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Abstract

New discoveries into the functional role of primary cilia are on the rise. In little more than 20 

years, research has shown the once vestigial organelle is a signaling powerhouse involved in a vast 

number of essential cellular processes. In the same decade that interest in primary cilia was 

burgeoning, nitric oxide won molecule of the year and a Nobel prize for its role as a near 

ubiquitous signaling molecule. Although primary cilia and nitric oxide are both involved in 

signaling, a direct relationship has not been investigated; however, after a quick review of the 

literature, parallels between their functions can be drawn. This review aims to suggest a possible 

interplay between primary cilia and nitric oxide signaling especially in the areas of vascular tissue 

homeostasis and cellular proliferation.
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1. Introduction

Understanding the roles of primary cilia in the human body is still in its infancy; however, 

the last several decades have produced a wealth of new information about the formerly 

functionless organelle. Cilia can be found in almost every cell of the body, often having a 

specialized sensory function [1, 2]. When cilia malfunction, severe and multisystemic 

abnormalities known as ciliopathies occur. The list of ciliopathies is ever expanding as 

mutations in over 40 genes have been discovered to alter ciliary structure or function with 

over 1,000 polypeptides in the ciliary proteome yet to be fully investigated [3].

Cilia gained notoriety through their involvement in the pathogenesis of Polycystic Kidney 

Disease (PKD) as fluid mechanosensors in the kidney. Outside of renal abnormalities, the 
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cardiovascular system is also greatly affected by the disease leading researchers to 

investigate the role of cilia in the fluid filled vascular system. Nauli et al. postulated that 

primary cilia activation in vascular endothelial cells would lead to a similar calcium influx as 

observed in kidney tubule epithelia; the group demonstrated that vascular cilia did play a 

similar role in sensing fluid shear stress and the corresponding increase in calcium levels 

correlated with nitric oxide (NO) release, thus contributing to blood pressure control. 

Evidence from cilia mutant cell lines showing little to no calcium influx and no nitric oxide 

release when subjected to shear stress was also provided in support of this hypothesis [4–6]. 

Nitric oxide is a ubiquitous signaling molecule with essential functions in almost every 

organ system [7–9]. A number of pathologies are associated with aberrant NO production or 

bioavailability due to abnormal signaling cascades. This will occasionally coincide with 

abnormal ciliaregulated signaling pathways. With a defined connection between cilia and 

NO in the vasculature and an overlap between signaling pathways in other pathologies, the 

obvious question becomes “is there a connection between primary cilia and NO?”However, 

little research is available on the subject and a direct link between NO-related signaling and 

cilia dysfunction has yet to be demonstrated [10, 11]. Thus, this review aims to suggest a 

critical and complex link between cilia and nitric oxide that extends beyond vasodilation.

2. Primary cilia

Primary cilia are non-motile single cellular extensions that can be found on a majority of 

mammalian cells including but not limited to endothelia, epithelia, and neurons[12–15]. The 

cytoskeleton of primary cilia, known as the axoneme, consists of 9 concentric doublet 

microtubules (9+0 [16]. Stemming from the basal body, the cilium is constructed using bi-

directional intraflagellar transport (IFT) molecules. The axoneme acts as a scaffold for 

various protein complexes, such as kinesins and dyneins, that facilitate antero- and 

retrograde trafficking of cargo proteins along the ciliary shaft [17]. The ciliary membrane is 

continuous with the cellular membrane; however, it has a distinct composition of receptors 

and integral proteins due to the ciliary transition zone. The latter is a region between the 

basal body and the axoneme responsible for the compartmentalization of the cilia while also 

providing docking sites to enable the transport of molecules in and out of the cilioplasm 

(Figure 1) [18–20]. There are several proposed mechanisms for the trafficking of molecules 

to the cilia. Briefly, transmembrane proteins are often associated with a specific protein 

sequence that targets ciliary localization, one example being the N-terminal RVxP sequence 

on polycystin-2 [21, 22]. Active transport of vesicles from the golgi apparatus to specific 

docking sites at the transition zone is another proposed mechanism [23]. Similar to how 

importins and exportins function at nuclear pores, the vesicles are believed to interact with 

exocyst complexes and undergo SNARE (Soluble N-ethylmaleimide-sensitive factor (NSF) 

attachment protein receptor) mediated diffusion across the barrier separating the cilioplasm 

from the cellular cytoplasm [24]. The BBSome, an octameric protein complex and a 

component of the basal body and is involved in trafficking transmembrane proteins to the 

ciliary membrane through a combination of the mechanisms listed above. BBSomes are 

capable of recognizing ciliary targeting sequences and interacting with several molecules 

upstream of Rab8 activation. Although they are not required for ciliogenesis, the failure of 
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BBSomes to deliver specific proteins to the cilia can lead to loss of ciliary function [22, 25–

27].

Primary cilia function as sensory hubs, housing a variety of mechanosensory proteins, 

chemosensory receptors, and ion channels to translate the extracellular stimuli into an 

intracellular biochemical signal triggering a cellular response. Due to their extensive sensory 

role, much research has been dedicated to understanding how cilia organize signaling 

cascades. Currently, there are two main models: the compartment model and the scaffold 

model. The compartment model suggests that the ciliary ultrastructure itself is essential for 

proper signaling whereas the scaffold model suggests that after stimuli, the diffusion of 

signaling molecules and secondary messengers is not sufficient on its own, thus requiring 

IFT molecules to scaffold signaling components or import specific transduction 

intermediates into the cilia (28 or 29). A more detailed explanation of these topics can be 

found in (28 or29 could be up through 37) as the complex mechanisms of these models are 

beyond the scope of this review, thus we will only focus on the relevant signaling cascades 

the lead to NO production. The inferred interplay between primary cilia and nitric oxide will 

mainly be discussed in the context of vasodilation, wound healing, dopamine signaling, and 

cellular proliferation.

3. Nitric Oxide

Nitric oxide is a gaseous signaling molecule involved in a variety of cellular pathways 

contributing to the normal functions in a majority of organ systems [38]. It is a highly 

reactive and readily diffuses across cellular membranes making it an ideal paracrine 

signaling molecule. NO is mainly synthesized from L-arginine, oxygen, and NADPH in a 

redox reaction catalyzed by nitric oxide synthase (NOS) [39]. Of the three NOS isoforms, 

endothelial NOS (eNOS or NOS3) and neuronal NOS (nNOS or NOS1) are constitutively 

expressed in cells and are calcium dependent. Cytokine inducible NOS (iNOS or NOS2) is 

expressed by macrophages and other pro-inflammatory cytokines as needed [11]. iNOS and 

nNOS are both soluble enzymes existing within the cytosol; whereas eNOS is largely 

membrane associated, specifically localizing to the plasma or the golgi body membranes. 

The unique cellular and subcellular distribution of NOS may contribute to its diverse 

functions throughout the body [40].

4. Cilia and NO interplay

4.1 Vasodilation

The majority of research on the connection between cilia and NO centers around the 

vasculature. Both primary cilia and NO have well defined independent roles within the 

vascular system. However, recent studies have suggested a direct relationship between the 

two. Vascular endothelial cells line the blood vessel wall and are in continuous contact with 

fluid shear stress generated by blood flow. It has long been established that endothelial cells 

are mechanotransducers of shear stress which triggers the biosynthesis of NO, aiding in the 

regulation of vascular tone as NO readily diffuses into the surrounding vascular smooth 

muscle cells producing vasorelaxation [41]. Although a number of mechanosensitive and 

stretch sensitive receptors can be found on the cell membrane, evidence has supported 
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primary cilia as the chief sensor in this pathway. Polycystin-1 (PC-1), a mechanosensory 

protein found dysfunctional in PKD, has been shown to localize to vascular endothelial 

primary cilia. In vitro studies investigating the role of PC-1 as a fluid shear mechanosensor, 

reported that in contrast to wildtype endothelial cells, PC-1 knockout cells did not produce 

an increase in cytosolic calcium or a corresponding NO flux in response to fluid shear stress. 

To demonstrate that the calcium and NO signals are induced in response to ciliary PC-1 

activation, the authors utilized Tg737orpk/orpk endothelial cells, which lack ciliary 

ultrastructure but have functional PC-1. Neither calcium nor NO signals could be observed 

at flow rates up to 50 dyne/cm2 [5]. This suggested that not only is PC-1 responsible for 

proper cilia mechanosensory function, but that it was the ciliary PC-1, specifically, that 

elicited NO production. Further studies by the same group showed that polycystin-2 (PC-2), 

a calcium permeable cation channel which forms a complex with PC-1, was also essential 

for mechanotransduction. PC-2 knockdown studies reported a reduction in calcium and NO 

flux under shear stress compared to control cells. This was confirmed in ex vivo studies 

where endothelial cells isolated from pkd2−/− mice arteries were unable to respond to fluid 

shear stress [4]. Taken together, these results indicate that both PC-1 and PC-2 are required 

for proper cilia mechanosensation and further support that the activation of the PC-1/PC-2 

complex initiates the signaling cascade necessary for calcium dependent NO biosynthesis. 

The authors propose that the increase in intracellular calcium is caused by an increase in 

intra-ciliary calcium, but others have suggested that calcium could be mobilized in both 

directions between the cilia and the cytosol [42–44]. The increase in intracellular calcium 

leads to the formation of the calcium/calmodulin complex which can directly activate 

constitutive NOSs, such as eNOS by binding to its target site on the enzyme [45]. Calcium/

calmodulin has also been shown to indirectly activate eNOS through activation of the 

AKT/PKB pathway which stimulates AMPK, a known activator of eNOS (Figure 2) [46]. 

Although eNOS activation is predominantly calcium dependent, some studies suggest a 

calcium independent pathway is also available, most notably through heat shock protein 90 

(HSP90) [47, 48]. Interestingly, HSP90 also localizes throughout the ciliary axoneme. 

HSP90 is a molecular chaperone but may also act as a signal transducer associated with 

eNOS in several systems, including the vasculature [48, 49]. Although HSP90 activation can 

increase eNOS activity in the presence of elevated calcium levels, it can also lead to more 

prominent eNOS activity at low calcium concentrations as HSP90 binds directly to eNOS 

and increases its affinity for calmodulin [50, 51].

4.2 Wound healing

Although most attention is given to endothelial primary cilia and NO with respect to 

vascular homeostasis, the interplay extends into the surrounding vascular smooth muscle cell 

(VSMC) layer. Research also indicates that all three isoforms of NOS may be present in 

VSMC depending on blood vessel type [52]. Under normal conditions, VSMC cilia extend 

toward the extracellular matrix. Interestingly, endothelial injury, such as a scratch wound, 

caused VSMC primary cilia migration to the wound edge where about 88% of the cilia 

observed where positioned with their long axis pointing toward the wound [53]. VSMC cilia 

have been shown to express polycystins as well as α3- and β1- integrins. When the integrin 

function was blocked, only about 30% of the cilia were positioned at the wound edge. This 

suggests that VSMC primary cilia may be involved in wound healing mediated by integrins. 
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To further support primary cilia role in wound healing, studies using deciliated VSMC 

reported slower wound healing when subjected to scratch-wounding than ciliated control 

cells [53]. As the cilia in the wounded area are directly exposed to fluid shear stress from the 

blood flow, this might lead to the activation of the mechanosensory ciliary polycystin 

complex and an increase in intracellular calcium. This latter in turn can initiate 

vasoconstriction in VSMC, thus isolating the wounded area in order for the platelets to 

initiate clot formation. Once calcium reaches a certain level, calcium/calmodulin complex 

forms leading to the activation of both eNOS and nNOS, initiating vasodilation and 

promoting the next phase of wound healing. In another study, platelet derived growth factor 

receptor alpha (PDGFRα), a tyrosine kinase with a significant role in proliferation, was 

found to localize to fibroblast primary cilia when growth is arrested. Ligand activation of 

PDGFRα is known to activate the AKT and MEK/ERK proliferative pathways, alltogether 

suggesting primary cilia may play a role in wound healing and tissue homeostasis [54]. As 

the tissue begins to repair, the clot must be dissolved in order to maintain blood flow, 

generally considered clot retraction and platelet inhibition. NO, along with being a potent 

vasodilator is also known to inhibit platelet aggregation, secretion, adhesion, and fibrinogen 

binding through activation of guanylyl cyclase and cGMP and the inhibition of thromboxane 

A2. This mechanism reduces platelet aggregation and platelet “stickiness” enabling the clot 

to dissolve and the wound healing to complete [55–57]. Taken all the above together, an 

interplay between primary cilia function and NO could be implicated in wound healing and 

repair.

4.3 Dopamine signaling

Hypertension in PKD patients in late stages of the disease is exacerbated by an increased 

kidney volume but hypertension can be observed in children and early stages of the disease 

long before renal function deteriorates. There is evidence to suggest and increase in 

sympathetic activation that occurs in these patients independent of kidney function. 

Dopamine, an endogenous neuronal hormone with action in the sympathetic nervous system, 

is known to be involved in the regulation of blood pressure. Abnormalities in dopamine 

signaling can contribute to hypertensive states in humans. Dopamine 1-like receptors, D1 

and D5, have both been found to localize to primary cilia [18, 58–60]. Currently, there are 

no pharmacological agents available that selectively target D1 or D5 but studies using agents 

selective for dopamine 1-like receptor subtypes have shown vasodilatory effects in 

peripheral arteries [61]. D5 is suggested to play both a chemosensory and mechanosensory 

role in primary cilia. Challenging endothelial ciliary knockout cells, pkd1−/− (no PC-1) and 

cilialess Tg737orpk/orpk with dopamine under static conditions resulted in a significantly less 

calcium influx than wildtype endothelial cells. This was attributed to smaller cilia in the 

knockout lines housing less D5 receptors in the cilia compared to the wildtype. Surprisingly, 

under flow conditions with dopamine, the mechanosensory function of the cilia knockout 

lines were restored compared to non-treated control knockouts. As calcium influxes in these 

cell lines are often associated with activation of eNOS, the results may imply a potential 

restoration of the lost vasodilatory responses caused by a failed ciliary induction of NO 

biosynthesis [58]. In addition, some evidence suggests that dopamine receptor 2 (D2) may 

also localize or be transported to the primary cilia [62]. Cerebral vasospasms were reversed 

when treated with dopamine; however, when haloperidol, a D2 selective antagonist, was 
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administered, the vasorelaxation response was prevented. Additionally, it was reported that 

there was a significant increase in eNOS and iNOS expression after administration of 

dopamine which was also blocked by haloperidol [63]. It is possible that D2 is transported to 

the primary cilia under certain conditions to help mediate the activity of NOS within cells. 

Further support for the role of ciliary dopamine receptors in mediating NO can be found in 

clinical trials involving Autosomal Dominant Polycystic Kidney Disease (ADPKD) patients. 

ADPKD patients suffer from severe extrarenal manifestations mainly affecting the 

cardiovascular system such as hypertension. This could be due in part to the inability of 

primary endothelial cilia to properly respond to alterations in blood pressure and fail to 

initiate NO biosynthesis. In this study, flow mediated dilation of normotensive ADPKD 

patients was compared to that of healthy adults. The results indicated that ADPKD patients 

had markedly less dilation during sustained flow increases and a total loss of NO release 

compared to controls. When patients were given a brachial infusion of 0.25 to 0.5 ug/kg/min 

of dopamine, the results showed an upward trend in flow mediated dilation in ADPKD 

patients and reported a statistically significant increase in dilatory response at the highest 

dose [64]. Thus, dopamine receptors may facilitate, to some extent, a connection between 

primary cilia, NO, and blood pressure regulation in ADPKD.

4.4 Cell proliferation

Not only do primary cilia provide a sensory hub, they also play a regulatory role in cell 

proliferation. The ciliary structure extends from the basal body which is comprised of the 

joined mother and daughter centrioles [65, 66]. Cilia are observed in G0 and G1 stages in 

the cell cycle and are reabsorbed prior to mitotic entry. In cancerous tissues, cilia are not 

present on most proliferative cells suggesting that although cilia may not be directly 

involved in cell division, they do play a role in the entry and exit of mitosis [67–70]. 

Interestingly, NO has been proposed as a modulator of cellular proliferation as well and may 

have a complementary role alongside primary cilia. In most cases, NO has been shown to 

arrest the cell cycle preventing the transition from G1 to S phase. This inhibition of cell 

proliferation occurs in a dose dependent mechanism, the adequate concentrations of NO are 

caused by an increase in available L-arginine which is mediated by several cytokines. 

Interestingly, PC-1 has been shown to mediate the JAK/STAT pathway in several ways. Full 

length PC-1 is able to activate STAT3; when the cytosolic tail of PC-1 is cleaved upon 

cessation of luminal flow, it can coactivate STAT-1, −3, and −6 as well as JAK2. The PC-1 

tail sensitizes the cells to cytokines and growth factor signaling exaggerating the cellular 

response and potentially leading to an increase in L-arginine thus arresting cell division [71, 

72].

5. Conclusion

Both primary cilia and nitric oxide, independently, are essential for normal tissue functions. 

However, their functional roles and cellular pathways often parallel or complement one 

another. Although this review only touched on a small portion of possible connections, there 

is scattered literary evidence to suggest a linkage between the two in many more organ 

systems and cellular signaling pathways. Unfortunately, any research into the direct linkage 

between primary cilia and nitric oxide is far and few between. hence the aim of this review 
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was to present a gap in our knowledge and initiate a discussion leading to a closer 

examination of the topics presented. Elucidating the connection between cilia and nitric 

oxide signaling would provide new insight into the cellular mechanisms that govern our 

bodies and thus the potential to better understand disease pathologies and provide new 

targets for therapies.
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Figure 1: Primary cilia structure.
The axoneme of primary cilia is mainly anchored from the basal body and enclosed within 

the ciliary membrane which is continuous with the plasma membrane. The basal body is 

composed of the mother and the daughter centrioles and some transition fibers to anchor the 

basal body to the cell membrane. The ciliary membrane hosts specific membrane and protein 

receptors that facilitate proper cilia signaling (Left panel). Primary cilia found on the surface 

of vascular endothelial cells can be identified by a simple immunofluorescence technique 

utilizing antibody against acetylated α-tubulin (green) to label primary cilia and pericentrin 

(red) to label centriole or basal body. The nucleus is counterstained with DAPI to label DNA 

(Right panel). Left panel is adopted from [73].
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Figure 2. Primary cilia activation by fluid shear stress and NO signaling in vascular endothelia.
The illustration above depicts the bending of primary cilia during fluid shear stress and the 

consequent biochemical production and release of nitric oxide (NO) which is dependent on 

the activation of endothelial primary cilia in the vasculature (Left panel). The bending of 

cilia by fluid-shear stress activates the mechanosensory polycystins complex and initiates 

biochemical synthesis and the release of NO. This biochemical cascade involves 

extracellular calcium influx (Ca2+), followed by the activation of various calcium-dependent 

proteins, including calmodulin (CaM), protein kinase C (PKC) and Akt/PKB (Right panel). 

Figure is adopted from [73].
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