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Abstract

Understanding language learning, and more general knowledge acquisition, requires 

characterization of inherently qualitative structures. Recent work has applied network science to 

this task by creating semantic feature networks, in which words correspond to nodes and 

connections to shared features, then characterizing the structure of strongly inter-related groups of 

words. However, the importance of sparse portions of the semantic network - knowledge gaps - 

remains unexplored. Using applied topology we query the prevalence of knowledge gaps, which 

we propose manifest as cavities within the growing semantic feature network of toddlers. We 

detect topological cavities of multiple dimensions and find that despite word order variation, 

global organization remains similar. We also show that nodal network measures correlate with 
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filling cavities better than basic lexical properties. Finally, we discuss the importance of semantic 

feature network topology in language learning and speculate that the progression through 

knowledge gaps may be a robust feature of knowledge acquisition.

Introduction

Formal understanding of the properties of knowledge acquisition remains a foundational 

area of research in cognitive science. In the domain of word learning, behavioral evidence 

suggests that this process is mediated in part by various properties of words at an individual 

level, such as the frequency of a given word or the extent to which it evokes a mental image.
1,2 Recently, tools from network science have offered a means of examining how lexical 

acquisition might also be mediated by higher-order relationships between many words, or 

the network topology underlying input that is available to the learner.3 In this theoretical 

framework, words are typically represented by the nodes of the network, while shared 

semantic or sound-based associations can be used to construct edges between nodes.4–6 

Broadly, evidence indicates that learners are particularly sensitive to how densely connected 

a given word is relative to others words in a network; specifically, see7 for networks defined 

by word co-occurrence,4 for networks formed from free associations, though this may be 

partially due to features of child-directed speech,8 and see9 for networks derived from 

multiple types of edges).

Because previous studies focus on the network properties of words that have already been 

learned by children, they have left open the question, “How do those words not yet known 

affect learning?” More precisely, as children produce new words does their resulting 

semantic feature network contain any knowledge gaps, or voids where a word is missing? 

Since edges correspond to at least one shared property (e.g., temporal co-occurrence or 

phonological similarity), a gap in the network suggests a unifying concept that is not yet 

understood. In the network science formalism, such knowledge gaps in a growing network 

correspond to topological cavities that are born, and then later filled in with the addition of 

new nodes and edges. We propose that characterizing the evolution patterns of these cavities 

in a semantic feature network built from any of multiple types of connections offers unique 

insight into lexical organization in children, and we investigate whether knowledge gaps 

might serve as a useful proxy for the difficulty associated with acquiring in particular 

feature-based concepts.

To answer these questions, we employ concepts and tools from applied topology that allow 

us to detect topological cavities within a growing network. The specific network that we 

study is a growing semantic feature network in which nouns correspond to nodes and edges 

are shared observable features or functions. For example, “cheese” and “bus” are both 

yellow, and thus the corresponding nodes are linked in the semantic feature network. In 

addition, words in this dataset are given a weight (inducing a word order) derived from the 

month that the word was produced by toddlers aged 16–30 months. Though such 

nodeweighted networks are commonly observed in biology, they are challenging to analyze 

because standard tools from network science, such as traditional graph metrics, can account 

for weighted edges, but not for weighted nodes. To address this challenge, we develop a 
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formalism that transforms any node-weighted system into a sequence of binary graphs 

analyzable by both topological data analysis and standard tools of network science including 

graph metrics. Specifically, we encode the growing semantic feature network into a 

sequence of binary graphs called a filtration, with one new node (corresponding to one new 

word) added at each step. We call this sequence of graphs built from a node-ordered network 

a node-filtered order complex (hereafter referred to as the n-order complex for brevity), 

inspired by the order complex defined for edgeweighted networks10 and weight rank clique 

filtrations.11,12 We can then compute persistent homology,13,14 which tracks the formation 

and possible filling in of topological cavities of different dimensions throughout a filtration. 

This approach differs from many existing approaches by using information from node 

weights, encoding higher-order group relations, and identifying mesoscale topological 

features in the growing network.

By encoding the growing semantic feature network of children ages 16–30 months as a n-

order complex, we use persistent homology to ask if topological cavities – corresponding to 

knowledge gaps – form and then fill in throughout the learning process. We find a collection 

of long-persisting cavities of varying dimensions do exist and interestingly, the pattern of 

cavity formation suggests that the semantic feature network is organized under external 

constraints. We adjudicate between conflicting hypotheses that topological cavities might 

either be robust to or vary systematically with the nature of input available to the learner, in 

this case indexed by the mother’s level of education. We observe at most minor differences 

in topological cavity existence despite variation in node order; on average, any ordering of 

learned words gives rise to a similar topological signature involving a regular birth and death 

of persistent cycles. Since the order of words learned can vary considerably, our results 

suggest that these topological cavities might be a conserved feature of the language learning 

process, and that semantic feature network growth is a robust phenomenon that can 

accommodate many local changes without abrupt restructuring of the network’s large-scale 

organization.

Results

To begin, we construct an ordering on 120 nouns derived from the first month at which 

≥50% of children between the ages of 16 and 30 months can produce each word (Fig. 1a, 

left).15 Multiple words could be first produced within one month, so we create a total 

ordering by sorting words learned within one month by descending percentage of children 

producing each word. We next form a binary semantic feature network with 120 nouns as 

nodes, and with edges connecting words that share a property or function (Fig. 1a, right).16 

We note that these shared semantic features, for example ‘“yellow”, “has legs”, etc., can be 

observed by children before they can produce the feature words themselves. Together, the 

word ordering and binary network pair assemble into the growing semantic feature network,
4 with the node added at step n connecting to all of its neighbors added at steps 1...,n − 1 

(Fig. 1a, middle).

We are interested in the presence of knowledge gaps, which we hypothesize manifest as 

voids within the growing semantic feature network that exist only for a finite number of 

months. For example, in Fig. 1b (top), the words ‘balloon’, ‘bear’, ‘cheese’, and ‘banana’ 
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connect in a pattern that leaves a hole within the network. If the word ‘bus’ is learned later, 

this word connects to each of ‘balloon’, ‘bear’, ‘cheese’, and ‘banana’, so that there is no 

longer a void within the network. When a void in the network is extinguished, we say the 

knowledge gap is filled in (Fig. 1b, bottom). The features of interest in such a network are 

then the nodes responsible for filling in the cavity, which correspond to the temporarily 

missing words. Importantly, if a cavity is not filled by the end of the filtration, we cannot 

conclude that the cavity corresponds to a knowledge gap since it could be either surrounding 

a word that does not exist in our dataset or there simply exists a cavity in the network of the 

full English language.

To identify topological cavities within the growing semantic feature network, we will use a 

method from applied topology called persistent homology, which returns the (1) number, (2) 

dimension, and importantly (3) longevity of topological cavities within a growing network.

Topology of generative growing network models

Before approaching knowledge gaps in the semantic feature network, we first pause to ask if 

and how persistent homology can distinguish randomness from structure within artificial 

models of growing graphs (equivalently n-order complexes), which will additionally help us 

to gain an intuition for processes creating particular cavity existence patterns. Specifically, 

we test four growing graph models with varying degrees of predefined structure. Each model 

constructs a binary graph by assigning a probability to the existence of each edge as a 

function of one or both parent nodes. We call these generative models because they construct 

de novo both the binary graph and the node order. For the following models we let the node 

ordering s simply be 1 : N with N being the total number of nodes.

The most basic (and random) model that we tested assigns each edge entering the graph with 

the addition of node n a probability p(n) = c ∈ [0,1] of existing. We call this model the 

constant probability model, and we show its persistent homology in Fig. 2a with p(n) = 0.3. 

The next model, the proportional probability model, attaches edges from node n to all nodes 

1,...,n − 1 with probability p(n) = n/N (Fig. 2b). Next, we generate a modular network 

composed of four equal-sized communities, and we refer to it as the modular growth model 

(Fig. 2c). We randomly assign nodes to communities; edges added with node n exist with 

probability pin between node n and other nodes within its community, and with probability 

pout between node n and other nodes in different communities. In our final generative model, 

each node n is assigned an affinity an that remains constant throughout the entire growth 

process. This temporal invariance ensures that after node n is added, any future node m will 

connect to node n with probability an. We require all an to be normalized so if 

a = a1, a2, …, aN  is the vector of node affinities, max( a ) = 1. We call this model the edge 

affinity model, and in Fig. 3d we show results for this model with node affinities drawn 

randomly without replacement from the vector a =
1, 4, 9, …, 1202

1202 . For each of these 

models, we choose parameters so as to produce graphs whose edge density closely matches 

the edge density of the empirically measured semantic feature network, ∼ 0.3.
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The constant probability model generates growing graphs with the least amount of imposed 

structure, producing hundreds of persistent 2-cycles that never die. The β2 curve on average 

dominates the Betti curves and we observe few if any persistent 1-cycles or 3-cycles. The 

proportional probability model generates a pattern of increasing Betti curve peaks with 

increasing dimension, contrary to the Betti curves of the constant probability model. The 

distinctive Betti curves between these two models implies that the underlying differences in 

growth rules are reflected in the global topology. Additionally, all persistent cycles of 

dimensions 1–3 die by around node 100, as later nodes are likely to tessellate cavities. 

Interestingly, the modular growth model produces Betti curves dominated by dimension 2, 

similar to the constant probability model. Though this model produces networks with high 

modularity throughout the node addition process, we see qualitatively similar properties 

between this and the constant probability model. Still, the density of within-community 

connections restricts the maximum height of the β2 peak and drives the creation of persistent 

3-cycles.

In contrast to these null models, we expect the growing semantic structure to be organized 

according to external constraints: there exist (external) properties of nodes that do not 

fluctuate based on the current state of the network. If a node (word) has some aptitude for 

connections (similar to many other words), such an aptitude should not change as the 

network grows. Such a constancy is unlike that observed in, for example, a preferential 

attachment process but is explicitly accounted for in our edge affinity model. Interestingly, 

we observe far fewer persistent cycles of each dimension in the edge affinity model than in 

the previous models. Furthermore, we observe a pattern of increasing peaks of persistent 

cycles as we move to higher dimensions. These results demonstrate that a growing process 

constrained by the external constraint of constant edge affinity will yield fewer topological 

cavities than that of a more random growth process.

Gaps in the growing semantic feature network

Now that we have developed some intuition for the structure detected by persistent 

homology, we ask if topological cavities exist within the growing semantic feature network 

and if so, what information such cavities might provide about the learning process. We 

observe multiple persistent cavities of dimensions 1–3, most of which die before the 30 

month mark (Fig. 3a). The Betti curves show increasing peaks with larger dimensions as 

more nodes are added. Next, we ask which nodes (words) enter the growing graph when 

persistent cycles are born or killed. We list these words next to the corresponding bar, and 

we show persistent cycle birth and death nodes visually in the inset of Fig. 3a as a persistent 

cycle network, with words ordered alphabetically and an edge for each persistent cavity 

emanating from the birth node and terminating at the death node. The edge thickness is 

proportional to the corresponding cavity lifetime (index of death minus index of birth) and 

the edge color indicates cavity dimension. We observe nodes generally begin or kill one or 

no persistent cycles, with a few exceptions such as ‘bench’, ‘peas’, and ‘couch’. Persistent 

cavities that never die (have a death time of inf) are not shown in this inset. Note that those 

cavities that do not die are gaps in the semantic feature network created from the full dataset 

which contains only a subset of words in the entire language. This means that we should not 

classify infinitely persisting cavities as knowledge gaps since our data may simply not 
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include words that do fill this gap, that is, using this data we cannot tell if there is a word in 

the English language to fill this gap or if there exists a true cavity within the complete 

semantic feature network. Indeed a child may even know more words than recorded in our 

dataset that prevent the formation of cavities we see here or form more cavities. We work 

under the assumption that this dataset, though limited, is topologically representative of the 

semantic feature network of the English language. Then the fact that we see cavities born 

and killed throughout development suggests that there are indeed knowledge gaps that not 

only form, but must also evolve and are extinguished during the learning process.

Next, we ask if there are simple rules by which cavities form and evolve in the growing 

semantic feature network. Due to the method of growth where the newly added node 

connects initially with only those added previously, we expect that the node degree at the 

time of node addition is positively correlated with node ordering. Thus, one might 

hypothesize that the empirically observed pattern of Betti curves follows simply from a 

pattern of higher-connectivity nodes added throughout the filtration. Contrary to this 

simplistic expectation, we observe instead that the degree of nodes varies considerably 

across time with no salient trend of either a decreasing or increasing node degree (Fig. 3b). 

The degree of a node when it is first added varies greatly along the filtration and indeed, 

when the final node is added there exists great variability in node degrees when plotted in 

the order of node addition. This complexity suggests a non-homogeneous connectivity 

pattern within the network, in turn motivating a more thorough effort to model the growth 

process and cavity evolution, which we turn to next.

The persistent homology of a growing network is classically used to infer global 

organizational properties, and we first use this tool to understand the growing semantic 

feature network from a global perspective. We begin by comparing the persistent homology 

of the growing semantic feature network to the generative models of Fig. 2. We observe that 

the edge affinity model generates n-order complexes with the most similar persistent 

homology to that of the growing semantic feature network. Upon closer inspection, we 

observe that the largest difference between the Betti curves of the edge affinity model and 

growing semantic feature network stems from the likelihood that cavities die. All but five 

persistent cavities in the growing semantic feature network die by node 120, while in the 

edge affinity model the barcodes show the majority of persistent cycles never die. Moreover 

the comparisons with models shown in Fig. 3 strongly imply that the evolving architecture 

of the growing semantic feature network is highly non-random, as the Betti curve peaks 

differ by an order of magnitude between the growing semantic feature network and the 

random n-order complex models. The growth rule for the constant probability model 

produces a random graph, where any subgraph will also be random, which would not be 

expected in the empirical data. The growth rule for the proportional probability and modular 

growth models both enforce higher structure on the network which at least from the applied 

topology perspective differ greatly from that of the empirical data. Taken together, these 

results suggest that the growing semantic feature network topology during learning is non-

random and that node constraints such as a fixed affinity for connections might play a role in 

the evolving architecture.
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To further probe processes guiding the evolution of the growing semantic structure, we 

construct derived n-order complex models that begin with the semantic feature network and 

alter either the node ordering or edge placement to determine which (if either) explains the 

observed evolving architecture. Beginning with the influence of node order, we compute the 

persistent homology of the randomized nodes n-order complex model, which retains the 

binary graph of semantic feature connections but randomly permutes the node order. We 

observe strikingly similar persistent homology between this model (Fig. 3c) and the growing 

semantic feature network, though note that any n-order complex built with the same binary 

graph G will necessarily have the same homology at GN, which limits the variability in 

persistent homology. Next we ask if we can improve the model by ordering nodes by their 

degree or topological distance to the first node, both of which would capture the idea that a 

child learns highly connected nodes first or similar words to those already known. We see in 

Fig. 3d,e that both of these null models yield persistent homology that is distinctly unlike 

that observed in the original ordering. More specifically, both null models produce smaller 

Betti curves in all dimensions. Furthermore, we observed that the distance from v0 model 

shows no persistent homology until nearly halfway through the filtration. These findings 

suggest that neither (i) first learning the most connected words, nor (ii) first learning words 

with the shortest semantic distance to the first word, can account for the evolution of the 

growing semantic feature network. These results are in line with prior work reporting that 

preferential attachment models are poor fits to the early learning of the semantic feature 

network.4 However, we find using distinctiveness17 or preferential acquisition18 to order 

nodes produces similar Betti curves to that of the semantic feature network (Supplementary 

Fig. 11). Finally, we keep the node ordering constant but now randomly rewire edges while 

preserving node degree; we call this the randomized edges model and note that it is similar 

in spirit to the configuration model.19,20 We observe a highly random persistent homology 

signature as described by the Betti curves and barcodes (Fig. 3f) when we rewire edges 

randomly but keep the original node order. Together with Fig. 3c these results suggest that 

the pattern of semantic feature connections between words (i.e. edge linkage structure) is 

more important for the proper topological evolution of the network than the order in which 

those words are produced by children (i.e. node order).

Influence of or robustness to maternal education level

In the previous sections, we demonstrated that knowledge gaps not only exist but are created 

and filled in throughout early semantic learning, and that we can use the patterns of gap 

evolution to compare global structures of model learning processes. Knowledge gaps might 

correspond to learning relatively difficult concepts, and one could hypothesize that gaps 

would occur more frequently in the growing semantic feature networks of children with 

mothers having achieved a higher level of education, which – along with socioeconomic 

status21,22 and structure built from co-occurrences in child-directed speech23,24 – can 

significantly impact a childs linguistic input and output.25 Yet, a contrary hypothesis is that 

the structure of language predisposes the growing semantic feature networks in children to 

be relatively robust to variations in the environment. To adjudicate between these two 

conflicting hypotheses, we create three distinct growing semantic feature networks from 

children with mothers whose highest education was some or all of secondary school (N = 

146), some or all of college (N = 536), and some or all of graduate school (N = 338). Then 
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we have the same binary network for each of the three networks, but the ordering of nodes 

has now changed (differences based on the maximum swap distance between two nodes in 

the ordering, see Supplementary Information). We label these networks the secondary, 

college, and graduate growing networks, respectively. We compute the persistent homology 

and find no trend of increasing topological cavity number or lifetimes (Fig. 4a-c), despite the 

differences in word ordering. This finding agrees with the earlier result in Fig. 3c. 

Furthermore, the lack of change in cavity number or lifetimes suggests that despite local 

scale differences in learning, children with mothers of varying education levels still 

experience a similar learning process at these meso- and global-scales. When drawing this 

conclusion, however, it is important to note that our dataset is limited to relatively common 

items whose frequency in the home environment is less likely to vary by maternal education.

Since at a global level the persistent homology of the three growing networks varies little, 

we next ask if the same words correspond to nodes killing persistent cavities in each 

growing network. Figure 4 (also see Supplementary Fig. 9) shows persistent cycle networks 

for each of the three growing networks with nodes ordered and placed alphabetically as in 

Fig. 3a. This visualization allows for comparison of nodes that begin and kill persistent 

cavities across the three growing networks. For example, a persistent 1-cycle is seen 

beginning at ‘doll’ and ending at ‘pony’ in each of the secondary, college, and graduate 
growing networks (indicated by the red arrow). We observe that while a few node pairs 

begin and end persistent cycles in each of the secondary, college, and graduate growing 

networks, generally node pairs do not begin and end persistent cycles, or at least persistent 

cycles of the same dimension, across each of the education levels.

Characterizing the manner in which knowledge gaps are extinguished

In the previous sections, we have shown that knowledge gaps are created and later filled in 

with similar rates despite differences in maternal education. These observations motivate our 

final effort to determine if particular properties of the nodes or their corresponding words 

increase the likelihood of a node tessellating cavities. For each of the secondary, college, 

graduate, and original all-inclusive growing semantic feature network barcodes, we count 

the number of persistent cavities killed by each node. Since these cavity-killing nodes 

correspond to temporarily missing words, one might hypothesize that these corresponding 

words are more difficult to learn. We use a simple proxy for word difficulty, given by the 

word length.26 However we find no significant correlation between the number of cycles 

killed and the word length (Fig. 5a; Spearman correlation coefficient df = 118; all: r = 

−0.0661, p = 0.4734; secondary: r = 0.0998, p = 0.2781; college: r = −0.0881, p = 0.3386; 

graduate: r = 0.0023, p = 0.9799). Additionally, we ask whether the frequency with which 

caregivers use words when speaking to children could play a role in cavity filling, 

hypothesizing that lower-frequency words would be more difficult for children to learn. 

Previous work debates the role of word frequency in child-directed speech in early and late 

talkers23,24,27 making this a particularly interesting measure. Another important property is 

the relative distinctiveness of a word in the network, shown in17 to predict word learning. 

Yet, again we observe no significant correlation between frequency and the number of 

persistent cycles killed (Supplementary Fig. 10; Spearman correlation coefficient df = 85; 

all: r = −0.2168, p = 0.0437; secondary: r = −0.2012, p = 0.0616; college: r = −0.1861, p = 
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0.0843; graduate: r = −0.0021, p = 0.9849) or between distinctiveness and the number of 

persistent cycles killed (Supplementary Fig. 11a; Spearman correlation coefficient df = 118; 

all: r = −0.1910, p = 0.0366; secondary: r = −0.2183, p = 0.0166; college: r = −0.1993, p = 

0.0291; graduate: r = −0.0835, p = 0.3643). These results suggest that simple word 

descriptors such as length, frequency, and distinctiveness do not predict a word’s tendency to 

fill in knowledge gaps.

Next we test if topological characteristics of nodes – rather than their non-topological 

statistics such as length and frequency – might better explain the number of persistent cycles 

killed. To address this question, we study the relation between the number of persistent 

cycles killed and the node degree, centrality, or clustering coefficient (Fig. 5b-d). A positive 

correlation between the number of persistent cycles killed and the node degree would 

indicate that knowledge gaps are extinguished by locally well-connected words. A positive 

correlation between the number of persistent cycles killed and the centrality would suggest 

that knowledge gaps form by a delay in learning words that are only a few features away 

from most other words. Finally, a positive correlation between the number of persistent 

cycles killed and the clustering coefficient would indicate that locally dense regions of the 

semantic feature network are likely to be involved in knowledge gaps. Nodes that kill 

cavities will likely have high degrees, unless their only neighbors are those involved in that 

cavity, which is unlikely. However it is less likely that betweenness centrality correlates with 

cavity-killing in general, since killing a cavity may only create a local star-like structure 

while betweenness centrality measures how a node acts globally in a network. Finally to kill 

a cavity a node must create many triangles, so we expect cavity-killing to be positively 

correlated with the clustering coefficient.

Shown in Fig. 5 we find that while node degree and betweenness centrality are often 

positively correlated with the number of persistent cycles killed (for node degree, Spearman 

correlation coefficient df = 118; all: r = 0.3027, p < 0.001; secondary: r = 0.2849, p = 0016; 

college: r = 0.3423, p < 0.001; graduate: r = 0.3730, p < 0.001; and for betweenness 

centrality, Spearman correlation coefficient df = 118; all: r = 0.2972, p < 0.001; secondary: r 
= 0.2489, p = 0.0061; college: r = 0.2995, p < 0.001; graduate: r = 0.3492, p < 0.001) as 

expected, the clustering coefficient shows a negative correlation (Spearman correlation 

coefficient df = 118; all: r = −0.2897, p = 0.0013; secondary: r = −0.2766, p = 0.0022; 

college: r = 0.3037, p < 0.001; graduate: r = −0.3626, p < 0.001). Initially, this result might 

appear counterintuitive because to cone (fill in) a cycle, a node must by definition create 

many triangles. Yet, if we combine this result with the positive correlations of persistent 

cycle killing to node degree and betweenness, we can construct a toy example of a possible 

cavity-killing node neighborhood. Shown in Fig. 5e, the central node outlined in white 

tessellates two cycles when added (cycles and coning triangles highlighted), but also has a 

low clustering coefficient. Taken together, we suggest that the connectivity pattern of words 

within the semantic feature network better predicts the tendency of that word to fill a 

knowledge gap than simple lexical features of the words themselves.
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Discussion

In this study, we query the existence of knowledge gaps manifesting as topological cavities 

within the growing semantic feature network of toddlers. Using persistent homology and the 

formalism of node-filtered order complexes, we find that such knowledge gaps both form 

and are often later filled in throughout the learning process. We observe that the global 

architecture of the growing semantic feature network is similar to that of a constrained 

generative model. Furthermore we report similar persistent homology across growing 

semantic feature networks of children from mothers with differing education, and we find 

that this pattern of topological cavity existence remains present after node order 

randomization, but not after edge rewiring. Together these results suggest that knowledge 

gaps are robust features of word production order and that the global topology of the 

semantic feature network is resilient to local alterations induced by node reordering.

Understanding the growing semantic feature network through the lens of persistent 

homology offers a unique perspective on the nature of the learning process and features of 

language structure. Previous research has provided evidence supporting the influence of 

network topology on many types of language networks including those constructed from 

phonological28,29 and syntactic relations.30,31 Here we observe that the persistent homology 

of the growing semantic feature network follows a regular pattern throughout the majority of 

the learning process, indicating an organized and potentially predictable growth pattern – a 

global property of the network.

Yet when we consider the node (word) level, the fine-scale topology (node degree) varies 

considerably and does not suggest a predictable addition pattern. Furthermore if we permute 

the order of the nodes uniformly at random, we recover similar global topology to that 

observed in the unpermuted network, suggesting a topological homogeneity not found in n-

order complex models, for example the edge affinity model. We describe the semantic 

feature network topology as accommodating, since its large-scale architecture changes little 

despite variations in small-scale inputs (specifically nodes with differing degrees). Previous 

studies show that the order in which words are learned by children depends on multiple 

variables including word frequency,32,33 parental interaction,34 small-worldness of co-

occurrence networks,23 word co-occurrence with associates,8 repetition,8 phonological 

patterns,35,36 and communication quality.37 We propose that the learning process might be 

supported by a global accommodating topology, which develops similarly in all typically 

developing children despite the natural variations in input (order of words learned) that 

occur due to differing environments. This claim is further supported by our observations that 

models ordering words by preferential acquisition or distinctiveness produce similar 

barcodes to those observed in the empirical data (Supplementary Fig. 7). Furthermore our 

results suggest that children who learn words in different orders (for example early versus 

late talkers24) might experience the same patterns of knowledge gap formation and closure.

Though many possibilities for word production order yield similar persistent homology, we 

observe that the global structure disintegrates if we randomly rewire the network edges 

while preserving the degree of each node (Fig. 3). This finding – together with the results 

described in the previous paragraph – suggests that the higher order connectivity patterns 
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between words, instead of individual word properties such as time of production, have a 

greater impact on the evolving global structure of the semantic feature network. This 

observation raises the important question of whether this resilience to node reordering and 

emphasis on fixing relations between words is restricted to the English language, or whether 

these phenomena are general properties of semantic feature networks. Previous research 

points to the similarity of word networks across languages38 and supports the hypothesis that 

similar global patterns would be observed in languages other than English. Yet, the 

differences in node (word) connectivity patterns within this structure could offer insight into 

subtle distinguishing features between different languages.39

The presence of persistent topological cavities of multiple dimensions in the growing 

semantic feature network offers insights into the learning process. One might expect that 

when a child grows his or her vocabulary, they tend to learn words that are similar to words 

already known. This is called the lure of the associates in4. Such a process would produce 

few if any knowledge gaps, corresponding to topological cavities, within the network, and 

should be well-modeled by a topological-distance-from-initial-node rule. Our results agree 

with those of4 indicating that the lure of the associates model does not provide a good fit to 

the growth of the semantic feature network. Furthermore we observe the salient presence of 

topological cavities in a growing semantic feature network that is best modeled by an edge-

affinity rule. Yet, it is also important to acknowledge that the recovered gaps are not simply 

gaps in the final semantic feature network itself. Instead by the age of 30 months all but five 

gaps have been filled in by other words. Since we observed cavities in the growing semantic 

feature network irrespective of the mother’s education, we speculate that knowledge gaps 

that form and die may themselves be a feature of the semantic learning process. If indeed 

these knowledge gaps represent learning a more difficult word or concept, and filling in the 

created gap with intermediate concepts as they are later added, then these cavities may be a 

natural part of the learning process. As an application to more explicit learning in the 

classroom, one could ask if cavities exist as students learn other subjects as well, in 

particular math and science where reaching for an understanding of distant or difficult 

concepts may create higher numbers of cavities or longer-lived persistent cavities. In the 

laboratory, one could examine how knowledge gaps evolve in contexts where adult learners 

are exposed to new semantic relations between novel objects. Network gaps may be of 

interest in other domains as well, including business, where one wishes to assess a job 

candidate’s competence, identify open or underdeveloped areas of the market, or locate 

unreachable areas within a social system’s state space. Furthermore, previous studies have 

demonstrated the importance of global features such as small-worldness in early versus late 

talkers,23 and one could therefore hypothesize that knowledge gaps might differ in children 

with disorders of language acquisition.

Many models exist for semantic networks in which edges are defined by word association 

such as can be estimated from a free association task or other metrics. Yet, the best models 

for the growing semantic feature network focus on node distinctiveness.17 Efforts to use 

preferential attachment or close variations have not been successful in capturing the feature 

network’s development4 while the lure of the associates and preferential acquisition models 

have been successful in semantics.4,7 The difference between the previously defined 

preferential attachment model and the affinity model that we introduce here is that the 
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likelihood of new connections for each node evolves based on how the network has already 

grown in the former, while the latter only relies on predefined nodal properties. These results 

suggest that the full semantic feature network matters instead of only what the child has 

learned up to a point, agreeing with the idea that learners are sensitive to the learning 

environment instead of only to their personal knowledge network.4 The semantic feature 

network lives within masters of the language and children are simply acquiring new words 

and connections of this pre-defined structure. As the semantic feature network a child is able 

to produce grows, the child is likely already sensitive to semantic relationships in their 

external world even before they acquire the label attached to a previously unnamed object. 

This sensitivity might explain why the affinity model better captures the topological 

properties of the growing semantic feature network.

One possible way that the above concept can manifest in our encoding is that labels for 

features are allowed to exist in the network before a child is able to produce this label. For 

example, if a child produces ‘cheese’ and ‘bus’ but not ‘yellow’ at a given time, the lack of 

the child’s ability to produce ‘yellow’ does not mean that ‘cheese’ and ‘bus’ are not still 

both yellow and thus are observed as similar to the child. Similarly, since each word exists 

and connects to other words in the external world, a word will always have the same affinity 

for others. For example, any new animal with legs will always be ready to connect to all 

other objects that have legs, regardless of which of these words is known to the child. 

Furthermore, we speculate that words corresponding to nodes with high affinity may 

generally be polysemous words, or those with multiple meanings, thus increasing the 

likelihood of connections to other words within the network.40 Additionally these words 

may belong to larger or even multiple categories etched out by the shared feature network.41 

Indeed such words may be crucial in upholding the small-world architecture of the early 

feature network,23,41 or may promote category transition.24,42 Overall our results are 

consistent with an externally constrained topology of the semantic feature network, as 

suggested in.4,6

Growing networks are implemented in multiple systems including contagion propagation,43 

distribution networks in biological systems,44 and social networks.45 Consequentially, 

numerous methods exist for their analysis.46 For example, representing a growing process as 

a dynamic network or directed graph (or directed dynamic graph) would allow for analyses 

with those corresponding sets of tools.47,48 Though persistent homology for node-weighted 

systems is not a novel concept,43,49,50 we suggest that the formalism presented here 

comprises a practical mode of encoding such systems, in which both graph metrics (for 

example k-clique community detection51) and topological data analysis can be applied 

simultaneously. Our approach may be valuable if one has weighted objects and links, if one 

can assume intimately pairwise-connected groups of objects act similarly (becomes a 

simplex in our encoding), and if cavities (or lack thereof) can be meaningfully interpreted in 

light of system function. On the theoretical side, the n-order complex models developed in 

this paper hearken back to previous studies of node-exchangeable graphs,52,53 growing 

simplicial complexes,50,54 and random clique complexes.55

Furthermore, we propose that the persistent homology of a n-order complex at the level of 

persistent features (as opposed to the more commonly studied global structure) may be more 
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easily interpretable than that of an edge-weighted network. In particular, here individual 

words initiate and terminate persistent cycles. In many biological contexts, nodes are objects 

with attached empirical observations and metadata. The analyses of such systems might 

include analyzing the number of persistent cycles a node begins or kills in relation to this 

metadata (though assigning full responsibility of persistent cycles to individual cliques of 

any size should always be done with care56). Additionally the n-order complex is invariant 

under any monotonic (rank-preserving) transformation of the node weights, which is a noted 

benefit for applications to noisy experimental data.10,11 Topics suitable for the node-filtered 

complex encoding and subsequent analyses include tracking information dissemination 

through brain networks,57 signaling cascades in protein interaction networks,58 sound 

propagation on force chains,59 contagion spreading on social networks, and information 

transfer throughout enzyme architecture after allosteric effector binding.60 Broadly, the 

formality presented in this study may be useful for “filling in” open questions from multiple 

areas of science.

In conclusion, we offer a unique perspective on the growing semantic feature network of 

toddlers that highlights the persistence of knowledge gaps in contrast to the formation of 

densely connected clusters. Using the node-filtered order complex formalism and persistent 

homology, we reveal the existence of such knowledge gaps and their persistence as children 

age. Furthermore we provide evidence supporting the notion that the gaps in the network 

will exist despite differences in word production times, and we propose that these gaps are 

an important and general component of the learning process.

Methods

Growing semantic feature network construction

We constructed a 120-node semantic feature network with node ordering following the 

procedure outlined in.4 Specifically, we extracted word production order from the 

MacArthur-Bates Communicative Development Inventory (MB-CDI).61 This database 

contains a record of which of 541 English words 2173 toddlers ages 16–30 months could 

produce, as determined via parental report. No statistical methods were used to predetermine 

sample sizes and we refer the reader to61 for more details. All genders were included and no 

data points were excluded. For each word we calculate the month at which ≥ 50% of 

children could produce the word.4 Within one month, words are ordered according to the 

percentage of children producing each word, resulting in a complete ordering of words.

To form a node-ordered network we represent words as nodes and connect two nodes 

(words) if they share a semantic feature within the McRae feature list.16 These semantic 

features were derived from adult norming data from 725 adults and are organized into 

categories based on feature type. When an individual generates features for a given concept, 

these features are interpretations of the abstract concept that are constructed for the sole 

purpose of description.62 Then feature norms offer a unique understanding of representation, 

which varies across and within individuals, and which often results in a collection of 

distinguishing features (as opposed to general features of many words),16 making them 

useful for modeling and theory testing.63–66 We use all feature categories excluding 

encyclopedic and taxonomic, which are unlikely to be accessible to toddlers.4 Only the 
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words included in both the McRae and Wordbankr databases were used in our final semantic 

feature network, thus refining our network to 120 nodes and 2163 edges.

Detecting cavities in node-ordered networks

Below we include a brief description of persistent homology. We refer the interested reader 

to13,14,67 and the Supplementary Information for more details.

Before we discuss growing graphs, we outline the process of detecting cavities in a single 

binary network. Given a binary graph G, we first translate our graph into a combinatorial 

object on which we can perform the later computations. Instead of a simple graph described 

by nodes and edges, we allow all groups of completely connected nodes to define entities. 

Formally, we create the clique complex X(G), a collection of all the cliques, or all-to-all 

connected subgraphs, in the network. In Fig. 6a, we depict this process as ‘coloring in’ the 

graph G to build the clique complex X(G). For example, we color in 1-cliques (nodes), 2-

cliques (edges), 3-cliques (triangles), and so on, giving us higher dimensional information 

about the structure (more precisely we assign a k-simplex to each (k + 1)-clique within G to 

create the clique complex. See Supplementary Information for definitions and details).

Now with our graph encoded as a clique complex, we can use homology to detect cavity-

surrounding motifs of edges, triangles, tetrahedra, and higher dimensional analogs (Fig. 6b). 

Loops of edges form 1-cycles, loops of triangles form 2-cycles, and loops of tetrahedra form 

3-cycles. For example, Fig. 6b shows cavity-surrounding cycles of each dimension on the 

top row, while those on the bottom are tessellated by higher-dimensional cliques formed 

with the purple node. Homology distinguishes between cavity-surrounding loops and those 

tessellated by higher-dimensional cliques, thereby returning detailed information about the 

mesoscale architecture of the complex. In particular, homology detects equivalence classes 
of k-cycles, with two k-cycles being in the same equivalence class if their symmetric 

difference is a collection of higher dimensional cliques (see Supplementary Information for 

details). By abuse it is common to refer to an equivalence class of k-cycles as a k-cycle, and 

we will adopt this abbreviated description throughout the remainder of the paper. To 

summarize: homology counts the number of cavities in each dimension of a clique complex 

constructed from a binary graph.

While this approach is hypothetically useful, our data describes a growing network instead 

of a single binary graph, so we cannot simply compute its homology as above described. 

However, notice that we get a binary graph after the addition of each new node, and that the 

binary graph Gn created after the addition of node n is a subgraph of Gn+1 for all n. This 

sequence of objects (here, graphs) with Gn ⊆ Gn+1 is called a filtration (Supplementary Fig. 

1, top and Supplementary Fig. 3b, top). If we construct a filtration of binary graphs Gn, we 

immediately gain a filtration of clique complexes X(Gn) with X(Gn) ⊆ X(Gn+1) necessarily 

true since Gn ⊆ Gn+1 (Supplementary Fig. 3b, middle). For example, using the ordering and 

clique complex in Fig. 6c, Fig. 6d illustrates the described filtration of clique complexes for 

steps 9–13 (addition of nodes 9–13), with new nodes (outlined in white) connecting to any 

neighbor already in the complex. We call the filtration of clique complexes created from a 

growing network the node-filtered order complex (see Supplementary Information for 

further details), inspired by the order complex in.10 The order complex creates a filtration of 
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clique complexes from an edge-weighted network using the edge weights to induce an edge 

ordering. Here, the node filtered order complex (which we shorten to n-order complex for 

brevity) can be completely defined by the pair (G,s) with G a binary graph and s the ordering 

of vertices, possibly induced by a weighting on the nodes.

Finally, at each node addition we can map the clique complex X(Gn) into the next X(Gn+1), 

so that we can follow cycles, and consequentially cavities, throughout the filtration. We call 

these persistent cycles or persistent cavities. For example, the addition of node 10 creates a 

cavity surrounded by a 1-cycle, which persists in the complexes X(G10), X(G11), X(G12) 

until it is tessellated with the addition of node 13. The barcode plot in the top of Fig. 6e 

records this persistent cavity as a horizontal line running throughout the duration of this 

persistent cavity, or its lifetime. We call the node at which the cavity begins the birth node, 

and we call the node at which the cavity is tessellated the death node. Thus, the lifetime is 

formally death−birth. The number of cavities of dimension k at each step (node addition) in 

the filtration is recorded in the Betti curves βk(n) and shown in the bottom of Fig. 6e for the 

n-order complex of Fig. 6d. Tracking these persistent cycles throughout a filtration is called 

persistent homology,13,14 which – in summary – allows us to extract the number and 

dimension along with the longevity of topological cavities throughout the growth process. 

We compute the persistent homology13,14 in dimensions 1–3 using the Eirene software.68

Models of n-order complexes

For each model n-order complex, we generate 1000 instances and provide MATLAB code 

and detailed descriptions at the Filtered Network Model Reference 

(filterednetworkmodelref.weebly.com).

Measures for correlation calculations

Since the addition of a node (and its connections) can kill persistent cavities, we can count 

the number of persistent cavities killed at each node. We can then calculate the Spearman 

correlation between the number of persistent cycles killed at each node and a graph statistic 

such as the node degree, clustering coefficient, and betweenness centrality calculated on the 

binary semantic feature network using.69 The degree of a node is the number of edges 

incident to the node. The clustering coefficient measures the connectivity of a node’s 

neighbors, calculated by the ratio of existing triangles to the number of triangles possible. 

Precisely,

Cn =
2tn

kn kn − 1 (1)

where tn is the number of triangles formed by node n and its neighbors.70

Additionally, we inquire whether the centrality – or the number of shortest paths passing 

through a node – might be correlated with the number of cycles killed. Though a cavity-

killing node connects to a set of nodes in a star-like pattern, it is not necessarily the case that 
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this node will act as a hub within the larger network. We calculate the betweenness 

centrality71 of a node as

BCn = ∑
s, t, n, s ≠ t ≠ n

λn(s, t)
λ(s, t) (2)

with λ(s,t) being the number of shortest paths between nodes s and t, and with λn(s,t) being 

the number of such paths passing through node n.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Knowledge gaps manifesting as topological cavities within the growing semantic 
feature network.
(a) (Left) Word ordering is given based on the month at which 50% of reported children 

produce each word. As an example, the word ‘spoon’ is first produced by ≥ 50% of children 

at 19 months, so it is placed at the appropriate location within the growing complex (purple 

node, towards the bottom). The word ‘moose’ is similarly placed at the 28 month mark 

(sienna node, towards the top). (Right) Semantic features connect nouns (corresponding to 

nodes), forming the semantic feature network. (Center) Combining the binary feature 

network and word production times creates a growing semantic feature network with nodes 

entering based on the first month at which ≥ 50% of children can produce the word. (b) A 

‘knowledge gap’ could be seen as a topological void within the semantic feature network. 

The connection pattern between ‘balloon’, ‘bear’, ‘cheese’, and ‘banana’ leave a gap within 

the graph (top), but the addition of the node corresponding to ‘bus’ and its connections fills 

in the cavity (bottom).
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Figure 2: Persistent homology distinguishes random from structured generative models of 
nodefiltered order complexes.
Representative adjacency matrix (top), associated barcode plot (middle), and average Betti 

curves (bottom) for the (a) constant probability, (b) proportional probability, (c) modular 

growth, and (d) edge affinity models. Shaded regions in Betti curve plots indicate ±2 

standard deviations.
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Figure 3: Topological cavities form and die within the semantic feature network with a pattern 
that is resistant to random node reordering.
(a) Barcode and Betti curves for the growing semantic feature network. The word added 

when the cavity is born (killed) is written on the left (right) of the corresponding bar. (Inset) 

Graph of persistent cycles with words as nodes in alphabetical order. An edge for each 

persistent cavity in (a) exists from the birth to the death node. Edges are weighted by the 

persistent cycle lifetime and colored according to the dimension. (b) The degree of each 

node throughout the growth process. Color indicates the number of nodes added. 

Representative adjacency matrix (top), associated barcode (middle), and average Betti 

curves (bottom) for the (c) randomized nodes, (d) decreasing degree, (e) distance from v0, 

and (f) randomized edges models. Shaded areas of Betti curves indicate ±2 standard 

deviations.
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Figure 4: Global semantic feature network architecture is consistent across maternal education 
levels despite local variations.
(Left) Betti curves with barcodes overlaid and (right) persistent cycle networks for the (a) 
secondary, (b) college, and (c) graduate growing semantic feature networks. Red arrow in 

persistent cycle networks indicates a persistent cavity born and killed by the same word pair 

in each of the three education levels.
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Figure 5: Number of persistent cycles killed correlates with topological properties instead of 
lexical features.
Scatter plots of the number of persistent cycles killed by each node against (a) corresponding 

word length (Spearman correlation coefficient df = 118; all: r = −0.0661, p = 0.4734; 

secondary: r = 0.0998, p = 0.2781; college: r = −0.0881, p = 0.3386; graduate: r = 0.0023, p 
= 0.9799), (b) node degree (Spearman correlation coefficient df = 118; all: r = 0.3027, p < 
0.001; secondary: r = 0.2849, p = 0016; college: r = 0.3423, p < 0.001; graduate: r = 0.3730, 

p < 0.001), (c) betweenness centrality (Spearman correlation coefficient df = 118; all: r = 

0.2972, p < 0.001; secondary: r = 0.2489, p = 0.0061; college: r = 0.2995, p < 0.001; 

graduate: r = 0.3492, p < 0.001), and (d) clustering coefficient (Spearman correlation 

coefficient df = 118; all: r = −0.2897, p = 0.0013; secondary: r = −0.2766, p = 0.0022; 

college: r = 0.3037, p < 0.001; graduate: r = −0.3626, p < 0.001). Lines of best fit overlaid. 

(e) Example node (outlined in white) that kills multiple cavities while retaining a low 

clustering coefficient. Triangles formed by the cavity-killed node highlighted, and cycles 

tessellated outlined in red.
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Figure 6: Persistent homology detects longevity of topological cavities within node-filtered order 
complexes.
(a) Example graph G (top) and its clique complex X(G) (bottom) created by filling in 

cliques, or all-to-all connected subgraphs of G. (b) Examples in dimensions 1–3 of cavities 

enclosed by cycles (closed paths of cliques) (top) and how an added node can tessellate a 

cycle thus filling in the cavity (bottom). (c) The clique complex from (a) with an ordering on 

the nodes (left), and the associated ordered adjacency matrix (right). (d) Steps 9–13 in the 

filtration created by taking the node-filtered order complex of the clique complex X(G) in (c) 
and the shown ordering. At each step a new node is added along with its connections to 

nodes already present in the complex. (e) Barcode (top) and Betti curves (bottom) for the 

example node-filtered order complex. The barcode shows the lifespan of a persistent cavity 

as a bar extending from [birth, death) node, and the Betti curves count the number of k-

dimensional cavities as a function of nodes added. Lavender lines through (c), (d), and (e) 
connect the adjacency matrix row i to the clique complex at step i and to the persistent 

homology outputs.
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