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Abstract

Background: Large sample GWAS is needed to identify genetic factors associated with 

depression. This study used genome-wide genotypic and phenotypic data from the COPDGene 

study to identify genetic risk factors for depression.

Methods: Data were from 9,716 COPDGene subjects with ≥ 10 pack-year history. Depression 

was defined as antidepressant use and/or a HADS depression subscale score ≥ 8. Non-Hispanic 

White (6,576) and African-American (3,140) subsets were analyzed. A GWAS pipeline identified 

SNPs associated with depression in each group. Network analysis software analyzed gene 

interactions through common biological pathways, genetic interactions, and tissue-specific gene 

expression.

Results: The mean age was 59.4 years (SD 9.0) with 46.5% female subjects. Depression was in 

24.7% of the NHW group (1,622) and 12.5% of the AA group (391). No SNPs had genome-wide 

significance. One of the top SNPs, rs12036147 (p=1.28 × 10−6), is near CHRM3. Another SNP 

was near MDGA2 (rs17118176, p=3.52 × 10−6). Top genes formed networks for synaptic 

transmission with statistically significant level of more co-expression in brain than other tissues, 

particularly in the basal ganglia (p=1.00 × 10−4).

Limitations: Limitations included a depression definition based on antidepressant use and a 

limited HADS score subgroup, which could increase false negatives in depressed patients not on 

antidepressants. Antidepressants used for smoking cessation in non-depressed patients could lead 

to false positives.

Conclusions: Systems biology analysis identified statistically significant pathways whereby 

multiple genes influence depression. The gene set pathway analysis and COPDGene data can help 

investigate depression in future studies.

Keywords

major depressive disorder; systems biology; chronic obstructive pulmonary disease; smokers; 
genome-wide association study

Introduction

Major depressive disorder (MDD) is the most common psychiatric disorder in the United 

States, with an estimated prevalence of 17% (Kessler et al., 2005). Depression is likely a 

heterogenous disorder with multiple synergetic effects from many genetic variants; however, 

a single genetic susceptibility factor with a large effect size has not been found. Though twin 

studies such as the one led by Kendler et al. (2006) support a genetic predisposition 

influencing depression, until recently, depression genome-wide association studies (GWAS) 
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have not shown genome-wide significance in almost all studies reported (Flint and Kendler, 

2014).

The difficulty in detecting genome-wide significance was likely due to the small effect sizes 

of specific genetic variants and relatively small sample sizes until more recent larger meta-

analyses. One of the largest single GWAS of depression from a cohort of 5,303 Han Chinese 

women and 5,337 controls reported two genome-wide significant loci (CONVERGE 

Consortium, 2015). A recent meta-analysis of 75,607 subjects of European descent and 

231,747 controls identified 15 loci (Hyde et al., 2016). Most recently, the Psychiatric 

Genome Consortium MDD group reported 44 genome-wide significant loci using 130,664 

cases and 330,570 controls (Wray and Sullivan, 2017). To detect such small effect sizes at 

the genome-wide significance level, it is vital to include large samples; however, collecting 

both genotypic and phenotypic data in a single study is still very difficult. To overcome such 

challenges, the present study used a rare opportunity to analyze GWAS and phenotypic data 

from over 9,000 participants collected through the single largest genetic study among 

smokers with and without COPD—the Genetic Epidemiology of COPD (COPDGene) study 

(Regan et al., 2010).

The current analysis focused on identifying genetic risk factors associated with depressive 

symptoms among smokers (≥ 10 pack-year smoking history). Of note, although the 

COPDGene cohort is enriched with COPD patients, not all subjects necessarily had COPD. 

Thus, a GWAS of the COPDGene sample in the current study investigated depressive 

symptoms among current and former smokers with and without COPD.

Depression is highly relevant to those with COPD, due to the high prevalence of depression 

as reported by van Ede et al. (1999), van Manen et al. (2002), and Kunik et al. (2005), and 

the association of depression with increased mortality (Almagro et al., 2002; de Voogd et al., 

2009; Fan et al., 2007; Gudmundsson et al., 2012; Ng et al., 2007; Papaioannou et al., 2013; 

Stage et al., 2005; Yohannes et al., 2005). Depression is also associated with smoking, 

although the directionality of the relationship is still debated (Fluharty et al., 2017). Studies 

have shown that the prevalence of depression or depressive symptoms in COPD patients 

ranges from 30–60% (Kunik et al., 2005; van Ede et al., 1999; van Manen et al., 2002). 

Wide variation in the prevalence estimates is likely due to different definitions of depression 

and depressive symptoms. Furthermore, mortality among COPD patients with depression is 

higher than those without depression. Although there is variation in the odds ratio estimates, 

ranging from 0.30 to 3.60, the majority of the odds ratios suggest increased mortality in 

COPD patients with depression compared to those without depression (Almagro et al., 2002; 

de Voogd et al., 2009; Fan et al., 2007; Gudmundsson et al., 2012; Ng et al., 2007; 

Papaioannou et al., 2013; Stage et al., 2005; Yohannes et al., 2005). Additionally, the only 

study the authors are aware of that investigated the genetics of depression and COPD 

focused on a single gene (Ishii et al., 2011). Thus, the genetic risk factors of depression 

among smokers and COPD patients with a more unbiased GWAS approach are a critical 

issue to investigate.

Using data from a well-characterized population of smokers with and without COPD, we 

sought to identify genetic risk factors for depressive symptoms among smokers and to 
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expand upon the existing GWAS studies of depression that have been published in other 

populations. Because it is still challenging to achieve genome-wide significance even with 

the relatively large sample size of the present study from the COPDGene cohort, network 

analyses can supplement our understanding of the genetics of depression and fill gaps left by 

GWAS through exploration of interactions between genes.

Methods

Participants

The COPDGene study collected both genome-wide genetic data and phenotypic information 

on over 10,000 subjects (Regan et al., 2010). COPDGene Phase 1 began in 2007 and 

included over 10,000 subjects with information about medication use, including 

antidepressants, and smoking history, including past and current smoking. COPDGene Phase 

2 collected 5-year follow-up data for approximately 8,000 subjects returning from Phase 1. 

The primary inclusion criteria were self-identified ethnicity as Non-Hispanic White (NHW) 

or African-American (AA) between 45 and 80 years old at study enrollment, with at least a 

10 pack-year smoking history. Some examples of exclusion criteria were a history of other 

lung disease except asthma, previous surgical excision of at least one lung lobe, and a first- 

or second-degree relative enrolled in the study. The complete exclusion criteria is listed in 

the COPDGene Study (Regan et al., 2010). Depressive symptoms were measured in Phase 2 

using the Hospital Anxiety and Depression Scale depression subscale score (HADS-D), and 

all participants reported their use of antidepressant medications in Phase 1 and Phase 2 

(Zigmong and Snaith, 1983). HADS-D data were available from approximately 2,000 

participants from their Phase 2 visit.

Definition of depression phenotype

COPDGene subjects were categorized into two groups, one with evidence of the depression 

phenotype and another without evidence of the phenotype. We defined the phenotype of 

depression as subjects reporting antidepressant use at the time of the Phase 1 COPDGene 

study visit using a medication record available for the entire cohort, or a self-reported 

HADS-Depression Subscale score ≥ 8 at the Phase 2 visit for a sub group (~2,000) of study 

participants. This was due to data availability at the time of analysis. We defined 

antidepressant use as a binary variable based on a previous analysis by Iyer et al. (submitted) 

as shown in Supplemental Table S1. The HADS-D subscale score was used instead of the 

total HADS score to focus on only depressive symptoms and not anxiety symptoms, as the 

HADS total score also includes anxiety-specific questions. We then separated subjects into 

Non-Hispanic White (NHW) and African-American (AA) datasets and analyzed them 

separately to avoid confounders due to ethnic stratification.

Genome Wide Association Study (GWAS) and Systems Biology Analysis

The initial analysis of each dataset was a GWAS, and the details of the quality control can be 

found at the COPDGene website (http://www.copdgene.org/study-design); details of this 

process and imputation have been previously described. Briefly, genotyping quality control 

was performed following previously described guidelines (Cho et al., 2014). DNA samples 

from COPDGene subjects were genotyped on the Illumina HumanOmniExpress array. 
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GenomeStudio quality control, including manual review of cluster plots, was performed. 

Genetic ancestry was adjusted by principal components to identify racial mismatches and 

population outliers. Markers with low minor allele frequency (<1%) were additionally 

excluded for the primary analysis. Imputation to 1,000 Genomes Phase One v3 EUR used 

MaCH and minimax. We performed logistic regression adjusting for ancestry principal 

components using an additive genetic model as implemented in plink 1.9.

The gene annotation was to the closest gene from the SNPs. When we had multiple SNPs 

annotated from the same gene, we chose the SNPs with the smallest p-value to rank the 

order of the top hit genes.

Systems biology analysis was then performed using online software—GeneMANIA (Warde-

Farley et al., 2010), DAVID (Huang et al., 2009a; Huang et al., 2009b), ConsensusPathDB 

(Kamburov et al., 2011; Kamburov et al., 2009), and GLITTER (Liu et al., 2016) to identify 

biological pathways associated with the depressed phenotype. GeneMANIA (http://

www.genemania.org) uses a given input list and extends the list with functionally similar 

genes using data from GEO, BioGRID, Pathway Commons, and I2D (Warde-Farley et al., 

2010). DAVID (http://www.david.ncifcrf.gov) uses a given input list and agglomerates 

millions of gene and protein identifiers based on genome databases such as NCBI, PIR, and 

UniProt into secondary gene clusters based on gene ontology functionality (Huang et al., 

2009a; Huang et al., 2009b). ConsensusPathDB (http://www.cpdb.molgen.mpg.de) uses a 

given input list and computes functional interaction maps based on genomic data from 12 

databases, including Reactome, KEGG, Bio GRID and more (Kamburov et al., 2011; 

Kamburov et al., 2009). GLITTER (http://www.han-lab.org/GLITTER) is designed to 

examine the functional relatedness of disease susceptibility genes according to tissue-

specific gene expression profiles. It can also shed light on the specific tissues in which 

susceptibility genes might exert their functions. The gene expression profiles are from the 

RNA-Seq data (v.6) from the Genotype-Tissue Expression Project (GTEx) for 49 different 

tissues (Liu et al., 2016). Different numbers of top hit genes were used with each program 

during analysis. This is because of the different recommendations given by each program for 

producing high-quality results as reported on their respective websites.

Results

Analyzed study subjects

We had access to data on 9,970 subjects for the current analysis with genotypic information 

for the GWAS. Of the 9,970 subjects genotyped, 254 subjects provided limited consent for 

using their blood samples and were excluded. Thus, a total of 9,716 subjects remained for 

the final analysis, with 5,198 (53.5%) male and 4,518 (46.5%) female. The mean age was 

59.4 (SD = 9.0) and 6,576 (67.7%) of the subjects were NHW, while 3,140 (32.3%) were 

AA. Overall, 1,622 (24.7%) of the NHW subjects and 391 (12.5%) of the AA subjects were 

defined as the depressed phenotype. While all subjects were smokers, they were further 

classified by COPD status based on the GOLD Stages classification system (Vestbo et al., 

2013). The breakdown of the classification of the subjects into different GOLD stages is 

shown in Table 1. The COPD group trended towards being older, more likely male, and with 

a higher pack-year smoking history, when compared to non-COPD patients. It is worth 
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noting that while all subjects were smokers, the prevalence of COPD in the sample was 

49%. This prevalence estimate is higher than in previous literature, which suggests a 

prevalence of around 20%, although there is a wide variation in prevalence estimates (Vestbo 

et al., 2013).

GWAS

The GWAS for NHW subjects was conducted and top hits are listed in order of descending 

p-value (Table 2). The genes listed in the table are the genes nearest to the corresponding 

SNPs. The results from the GWAS revealed top hits in the p = ~10−7 range—not reaching 

genome wide statistical significance at the ~ 10−8 cutoff based on correction for GWAS 

multiple testing. The results for the African-American analysis did not reach statistical 

significance either, likely due to the even smaller sample size (3,140 subjects). Because the 

sample was smaller and neither GWAS nor subsequent network analysis demonstrated a 

strong signal, all African-American dataset results are shown in the supplementary tables. 

The results for the GWAS can be found in Supplemental Table S2.

GeneMANIA

The GeneMANIA analysis using the top 35 NHW gene hits graphically depicted the 

interactions between the top hit genes from the GWAS as shown in Figure 1.

In this figure, the lines connecting the circles represent a combination of co-expression, co-

localization, and genetic interactions. It indicates that these genes are regulating each other 

in concert and may be working together. The GeneMANIA figure showed potential tight 

interconnections between the top hit genes, both directly and indirectly through other genes. 

Of note, some top hit genes are not shown in the figure, as the genes were either not in the 

GeneMANIA reference gene databases (FAM222A-AS1, A2MP1, and RNU6–83) or had no 

interconnections within the identified network (MYEOV2). The top hit genes from the AA 

dataset did not show strong connections among top hit genes. The AA results can be found 

in Supplemental Figure S1.

DAVID and ConsensusPathDB

Next, to identify pathways by which top genes may interact and function together, gene 

ontology analysis software such as DAVID and ConsensusPathDB were utilized. The 

following tables show the results from these analyses. While the programs identified many 

pathways and gene ontologies, the following tables show the noteworthy ones specifically.

The DAVID analysis identified various nominally significant gene ontologies, such as 

central nervous system development, synaptic signaling, neuron projection development, and 

neuron projection extension (Table 3). There was also some signal for neurotransmitter 

transport and acetylcholine receptor activity. However, none of these gene ontologies were 

statistically significant when corrected for multiple comparisons.

Table 3 also shows the top gene ontologies from the ConsensusPathDB analysis. 

ConsensusPathDB provided similar ontologies to that of DAVID; however, it should be 

noted that transcription corepressor activity survived at a statistically significant level after 
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correction for multiple testing. Other strong signals were from neurotransmitter secretion 

and synaptic transmission. The full results for the NHW analysis are shown in Supplemental 

Tables S3 and S4. The full results from the AA analysis are shown in Supplemental Tables 

S5 and S6.

GLITTER

GLITTER software was used to determine the relative co-expression patterns of the top hit 

genes in different tissues in the human body. The results from GLITTER are shown in Table 

4 and indicate that the top hit genes from this analysis are preferably co-expressed in human 

brain tissues relative to other non-brain tissues in the human body. Brain-related tissues are 

bolded in Table 4.

Of note, the top hit, Brain—Caudate (basal ganglia), was statistically significant after 

multiple corrections. Table 4 also illustrates that the brain-related tissues are concentrated 

towards the top of the table. Results for the African-American analysis can be found in 

Supplemental Table S7.

Discussion

This is the first GWAS that focused on depressive symptoms among a large cohort of current 

and former smokers. The analysis used data from the COPDGene study and has several 

strengths. First, a single study enrolling over 9,000 subjects with a uniform protocol allowed 

us to evaluate the genetic disposition of depressive symptoms among a large sample of 

smokers. The NHW sample included over 6,500 subjects, and the AA sample included over 

3,000 subjects. Although the top hits from the GWAS did not reach genome-wide 

significance, systems biology analysis using GeneMANIA, DAVID, ConsensusPathDB, and 

GLITTER for the NHW sample demonstrated that the top hit genes function together to 

form pathways relevant to brain function. Systems biology results for the AA dataset did not 

demonstrate such findings. The lack of replication is possibly due to the limited 

identification of the depressed phenotype as evidenced by the much lower prevalence of 

depression cases among AA (12.5%) compared to NHW (24.7%).

When looking at the top hit genes found in this GWAS, many have been reported previously 

in the psychiatric literature. This includes the Cholinergic Receptor Muscarinic 3 (CHRM3, 

rs12036147; p = 1.28 × 10−6), the MAM Domain Containing Glycosylphosphatidylinositol 

Anchor 2 (MDGA2, rs17118176; p = 3.52 × 10−6), the Solute Carrier Family 1 Member 3 

(SLC1A3, rs13171357; p = 5.27 × 10−6), the Calcium Voltage-Gated Channel Auxiliary 

Subunit alpha2delta3 (CACNA2D3, rs17744447; p = 7.86 × 10−6), and the Proline Rich 

Membrane Anchor 1 (PRIMA1, rs11160142; p = 2.38 × 10−5). The CHRM3 gene is a 

cholinergic receptor and has been implicated in schizophrenia and may be a potential 

treatment target in COPD patients as speculated in a previous study (Wain et al., 2017; Wang 

et al., 2016). The MDGA2 gene is a membrane anchor that was a top hit in a neuroticism 

GWAS of 1,200 subjects (van den Oord et al., 2008). Although the SNP found in the 

neuroticism study and the SNPs found in this COPDGene cohort are not in strong linkage 

disequilibrium, it is intriguing to find signals in the same gene associated with neuroticism, 

because neuroticism is a personality trait highly relevant to depression (Farmer et al., 2002). 
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The SLC1A3 gene codes for glutamate transport and has been implicated in ADHD (Turic et 

al., 2005), while the CACNA2D3 gene codes for a calcium channel complex subunit that has 

been implicated in autism (Heyes et al., 2015). Another calcium channel gene, the 

CACNA1C gene has been associated with bipolar disorder in multiple studies (Fiorentino et 

al., 2014; Starnawska et al., 2016), highlighting the potential importance of the CACNA2D3 
gene to mood. The PRIMA1 gene assists with acetylcholinesterase and was a top hit in a 

previous genome-wide DNA methylation association study that included 39 postmortem 

frontal cortex samples (Sabunciyan et al., 2012). Pathway analysis by DAVID and 

ConsensusPathDB showed nominally significant pathways, including cholinergic activity, 

that were not significant after multiple testing correction. This was likely due to the small 

sample size relative to GWAS standards and also phenotypic definition challenges not based 

on diagnostic criteria for major depressive disorder. The GLITTER analysis showed that the 

caudate of the basal ganglia was a brain region where the top hit genes are expressed 

together. The caudate nucleus is innervated by dopaminergic neurons, suggesting the role of 

neurotransmission, especially that of dopamine, in the pathophysiology of depressive 

symptoms among smokers. Although not included in the top hits listed in the table, the 

serotonin receptor gene was also identified, suggesting potential involvement of serotonin in 

depression pathophysiology.

It is worth emphasizing that all subjects in the study were smokers. The results from this 

analysis may contribute to a better understanding of the genetic link of the risk for 

depressive symptoms in the context of nicotine addiction. It is possible that the genes 

contributing to the risk of depressive symptoms among smokers could be different from the 

genetic risk factors for depression among the general population. These genes may share 

expression patterns and interact with each other at multiple levels within the brain. This 

would be a potential area for future study.

Based on the promising signals relevant to depressive symptoms and brain function, if a 

standardized psychiatric evaluation is conducted for the COPDGene cohort, it would be 

possible to improve the phenotypic definition of depression and produce stronger GWAS 

signals for genome-wide significance. Moreover, Exome Chip and Exome Sequence data 

will be available for further enrichment analysis against other depression GWAS analyses 

and could validate the signals obtained here.

Limitations

This study has several limitations. First, the definition of the depression phenotype was 

based on antidepressant use information available from the entire cohort, with HADS-D 

scores available for only a sub-group of ~2,000 participants. Using the best available 

definition based on antidepressant use and HADS-D together likely increased the rate of 

false negatives (i.e., subjects with currently elevated depressive symptoms who were 

“missed” and categorized as non-depressed if they were not taking antidepressant 

medications). Another limitation of using antidepressant use to code for the depression 

phenotype is that antidepressants (particularly bupropion) can be used for smoking cessation 

among non-depressed individuals and that tricyclic antidepressants can be used for sleep 

and/or chronic pain. Also, antidepressant use history may include subjects with anxiety and 
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not depression, who are being treated with those medications. Thus, our categorization of 

the depressed phenotype may also have resulted in false positives. Our analysis did not find 

significant GWAS associations, and the subsequent analysis assigned the closest gene to the 

top variant and did not account for biases in gene size or distribution.

We observed a higher prevalence of the depression phenotype in the NHW sample than in 

the AA sample. Previous research has found a lower rate of symptom endorsement for the 

AA population in general (Connor et al., 2010). It is also possible that depression in African-

Americans is under-recognized by medical providers, leading to lower rates of 

antidepressant use. Thus, it is possible that the AA sample had more false negatives than the 

NHW sample. Concern for a falsely low prevalence of the depression phenotype as well as 

the smaller sample size (~3,000) for the AA sample likely contributed to the absence of 

signal relevant to psychiatric conditions in the AA sample. Focusing on understanding 

genetic risk for psychiatric symptoms in potentially underserved populations is an important 

area for future work.

Conclusions

The COPDGene cohort provides important data in which to study depressive symptoms due 

to the large sample size of the cohort with genetic data and the high prevalence of depression 

in smokers. GWAS performed on this cohort revealed top hit genes in the p = ~10−7 range, 

which did not survive multiple corrections for genome-wide significance. Given that 

depression is likely caused by many genes and the cumulative impact of many small effect 

sizes, the top hit genes were analyzed from a systems biology approach. GeneMANIA 

indicated that the top hit genes were tightly interconnected and that some top hit genes have 

been implicated in psychiatric disorders. Analysis using DAVID and ConsensusPathDB 

identified brain-related pathways through which the genes are interconnected through central 

nervous system development, synaptic signaling, neuron projection development, and 

cholinergic function. GLITTER analysis showed that the top hit genes are primarily co-

expressed in the human brain as compared to other non-brain tissues, specifically in the 

caudate of the basal ganglia at a statistically significant level.

In conclusion, the COPDGene dataset shows signals for genes previously cited in the 

psychiatric literature and suggests such genes function through central nervous system 

development, neuronal projection, and dopaminergic activity. Future studies with the dataset 

may significantly contribute to a better understanding of the relationship between genetics 

and depression among smokers.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights:

• GWAS analysis of the COPDGene study showed several top hit SNPs.

• Genes nearest top hit SNPs are associated with depression in the literature.

• Such genes showed potential association with neurotransmitter networks.

• The genes are expressed together in the brain, especially in the basal ganglia.

• The COPDGene study provides future opportunities to study depression 

among smokers.
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Figure 1. 
Outcome from GeneMANIA based on NHW top 35 gene hit results. The genes from the top 

hit GWAS are shown as larger circles, while genes from the GeneMANIA extension are 

smaller. A) SLC1A3; p= 5.27×10−6 B) MDGA2; p= 3.52×10−6 C) CHRM3; p= 1.28×10−6 

D) CACNA2D3; p= 7.86×10−6 E) PRIMA1; p= 2.38×10−5.
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Table 1.

Summary statistics of the 6,576 NHW subjects analyzed in this study.GOLD −1 = Preserved ratio, impaired 

spirometry, (FEV1/FVC ≥ 0.7, FEV1% predicted < 80%); GOLD 0 = Normal spirometry; GOLD 1 = 

FEV1/FVC < 70%, FEV1 ≥ 80% predicted; GOLD 2 = FEV1/FVC < 70%, 50% < FEV1% predicted < 80%; 

GOLD 3 = FEV1/FVC < 70%, 30% < FEV1% predicted < 50%; GOLD 4 = FEV1/FVC < 70%, FEV1 ≤ 30% 

predicted.

Non-COPD COPD

GOLD Stage −1 0 Total Non-COPD 1 2 3 4 Total COPD

# of Subjects 692 2,509 3,201 595 1,407 892 481 3,375

Ave. Age 60.1 60.0 59.7 63.1 64.2 65.2 64.8 64.4

# of Males 303 1,240 1,543 349 755 513 281 1,898

Sex (% Male) 44% 49% 48% 59% 54% 58% 58% 56%

Ave. Pack-Years 46.5 38.0 39.8 46.3 54.0 58.0 60.4 54.5
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Table 2.

Top 35 Non-Hispanic White GWAS Results. SNPs are the top hit SNPs from the GWAS analysis. Nearest 

gene is the annotated nearest gene to the SNP. Many SNPs were closest to the same gene. The table omits the 

duplicate genes to show unique annotated top genes. A1 is effect allele. A2 is other allele. MAF is the 

frequency of A1.

SNP Nearest Gene Al A2 MAF P-Value

rs6487668 PZP C A 0.2181 7.06 × 10−7

rs35426224 EML1 G A 0.9255 1.07 × 10−6

rs734152 FAM222A-AS1 G C 0.8804 1.13 × 10−6

rs12036147 CHRM3 A T 0.9116 1.28 × 10−6

rs79309730 SH3BP4 C T 0.9427 1.70 × 10−6

rs7298108 A2MP1 C T 0.8217 2.01 × 10−6

rs17118176 MDGA2 A G 0.9373 3.52 × 10−6

rs6485603 SYT13 G A 0.5506 4.76 × 10−6

rs143756124 MC5R T C 0.9320 4.90 × 10−6

rs6743806 SCG2 C G 0.7326 5.08 × 10−6

rs13171357 SLC1A3 G A 0.7185 5.27 × 10−6

rs7194099 ZC3H7A A G 0.5561 5.48 × 10−6

rs180931486 MBP T C 0.9334 6.21 × 10−6

rs536504 RASGEF1B C G 0.6995 6.79 × 10−6

rs17744447 CACNA2D3 A G 0.3458 7.86 × 10−6

rs567697 RNU6–83 T C 0.8451 8.09 × 10−6

rs76088896 NPJP1 T C 0.8925 8.66 × 10−6

rs13257626 MSC G T 0.9769 9.06 × 10−6

rs570456 ALG8 C T 0.7392 9.23 × 10−6

rs117574193 CDH11 G A 0.9750 9.63 × 10−6

rs10773937 IQSEC3 G C 0.4928 9.86 × 10−6

rs58200410 C1D C A 0.9545 1.02 × 10−5

rs7786342 THSD7A C A 0.6497 1.08 × 10−5

rs12450972 DCAKD C T 0.5978 1.21 × 10−5

rs609952 NDUFC2 C T 0.8459 1.43 × 10−5

rs75277622 RIN3 C T 0.9361 1.63 × 10−5

rs112680866 TM2D3 A T 0.9749 1.67 × 10−5

rs143236826 TLE4 A C 0.9342 1.67 × 10−5

rs61863283 HOGA1 G A 0.7112 1.75 × 10−5

rs13389043 MYEOV2 T G 0.8353 1.79 × 10−5

rs56277520 FZD10 G A 0.5515 1.82 × 10−5

rs7767783 RIMS1 T C 0.6306 1.86 × 10−5

rs140245790 TXNL1 A G 0.9792 1.96 × 10−5

rs655445 NDUFC2-KCTD14 G A 0.8484 1.97 × 10−5
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SNP Nearest Gene Al A2 MAF P-Value

rs11160142 PRTMA1 A G 0.6436 2.38 × 10−5
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Table 3.

Pertinent gene ontologies from DAVID and ConsensusPathDB. While gene ontologies in DAVID, such as 

CNS development, synaptic signaling, neuron projection development, and neuron projection extension 

showed nominally significant signals, they did not survive correction for multiple testing. In the top 30 gene 

analysis in ConsensusPathDB, transcription corepressor activity remained significant even after correction for 

multiple testing. The gene ontology abbreviation BP is Biological Process, MF is Molecular Function, and CC 

is Cellular Component.

Number of Input Genes Gene Ontology Term Gene Ontology P-Value Q-Value

DAVID

20
Synaptic signaling BP 0.02 0.99

Central nervous system development BP 0.05 0.98

50

Synaptic signaling BP 0.01 0.99

Neurotransmitter transport BP 0.07 0.99

Synaptic membrane CC 0.03 0.95

Presynaptic active zone CC 0.07 0.94

Acetylcholine receptor activity MF 0.07 0.82

100

Neuron projection development BP 0.01 0.77

Central nervous system development BP 0.02 0.82

Neuron projection extension BP 0.02 0.81

Regulation of axon extension BP 0.06 0.89

Regulation of neurogenesis BP 0.07 0.89

Consensus PathDB
20

Synaptic transmission BP 0.004 0.13

Central nervous system development BP 0.008 0.13

Neurotransmitter secretion BP 0.009 0.13

30 Transcription corepressor activity MF 0.0002 0.002
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Table 4.

GLITTER results from the top 100 gene hits analysis sorted by p-value. Brain-related tissues are bolded.

Tissue P-value

Brain-Caudate (basal ganglia) 0.00010

Brain-Putamen (basal ganglia) 0.0057

Brain-Substantia nigra 0.019

Stomach 0.026

Brain-Nucleus accumbens (basal ganglia) 0.037

Brain-Cortex 0.052

Brain-Spinal cord (cervical C1) 0.059

Adipose-Subcutaneous 0.070

Brain-Hypothalamus 0.079

Brain-Hippocampus 0.13

Prostate 0.14

Brain-Amygdala 0.15

Vagina 0.17

Colon-Transverse 0.19

Brain-Cerebellum 0.24

Brain-Frontal Cortex(BA9) 0.24

Brain-Anterior cingulate cortex(BA24) 0.28

Ovary 0.28

Pituitary 0.33

Skin-Not Sun Exposed(Suprapubic) 0.35

Artery-Coronary 0.38

Small Intestine-Terminal Ileum 0.39

Breast-Mammary Tissue 0.47

Colon-Sigmoid 0.48

Uterus 0.50

Brain-Cerebellar Hemisphere 0.51

Heart-Left Ventricle 0.65

Kidney-Cortex 0.66

Muscle-Skeletal 0.72

Minor Salivary Gland 0.72

Esophagus-Mucosa 0.73

Adipose-Visceral (Omentum) 0.73

Testis 0.80

Pancreas 0.82

Esophagus-Muscularis 0.82

Heart-Atrial Appendage 0.83

Esophagus-Gastroesophageal Junction 0.84

Lung 0.84

Nerve-Tibial 0.85
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Tissue P-value

Cells-Transformed fibroblasts 0.88

Skin-Sun Exposed (Lower leg) 0.88

Whole Blood 0.88

PPI 0.89

Liver 0.98
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