 
titers were assessed and (D) intra- and extracellular viral RNA loads were quantified by RT-qPCR. Scale bar: 
25 µm. Data are expressed as mean ± standard deviation of the results of 3 separate experiments. Statistically 
significant differences in comparison with the data from 0 h p.i. are represented as *P <0.05 or **P <0.01.
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and laminin, coordinating the attachment and proliferation of epithelial cells and migration of myofibroblasts in 
clusters. Epithelial cells co-cultured with myofibroblasts showed microvilli after 3 days of co-cultivation which is 
in accordance with the reported data that myofibroblasts not only support the growth of epithelial cells, but also 
stimulate the differentiation of epithelial cells34.

Rotavirus research is hampered by the lack of susceptible enterocyte cell lines. Although some cell lines, 
including MA104, Marc, IPEC-J2 and Caco-2 cells35–37 are susceptible to some rotavirus strains, a lot of genotypes 
of rotavirus, such as P[4], P[6], P[8], P[13] do not grow efficiently in these cell lines. Therefore, enterocyte cultures 
are an essential tool to investigate rotavirus-cell interaction. In this study, the susceptibility of primary enterocytes 
to different rotavirus genotypes were explored. Rotavirus RVA/Pig-tc/BEL/RV277/1977/G1P[7] strain, which was 
first isolated in Belgium in 1977 from a pool of watery diarrhea of 3 pigs38, is a typical G1 porcine rotavirus. G1 is 
the most common VP7 genotype of human group A rotavirus, but is rarely found in porcine rotavirus strains39. It 
is suggested that all human G1 VP7 genes originate from porcine rotavirus transmission to humans and that this 
interspecies transmission was followed by human-to-human transmissions40. Although rotavirus was reported to 
have an exclusive tropism for small intestinal enterocytes41, rotavirus RVA/Pig-tc/BEL/RV277/1977/G1P[7] strain 
could infect both primary ileum and colon epithelial cells with a trypsin treatment. The antigen expression kinet-
ics did not show significant differences in cell tropism of this rotavirus strain. Studies showed that some animal 

Figure 7.  Susceptibility of porcine primary enterocytes to different rotavirus genotypes present in fecal 
suspension of diarrheic pigs. The infected cells were visualized by immunofluorescence staining at 24 h post 
inoculation (A). Viral RNA titer with supernatant of co-cultured primary porcine enterocytes inoculated with 
different rotavirus fecal suspensions at 0 h and 24 h post inoculation (B). Scale bar: 25 µm. Data are expressed 
as mean ± standard deviation of the results of 3 separate experiments. Statistically significant differences 
in comparison with the data from 0 h p.i. are represented as *P <0.05 or **P <0.01. <LOQ: below limit of 
quantification.



www.nature.com/scientificreports/

1 0ScIentIFIc REporTS |  (2018) 8:15195  | DOI:10.1038/s41598-018-33305-1

group A rotaviruses, especially porcine rotaviruses recognize sialic acid as host receptor for virus attachment. On 
porcine small and large intestinal epithelium, sialic acid receptors were clearly detected and colon crypts showed 
even a greater abundance of sialic acid than small intestines42. Rotavirus genotype P[7] has been classified as a 

Figure 8.  Kinetics of TGEV replication in ileum and colon epithelial cells co-cultured with myofibroblasts. 
Three days post co-cultivation, cells were inoculated with TGEV strains Purdue and Miller at an m.o.i. = 1. At 
different time points post inoculation, (A) infected cells were visualized by immunofluorescence staining (red 
represents cytokeratin and green represents TGEV antigen positive cells) and (B) the percentage of infected 
epithelial cells and (C) virus titers in the supernatant were determined. Scale bar: 25 µm. Data are expressed 
as mean ± standard deviation of the results of 3 separate experiments. Statistically significant differences in 
comparison with the data from 0 h p.i. are represented as *P <0.05 or **P <0.01.
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sialic acid-dependent genotype43, which may explain why rotavirus G1P[7] strain could also infect colon epithe-
lial cells in vitro. Both ileum and colon epithelial cells were also susceptible to four fecal suspensions containing 
different rotavirus genotypes (G5P[13], G5P[7], G9P[23] and G4P[6]). G5P[7] and G9P[23] rotaviruses, which 
are the predominant G/P genotype combination of circulating rotaviruses in Belgium, were more infectious than 
the other two strains, which was also observed on MA104 cells8. The higher infectivity in enterocytes in vitro may 
explain the wide prevalence of these genotypes in the field. Rotavirus P[6] genotype is one of the major human 
rotavirus genotypes. It is associated with symptomatic infection in children and is frequently detected in Africa. 
In pigs, P[6] rotaviruses are also regularly detected and most of these strains display a high genetic similarity 
to human P[6] rotavirus strains8,44. Animal rotaviruses are regarded as a potential reservoir for the genetic and 
antigenic diversity of human rotaviruses and interspecies transmission from swine to humans has been reported 
increasingly for P[6] genotype. Eight Hungarian human G4P[6] rotavirus strains were supposed to originate 
from pigs by independent events of zoonotic transmission10. Therefore, studying porcine rotavirus is a key step to 
deeply understand the evolution of human rotavirus. Recent studies demonstrated that P[6] rotavirus strains rec-
ognize human histo-blood group antigens (HBGAs), which explains why most human rotavirus strains cannot be 
cultured in MA104 cells. In our study, rotavirus G4P[6] could infect both ileum and colon epithelial cells which 
demonstrates that the primary enterocytes contain the cellular receptor for rotavirus P[6], likely containing the 
right HBGAs. This receptor is still not identified. Rotavirus almost exclusively infects mature enterocytes of the 
small intestinal villi in vivo41, while in vitro, the large intestinal epithelial cells could also be infected, which leads 
us to think that other factors in the large intestines block the rotavirus infection of colon epithelial cells in vivo. In 
the enterohepatic circulation, bile salts are synthesized in the liver, travel to the gall bladder and are secreted into 
the descending part of the duodenum helping in the digestion of fats and other substances. Up to 95% of secreted 
bile salts are collected in the ileum and return back to the liver via the portal system. We hypothesize that the lack 

Figure 9.  Infection of ileum epithelial cells co-cultured with myofibroblasts with PEDVCV777. Twenty-
four hours post isolation, cells were refreshed with culture medium with/without FBS. Three days post co-
cultivation, cells were inoculated with PEDV CV777 Vero adapted strain containing 104.9 CCID50 or with fecal 
material containing 107 viral RNA copies/ml of wild type CV777. Twenty-four hours post inoculation, the 
infection was visualized by immunofluorescence staining (A) and the total number of infected epithelial cells 
in a 24 well plate was determined (B). Scale bar: 10 µm. Data are expressed as mean ± standard deviation of the 
results of 3 separate experiments.
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of bile salts in the lumen of the large intestines may be the reason why rotavirus cannot infect the epithelial cells 
of large intestines in vivo. In order to test this hypothesis, we collected bile from the porcine gall bladder and used 
it for the infection of rotavirus to primary ileum epithelial cells. The results show that the infectivity of rotavirus 
in ileum epithelial cells increased after treatment with bile (Supplementary Fig. S1), which is in accordance with 
the results that bile/bile acids are essential for porcine enteric calicivirus, hepatitis C virus and human norovirus 
infection in cells22,45,46.

Porcine epidemic diarrhea virus and transmissible gastroenteritis virus primarily replicate in the villous 
enterocytes of the small intestine. Porcine aminopeptidase N (pAPN), one of the type II cell surface metallo-
proteases, was reported to be a cellular receptor for both PEDV and TGEV47–49. Although these two viruses bear 
similarities in structure and disease, they are clearly distinct. In vitro, PEDV does not grow in continuous cell 
cultures which are permissive to TGEV. Therefore, it is of interest to investigate the susceptibility of the target 
cell, primary porcine enterocytes, to both PEDV and TGEV. Interestingly, we found that TGEV Purdue can infect 
both ileum and colon epithelial cells, whereas the virulent Miller strain only infects ileum epithelial cells and that 
the infectivity of the Purdue strain is much higher than the Miller strain in ileum epithelial cells. The Purdue 
and Miller strains are two virulent American TGEV strains, which originally caused 100% mortality of less than 
2-weeks-old piglets due to the lytic infection of enterocytes. The Purdue strain used in this study has been pas-
saged 114 times in primary porcine kidney cells and then adapted to grow in ST cells by one more passage50. A 
nucleotide mutation (T to G at nucleotide position 1753) of the Purdue S protein, which causes a serine (S) to 
alanine (A) mutation at aa 585 was reported18. This mutation is present in the domain of the S protein encoded by 
nucleotide 1518–2184 which is used for the cell receptor pAPN recognition51. This mutation may make the virus 
more suitable to grow in pAPN negative cultures/primary porcine kidney cells due to the recognition of other cell 
receptors. It may also be responsible for the growth of the Purdue strain in primary porcine colon epithelial cells 
and porcine myofibroblasts which are both negative for pAPN (Supplementary Fig. S2). Due to the absence of 
pAPN, the Miller strain cannot infect the primary colon epithelial cells. PEDV CV777 strain has been adapted to 
grow in the APN negative Vero cells by several blind passages and has been widely used for PEDV research. We 
found that primary ileum epithelial cells were more susceptible to the CV777 Vero adapted strain when the cells 
were grown in absence of FBS and the CV777 fecal suspension only infected the cells which were cultured with-
out FBS. FBS is usually added in culture medium for cell growth because it contains various biological factors. 
But its compositional complexity also causes a lot of side-effects, such as the inhibition of cell differentiation and 
virus replication. FBS may inhibit viral replication by blocking cellular proteins, as shown for another nidovirus 
porcine reproductive and respiratory syndrome virus (PRRSV)52. CV777 strain shows a lower infectivity in ileum 
epithelial cells cultured with FBS suggesting that FBS contains factors that interfere with PEDV infection or that 
without FBS the epithelial cells could differentiate better which makes them more susceptible to PEDV infection. 
The susceptibility of primary ileum epithelial cells to a PEDV fecal suspension represents a big step for further 
investigating PEDV field isolates.

In this study, the primary epithelial cells were susceptible to rota- and coronaviruses, however the infection 
efficiency was relatively low. This might be caused by the antiviral response of interferons, especially type III IFNs 
(IFN-λ). Interferons belong to the class of cytokines, which are made and released by host cells to trigger protec-
tive defenses to several pathogens, such as viruses, bacteria and parasites. Intestinal epithelial cells abundantly 
produce type III IFNs and elicit antiviral defenses in response to viral infections. Zhang and colleagues demon-
strated that IFN-λ possesses a strong antiviral effect on PEDV replication in the porcine intestinal epithelial cell 
line IPEC-DQ, a subclone obtained from the nontransformed IPEC-J2 cells by limited serial dilutions53. A similar 
strong IFN-λ might have been rapidly induced in the currently described co-cultures. Furthermore, rotavirus, 
PEDV and TGEV infect mature villous epithelial cells. In our co-culture system, not only the mature villous 
epithelial cells were cultured but likely also the less differentiated intestinal crypt epithelial cells. These undif-
ferentiated crypt epithelial cells might cause the low infection efficiency. In future work, efforts will be made to 
stimulate the differentiation of primary epithelial cells and control the IFN antiviral response in order to increase 
the infection efficiency.

In conclusion, porcine enterocyte/myofibroblast co-cultures were successfully established in the present study, 
demonstrating that myofibroblasts are necessary for small and large intestinal epithelial cell attachment, prolifer-
ation and differentiation in vitro. Primary enterocytes were susceptible to both cell line adapted and non-adapted 
rota-and coronaviruses. This co-cultivation system will be a great assett in future research on rota-, coronavirus 
and other enteric viruses.

Materials and Methods
Ethical statement.  Euthanizing piglets was done in agreement with the European legislation on ani-
mal experiments. All experimental procedures were approved by the Local Ethical Committee of the Faculty 
of Veterinary Medicine, Ghent University, and all methods were carried out in accordance with the approved 
guidelines.

Piglets and virus samples.  Healthy conventional 3-day-old suckling piglets were purchased from a con-
ventional pig farm. Using tissues of euthanized animals was in accordance of the requirements of the Local 
Ethical Committee of the Faculty of Veterinary Medicine. The piglets were euthanized by intravenous injection of 
20% sodium Pentobarbital (1 ml/1.5 kg, Kela Laboratories, Hoogstraten, Belgium). Rotavirus RVA/Pig-tc/BEL/
RV277/1977/G1P[7] strain grown on MA104 cells, TGEV Purdue and Miller strain grown on ST cells and PEDV 
CV777 strain grown on Vero cells were used in this study. In addition, four diarrheic fecal suspensions containing 
rotavirus of suckling pigs less than 2 weeks old (Table 1) and PEDV CV777 fecal suspension from an experimen-
tally inoculated 3-day-old sucking piglet were also included. Twenty percent fecal suspensions were prepared in 
phosphate buffered saline (PBS) containing 1000 U/ml penicillin (Continental Pharma, Puurs, Belgium), 1 mg/ml 
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streptomycin (Certa, Braine l’Alleud, Belgium), 1 mg/ml gentamicin (Gibco BRL, Merelbeke, Belgium) and 0.01% 
v/v fungizone (Bristol-Myers Squibb, Braine l’Alleud, Belgium)7.

Establishment of porcine intestinal subepithelial myofibroblasts.  The ileum was collected from a 
euthanized 3-day-old piglet and brought in ice-cold Dulbecco’s Modified Eagle Medium (DMEM; Gibco BRL, 
Merelbeke, Belgium), containing 100 U/ml penicillin, 0.1 mg/ml streptomycin, 0.1 mg/ml gentamycin (flushing 
medium) and 10% fetal bovine serum (FBS; Gibco BRL). Subsequently, the intestine was cut into 6–8 cm long 
segments and turned inside-out, mucosal side facing outwards. Intestinal contents were removed by one washing 
with ice-cold flushing medium containing 10% FBS and two washings with flushing medium without FBS. The 
intestinal segments were incubated in PBS containing 1 mM EDTA and shaken at 150 rpm/min for 30 min at 
37 °C. The EDTA suspension was removed and this EDTA incubation step was repeated 3 times. Next, intestinal 
segments were incubated in DMEM containing dispase II (1.2 mg/ml, Sigma, St. Louis, MO, USA) and collagenase 
I (0.4 mg/ml, Invitrogen, Paisley, UK) for 30 min at 37 °C. Subsequently, the digested mucosa was gently scraped 
with a sterile scalpel blade, scrapings were collected and incubated in DMEM containing dispase II (1.2 mg/
ml) for 10 min whilst pipetting. After centrifugation for 4 min at 140 × g and 4 °C, the pellet was resuspended 
in DMEM containing 2% D-sorbitol (Sigma) and 2.5% FBS, and centrifuged at 50 × g for 4 min. The pellet was 
resuspended in DMEM/F-12 (Gibco BRL) culture medium supplemented with 100 U/ml penicillin, 0.1 mg/ml  
streptomycin, 2% FBS, and 1% non-essential amino acids (Gibco BRL) and incubated at 37 °C and 5% CO2. 
Culture medium was refreshed on day 2, afterwards medium was changed every 3 days. Morphology of the cells 
was evaluated daily by light microscopy (Olympus). Once myofibroblasts (cobblestone-like clusters) grew into big 
clusters (≈200 cells), they were marked and other cells (e.g. epithelial cells, fibroblasts) were removed by scrap-
ing. Then the cobblestone-like clusters were detached by trypsinization with 5 μg/ml trypsin-0.01% EDTA, and 
sub-cultured in a 24-well plate (split ratio 1:2) with culture medium containing 10% FBS and evaluated daily for 
cobblestone-like features by light microscopy. Subsequently, the cobblestone-like cells were digested by trypsini-
zation and further expanded in flasks to generate a long-term semi-continuous culture.

Characterization of isolated myofibroblasts.  To characterize the obtained primary cells, immuno-
fluorescence stainings were performed to visualize cytokeratin, vimentin, α-smooth muscle actin, fibronectin, 
desmin and sucrase-isomaltase. A third passage of cells was fixed with 4% paraformaldehyde for 10 min at room 
temperature (RT) followed by permeabilization with 0.1% Triton X-100 for 5 min at RT. The cells were respectively 
incubated with mouse monoclonal anti-human cytokeratin antibodies (Dako, Denmark A/S), mouse monoclonal 
anti-human vimentin antibodies (Bio-Rad), mouse monoclonal anti-human α-smooth muscle actin antibod-
ies (Dako), mouse monoclonal anti-human desmin antibodies (Dako) sheep polyclonal anti-human fibronec-
tin antibodies (Bio-Rad) or mouse monoclonal anti-human sucrase-isomaltase (Santa Cruz) for 1 h at 37 °C. 
Afterwards, cells were washed and incubated with goat anti-mouse-IgG FITC labeled antibodies (Molecular 
Probes) or rabbit anti-sheep-IgG FITC labeled antibodies (Molecular Probes) for 1 h at 37 °C. Nuclei were stained 
with Hoechst 33342 (Molecular Probes) for 10 min at RT. The slides were mounted using glycerin solution with 
2.5% 1,4-diazabicyclo[2.2.2]octane (Janssen Chimica, Beerse, Belgium) and analyzed using fluorescence micros-
copy (DM B fluorescence microscope, Leica Microsystems GmbH, Heidelberg, Germany).

Isolation of primary porcine enterocytes using myofibroblasts as supporting cells.  Preparation 
of supporting cells.  Two days before enterocyte isolation, myofibroblasts were seeded in 24-well plates at a den-
sity of 60000 cells/ml in DMEM/F-12 culture medium containing 100 U/ml penicillin, 0.1 mg/ml streptomycin, 
and 10% FBS, and 1% non-essential amino acids and cultured at 37 °C and 5% CO2. Monolayers of myofibroblasts 
were used as support layer for enterocytes growth and differentiation.

Preparation of conditioned medium collected from myofibroblasts.  When myofibroblasts grew to 80% confluency, 
their medium was refreshed by DMEM/F-12 culture medium. Next, the refreshed medium was collected after 
24 h, centrifuged at 2000 × g for 10 min and the supernatant was collected and used as conditioned medium. The 
conditioned medium was stored at −70 °C until later use.

Isolation of porcine enterocytes.  After euthanasia, around 10 cm long segments of ileum and colon were removed 
from a piglet. The intestinal segments were turned inside-out, mucosal side facing outwards. The intestinal con-
tents were removed by one washing with ice-cold flushing medium with 10% FBS and two washings with ice-cold 
flushing medium without FBS. In order to fully expand the contact area of intestinal mucosa layer to digestion 
enzymes, one side of the intestinal piece was closed with a surgical clamp and the lumen was filled with warm 
Ca2+- and Mg2+-enriched PBS containing penicillin and streptomycin. Then, the other side was also closed with 
a surgical clamp. The intestinal mucosa was digested in DMEM containing dispase II (1.2 mg/ml) and colla-
genase I (0.4 mg/ml) for 20 min at 37 °C. Then, the PBS was released from the lumen by removing one clamp. 

Sample G/P genotype
RVA qPCR 
load*

RVC qPCR 
load

RVA/Pig-wt/BEL/14R133/2014/G5P[13] G5P[13] 9.21 Negative

RVA/Pig-wt/BEL/14R160/2014/G5P[7] G5P[7] 10.63 Negative

RVA/Pig-wt/BEL/14R163/2014/G9P[23] G9P[23] 10.63 Negative

RVA/Pig-wt/BEL/14R165/2014/G4P[6] G4P[6] 9.27 Negative

Table 1.  RT-qPCR diagnosis of rotavirus fecal suspensions7. *Is RT-qPCR titer: log10 copies/g faeces.
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The mucosa was gently scraped with a sterile scalpel blade. Afterwards, the intestinal lumen was filled again with 
PBS and the mucosa was digested in DMEM containing dispase II (1.2 mg/ml) and collagenase I (0.4 mg/ml)  
again for another 20 min (ileum) or 40 min (colon) at 37 °C. Subsequently, the digested mucosa was deeply 
scraped with a sterile scalpel blade. The scrapings were incubated in DMEM containing dispase II (1.2 mg/ml) 
for 10 min whilst pipetting. After centrifugation (140 × g, 4 min at 4 °C) the pellet was resuspended in DMEM 
containing 2% D-sorbitol and 2.5% FBS and centrifuged at 50 × g for 4 min at 4 °C to separate single stromal 
cells. This sorbitol process was repeated at least 5 times. Afterwards, the pellet was resuspended in DMEM 
supplemented with antibiotics and filtered using a 100 μm cell strainer (Falcon). After centrifugation (338 × g, 
10 min), the pellet was finally resuspended in DMEM/F12 supplemented with 100 U/ml penicillin, 0.1 mg/ml 
streptomycin, 0.1 mg/ml gentamycin, 10% FBS, 0.01% fungizone, 10 ng/ml epidermal growth factor (Sigma), 1% 
insulin-transferrin-selenium-ethanolamine (Gibco BRL) and 1% non-essential amino acids and seeded in 6-well 
plates in order to let the mesenchymal cells attach and separate enterocytes from mesenchymal cells. After 2 h 
incubation at 37 °C and 5% CO2, the non-adherent cell clusters in the 6-well plates were collected and reseeded 
on top of the monolayer of myofibroblasts. To confirm the support effect of myofibroblasts, cell clusters were also 
seeded on porcine collagen type I/III (Gentaur, Kampenhout) coated plates and cultured with/without 20% con-
ditioned medium. The cells were further incubated at 37 °C and 5% CO2 and the medium was refreshed every 2 
days. Morphological features of primary enterocytes were evaluated by light microscopy (Olympus).

Characterization of primary enterocytes co-cultured with myofibroblasts.  To characterize the 
origin of enterocytes which were co-cultured with myofibroblasts, immunofluorescence staining was performed 
against cytokeratin and vimentin. Three days post isolation, co-cultured enterocytes grown on coverslips were 
fixed with 4% paraformaldehyde for 10 min at RT followed by permeabilization with 0.1% Triton X-100 for 
5 min at RT. The cells were incubated with mouse monoclonal anti-human cytokeratin or mouse monoclonal 
anti-human vimentin antibodies containing 10% goat serum for 1 h at 37 °C, followed by goat anti-mouse-IgG 
FITC labeled antibodies for 1 h at 37 °C. Nuclei were stained with Hoechst for 10 min at RT. The percentage of 
cytokeratin positive cells were analyzed by fluorescence microscopy (Leica Microsystems GmbH).

Distribution of epithelial cells and myofibroblasts in the intestine of a 3-day-old piglet.  
Immediately after euthanasia of a 3-day-old piglet, 8 mm square pieces of the ileum and colon were col-
lected. Tissues were embedded in Methocel (Fluka, Sigma) and 10 μm thick cryosections were made. 
Immunofluorescence staining with markers for epithelial cells and myofibroblasts were performed. In brief, 
cryosections of ileum and colon tissues were fixed with methanol for 20 min at −20 °C and then incubated 
with mouse monoclonal anti-human α-smooth muscle actin antibodies for 1 h at 37 °C, followed by goat 
anti-mouse-IgG FITC labeled antibodies for 1 h at 37 °C. Afterwards, the sections were incubated with rabbit 
polyclonal anti-bovine cytokeratin antibodies, followed by goat anti-rabbit-IgG Texas Red labelled antibodies 
for 1 h at 37 °C. After washing, nuclei were stained with Hoechst for 10 min at RT. The slides were analyzed by 
fluorescence microscopy.

Scanning electron microscopy.  In order to determine the differentiation status of intestinal epithelial 
cells, the presence of microvilli was assessed by scanning electron microscopy (SEM). The protocol for SEM was 
performed as described by Glorieux and colleagues54. Tissue samples (ileum and colon from 3-day-old piglet) 
and cell samples (porcine enterocytes 3 days post co-cultivation) were fixed in HEPES-buffered glutaric aldehyde 
for 24 hours. Then, the samples were treated with 1% osmiumtetroxide for 2 hours at RT, followed by ascending 
grades of alcohol dehydration. In order to avoid the water vaporization obstructing the electron beam and inter-
fering with image clarity, the dehydrated samples were transferred to a critical point drier (CPD, Bal-tec, Balzers, 
Liechtenstein) for complete drying. Finally, the dried samples were mounted on a metal stub and sputter-coated 
with platinum. The microvilli of all the samples were acquired with a JEOL JSM 5600 LV scanning electron micro-
scope (JEOL Ltd., Tokyo, Japan).

Susceptibility of co-cultured enterocytes to porcine rotavirus.  To evaluate the susceptibility of por-
cine primary enterocytes co-cultured with myofibroblasts to porcine rotavirus, a third passage of rotavirus RVA/
Pig-tc/BEL/RV277/1977/G1P[7] strain was used. Before inoculation, virus was pretreated with 5 μg/ml trypsin 
for 30 min at 37 °C to enhance virus infectivity. After three washes with DMEM, 3 days co-cultured cells were 
inoculated with 200 μl pretreated virus at a multiplicity of infection (m.o.i.) of 1. After 1 h inoculation at 37 °C and 
5% CO2, the inoculum was removed and cells were washed 3 times with warmed DMEM. The cells were further 
incubated with DMEM/F12 supplemented with 100 U/ml penicillin, 0.1 mg/ml streptomycin, 0.1 mg/ml gentam-
ycin, 10 ng/ml epidermal growth factor, 1% insulin-transferrin-selenium-ethanolamine, 1% non-essential amino 
acids and 1 μg/ml trypsin at 37 °C and 5% CO2. Twenty-four hours post inoculation, cells were fixed with 4% par-
aformaldehyde for 10 min and permeabilized with 0.1% Triton X-100 for 5 min at RT. Double-immunostainings 
against rotavirus antigens and cytokeratin were performed to specifically visualize the infected enterocytes. The 
cells were incubated with polyclonal guinea pig anti-monkey rotavirus SA-11 VP6 antibodies55 (kindly provided 
by John Patton), containing 10% negative goat serum for 1 h at 37 °C, followed by goat anti-guinea pig-IgG FITC 
labelled antibodies (Southern Biotech) for 1 h at 37 °C. Afterwards, cells were incubated 1 h at 37 °C with mono-
clonal anti-human cytokeratin antibodies, followed by 1 h at 37 °C with goat anti-mouse-IgG Texas Red labelled 
antibodies (Molecular Probes). Nuclei were stained with Hoechst for 10 min at RT. The infected enterocytes were 
visualized by fluorescence microscopy.
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Replication of MA104 grown rotavirus in co-cultured enterocytes.  Three days post seeding, pri-
mary enterocytes co-cultured with myofibroblasts were inoculated with 200 μl rotavirus RVA/pig-tc/BEL/
RV277/1977/G1P[7] at an m.o.i. of 1. After 1 h of inoculation (37 °C and 5% CO2), cells were washed 3 times with 
warm DMEM and further incubated in serum-free DMEM/F12 culture medium containing 1 μg/ml trypsin. 
At different time points (0, 3, 6, 9, 12 and 24 h) post inoculation, cells were fixed with 4% paraformaldehyde for 
10 min and permeabilized with 0.1% Triton X-100 for 5 min at RT. Double-immunostainings were performed as 
described above and the percentage of infected enterocytes was counted by fluorescence microscopy. In addition, 
the supernatant and cells were collected at different time points (0, 3, 6, 9, 12 and 24 h) post inoculation for virus 
titration and qPCR quantification. Cell culture supernatant was collected and centrifuged for 5 min at 3756 × g. 
Supernatant was collected (extracellular virus) and the pellet was collected together with cells that were scraped 
with serum free DMEM/F12 culture medium (intracellular virus). The cells were lysed by 3 freeze-thaw cycles 
to release virus particles. The virus titer was determined using virus titration and RT-qPCR. Titration of intra- 
and extracellular virus was performed. Monolayers of MA104 cells growing in 96-well plates were inoculated 
with 10-fold dilution of supernatant and cells (10−1–10−8). Five days after inoculation, the cytopathogenic effect 
(CPE) was visualized using a light microscope and the cell culture infective dose (CCID50) was calculated using 
the formula of Reed and Muench56. For the determination of viral RNA copies, intra- and extracellular virus 
were treated with a cocktail of Benzonase (Novagen, Madison, USA) and homemade buffer (1 M Tris, 100 mM 
CaCl2 and 30 mM MgCl2, pH 8) at 37 °C for 2 h. After the EDTA treatment for Benzonase inactivation, total 
RNA was extracted using QIAamp Cador Pathogen Mini Kit (Qiagen) according to the manufacture’s instruc-
tion without addition of carrier RNA to the lysis buffer. RNA was denatured at 95 °C for 2 min and a 20 μl PCR 
mixture was used per reaction containing 10 μl precision OneStepTM RT-qPCR Mastermix with SYBR Green and 
ROX, 0.8 μl (400 nM) forward primer (5′-TTTAAAAGCGCTACAGTGATG-3′), 0.1 μl (50 nM) reverse primer 
(5′-CGTTGCTTGAAGGTCGTGATT-3′) and 3 μl RNA or diluted standard RNA8. Reactions were performed of 
10 min at 55 °C for a reverse transcription step and 2 min at 95 °C for an enzyme activation step which were fol-
lowed by 40 cycles, 95 °C for 10 sec and 60 °C for 60 sec. Afterwards, a melt curve analysis was performed to check 
the specificity of the amplified products. All analyses were carried out in a StepOnePlus real-time PCR system 
(Applied Biosystems, Life Technologies Corporation, Carlsbad, CA, USA).

Susceptibility of co-cultured enterocytes to different rotavirus genotypes present in fecal sus-
pension of diarrheic pigs.  Four fecal suspensions containing different genotypes of rotavirus collected 
from less than 2-week-old diarrheic suckling pigs were used to determine the susceptibility of porcine primary 
enterocytes to rotavirus field strains. These samples were collected at a private diagnostic laboratory for etiology 
diagnosis as described before7. Three days after co-cultivation, enterocytes were inoculated with these four fecal 
suspensions at 107 viral RNA copies/ml using the method described above. The supernatant was harvested at 0 h 
and 24 h post inoculation. RT-qPCR was performed to determine the increased number of viral RNA copies.

Susceptibility of co-cultured enterocytes to transmissible gastroenteritis virus.  Three days post seed-
ing, monolayers of primary enterocytes co-cultured with myofibroblasts were inoculated with 200 μl TGEV strains 
(Miller and Purdue) at an m.o.i. of 1. After 1 h inoculation at 37 °C and 5% CO2, cells were washed 3 times with warm 
DMEM. Serum free DMEM/F12 supplemented with 100 U/ml penicillin, 0.1 mg/ml streptomycin, 0.1 mg/ml gentam-
ycin, 10 ng/ml epidermal growth factor, 1% insulin-transferrin-selenium-ethanolamine and 1% non-essential amino 
acids was added for further incubation. At different time points (0, 3, 6, 9, 12 and 24 h) post inoculation, cells were 
fixed with 4% paraformaldehyde for 10 min and the supernatant was collected. Double-immunostainings against both 
TGEV antigens and cytokeratin were performed to specifically visualize the infected enterocytes. The cells were perme-
abilized with 0.1% Triton X-100 for 5 min at RT and incubated with swine polyclonal anti TGEV antibodies containing 
10% negative goat serum for 1 h at 37 °C, followed by goat anti-swine-IgG FITC labelled antibodies for 1 h at 37 °C. 
Afterwards, cells were incubated 1 h at 37 °C with mouse monoclonal anti-human cytokeratin antibodies, followed by 
1 h at 37 °C with goat anti-mouse-IgG Texas Red labelled antibodies. Nuclei were stained with Hoechst for 10 min at 
RT. The percentage of infected enterocytes was determined by fluorescence microscopy. Virus titration of supernatant 
was performed using ST cells. Monolayers of ST cells were inoculated with 10-fold dilutions (100–10−7) of supernatant. 
Five days after inoculation, cytopathogenic effect (CPE) was visualized and cell culture infective dose (CCID50) was 
calculated using the formula of Reed and Muench.

Susceptibility of primary ileum epithelial cells to porcine epidemic diarrhea virus.  Twenty-four 
hours post seeding, ileum epithelial cells were refreshed with culture medium with/without 10% FBS. Three days 
post cultivation, monolayers of primary ileum epithelial cells cultured with/without FCS were inoculated with 
200 μl PEDV CV777 Vero adapted strain at 105.6 CCID50/ml or 107 viral RNA copies/ml of fecal suspension with 
10 µg/ml trypsin. After 1 h inoculation at 37 °C and 5% CO2, cells were washed 3 times with warm DMEM and 
serum free DMEM/F12 supplemented with 100 U/ml penicillin, 0.1 mg/ml streptomycin, 0.1 mg/ml gentamycin, 
10 ng/ml epidermal growth factor, 1% insulin-transferrin-selenium-ethanolamine and 1% non-essential amino 
acids was added for further incubation. Twenty-four hours post inoculation, cells were fixed with 4% paraform-
aldehyde for 10 min and permeabilized with 0.1% Triton X-100 for 5 min at RT. The cells were incubated with 
mouse monoclonal anti-pig PEDV antibodies containing 10% normal goat serum, followed by 1 h at 37 °C with 
goat anti-mouse-IgG FITC labelled antibodies. Nuclei were stained with Hoechst for 10 min at RT and the infec-
tion was analyzed by fluorescence microscopy.

Data Availability Statement
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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