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Abstract

Cell behavior is strongly influenced by physical, mechanical contacts between cells and their 

extracellular matrix. We review how the transcriptional regulators YAP/TAZ integrate mechanical 

cues with the response to soluble signals and metabolic pathways to control multiple aspects of 

cell behavior, including proliferation, cell plasticity and stemness essential for tissue regeneration. 

Corruption of cell-environment interplay leads to aberrant YAP/TAZ activation that is instrumental 

for multiple diseases, including cancer.

Introduction

Fundamental aspects of cell behaviour in living organisms - morphogenesis, collective 

migration and self-organization - are not genetically encoded but emergent properties of 

cells interconnected within a tissue network. Furthermore, most disease states either do not 

have a genetic origin, or, as is the case in cancer, are preceded or accompanied by a 

corruption of the tissue environment that fuels aberrant cell behaviour1,2.

Our current knowledge on signaling pathways regulating gene expression, proliferation and 

fate decisions does not fully account for these emergent properties, failing to explain how 

these events are exquisitely localized in living tissues. Understanding the spatiotemporal 

control of cell behavior thus requires incorporation of information on how structural and 

architectural complexity of tissues is transmitted to their constituent cells.

YAP/TAZ, two highly related transcriptional regulators sense how cells, perceive themselves 

and their tissue environment and communicate with it. YAP/TAZ activity in a cell is under 

direct control of its shape and polarity, which is in turn dictated by the cytoskeletal 

structure3. Further, the tensional state and organization of the cytoskeleton reflect the local 

pattern of geometrical and mechanical strains associated with the position of the cell within 

the global 3D tissue architecture and surrounding stromal composition4,5. These inputs are 
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essentially physical, and include the pattern forces emanating from the cell's attachment to 

other cells and from the topology and rigidity of the extracellular matrix (ECM)6. YAP/TAZ 

convert such inputs into gene expression signatures and coherent, context-dependent 

biological responses3,7.

The structural features of a cell must also be linked to its metabolism and to its 

responsiveness to other environmental cues, such as morphogen signals and nutrient 

availability. For example, epithelial budding starts with a localized distortion in the shape of 

few cells that precedes their proliferation, suggesting that localized changes in mechanics 

can determine the response to mitogens8. Notably, cells respond to mechanical stresses by 

adjusting composition and fine 3D organization of the surrounding ECM and by 

reorganizing cell-cell adhesion. Thus, inward directed forces (generated by cytoskeletal 

contractility), deformation of organelles and external forces (pulling from ECM rigidity, 

other cells or fluid flow) are always in perfect balance5,6.

Here we review recent data providing an emerging picture in which YAP/TAZ serve as 

nexus orchestrating the interplay between cellular mechanics, metabolism and 

developmental signaling cascades, allowing for cell and context-specific responses. We also 

discuss that the YAP/TAZ transcriptional program may be devoted to the installment of 

positive feedback systems promoting - YAP/TAZ-mediated mechanical and metabolic 

signaling. Through such mechanisms, YAP/TAZ shape organs during development, forge 

self-organization phenomena and adapt cell behavior to tissue needs, as in tissue repair or 

regeneration. When elements of this control fail or are imbalanced, abnormal YAP/TAZ 

activation causes multiple diseases, including fibrosis, cancer, atherosclerosis3.. We finally 

outline some exciting open issues in the burgeoning field of YAP/TAZ regulation and 

biology.

Sensing and responding to biomechanical signals through YAP/TAZ

In order harmonize their behavior to the surrounding mechanical niches, cells must translate 

external cues into signaling conduits that impact on gene expression, a process referred to as 

mechanotransduction4. Mechanotransduction starts with the ability of cells to probe the 

physical features of the microenvironment through integrins and other adhesive proteins, and 

to counterbalance extracellular forces by adjusting their own tensional state through 

actomyosin contractility and organization of the F-actin cytoskeleton4. For years, these 

models left unaddressed the question of how mechanical instructions are executed in the 

nucleus through specific transcription factors (TFs). Strikingly, recent discoveries are 

converging to a model in which multiple types of mechanical inputs in a variety of cellular 

settings rely on the regulation of two transcriptional regulators, YAP and TAZ (reviewed 

in3,9). Note that we here depict YAP and TAZ (naming them YAP/TAZ throughout this 

contribution) as equivalent proteins; this is based their structural similarities and genetic 

redundancy in a host of experimental conditions and biological functions. However these 

proteins display different phenotypes in individual mouse knockout lines10,11, and 

dissecting individual functions from overlapping ones is an open issue for the field.
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YAP and TAZ activity is regulated by the conformation and tension of the F-actin 

cytoskeleton, which in turn depend primarily on the substrate on which cells adhere. Indeed, 

cells spread when plated on large and stiff substrates; in these conditions, they display high 

ROCK- and non-muscle myosin II-driven cytoskeletal tension ultimately turning on YAP/

TAZ. Conversely softer or smaller substrates, imposing cell rounding and adhesion, cause 

cytoplasmic retention and inhibition of YAP and TAZ12,13 (FIG. 1). Importantly, this is an 

evolutionary conserved mechanism, shared by multiple cell types, attesting the generality of 

YAP/TAZ mechanotransduction3,7. Indeed, a potent means to induce YAP/TAZ activity is 

raising F-actin reorganization and stress fiber formation by experimental depletion of 

capping and severing proteins, such as ADF/Cofilin and CapZ13. Different sub-pools of F-

actin can, however, have opposite roles on YAP/TAZ activity and in highly polarized cell 

cultures, as contraction of the apical circumferential actin belt is required to inhibit 

YAP/TAZ14. This phenomenon possibly involves the formation of an apical F-actin network 

by the spectrin family of scaffolding proteins. Indeed, depletion of spectrins results in 

aberrant YAP/TAZ nuclear localization both in Drosophila wing and ovary follicle cells and 

in human MDCK cells, possibly due to abnormal restructuring of F-actin into basal stress 

fibers15,16.

The finding that molecular components of focal adhesions (FAs), namely integrins, focal 

adhesion kinase (FAK) and Src, are required for YAP/TAZ activity is consistent with the fact 

that the degree of cell distortion and spreading are key signals impinging on the arrangement 

of the F-actin cytoskeleton and YAP/TAZ activity (FIG. 1). The relationship between cell 

shape, F-actin and YAP/TAZ activity impacts on hepatic stellate cell conversion to 

myofibroblasts during liver fibrosis17–19, proliferation of basal layer skin 

keratinocytes20,21, activation and proliferation of cancer associated fibroblasts22, self-

renewal and chemoresistance of breast cancer stem cells (CSCs) induced by 

glucocorticoids23, the atherogenic effect of disturbed blood flow on endothelial cells24,25, 

and post-damage intestinal regeneration26.

Mechanistically, YAP/TAZ activation by integrin-dependent FA formation may be linked to 

the activation of the RhoGEF β-PIX, the small GTPase Rac1 and its effector PAK27,28, 

which are known F-actin modulators, suggesting a role for integrin-dependent cytoskeletal 

modifications in mechanical regulation of YAP/TAZ (FIG. 1). Moreover, Yes/Src family 

proteins directly phosphorylate YAP to promote YAP transcriptional activity21,29. Still 

unclear, however, is to what extent Src impacts on YAP/TAZ function directly, through 

phosphorylation, rather than indirectly, though its effects on the cytoskeleton. Intriguingly, 

the dynamic formation of FAs is itself influenced by substrate stiffness; indeed, a molecular 

clutch model for FAs implies that sufficient substrate stiffness is required for integrin-bound 

talins to unfold and expose a vinculin-binding domain to promote full FA maturation and 

YAP/TAZ nuclear accumulation30. This suggests that FA components might not only be 

required for adhesion to the substrate but can act as mechanotransducing units31 (FIG. 1). 

Notably, the main YAP-regulating mechanosensitive adhesive platforms are those exerting 

the highest force, that is the β1-integrin clusters more proximal to the nucleus connecting F-

actin filaments to the nuclear lamina, but not the peripheral FAs, which appear 

inconsequential for YAP/TAZ regulation32 (FIG. 1). Altogether, it appears that YAP/TAZ 

regulation is not guided by the total levels of F-actin but its subcellular organization, fine 
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structure, tension and, likely, resistance offered by molecular struts within the cytoskeleton 

(such as microtubules33 and potentially intermediate filaments) and by the whole nucleus 

(see below). Therefore YAP/TAZ mechanotransduction differs profoundly from actin 

regulation of the TF MAL, a sensor of F-actin/G-actin ratio that binds directly free, nuclear 

G-actin in a manner inhibiting its association to its DNA binding partner Serum Response 

Factor (SRF) 34.

Integrin signaling is critical for modulation of YAP/TAZ activity in 3D, and relevant to 

instruct differentiation of cultured skeletal stem cells and to drive proliferation of malignant 

cells13,35. Yet, regulation of YAP/TAZ in normal, primary epithelial cells growing within 

physiological matrices as organoids requires an additional level of complexity. When 

intestinal organoids are cultured in non-deformable 3D hydrogels of defined stiffness and 

composition, YAP/TAZ are induced at high stiffness triggering proliferation of stem cells, 

but only transiently26,36. As the organoid expands, YAP/TAZ are turned off, possibly as an 

effect of increased cell crowding, causing loss of stemness and organoid demise. In contrast, 

when the hydrogel is designed to be physically plastic - allowing its proteolytic degradation 

by metalloproteases - fate plasticity and self-organization emerge. Under these conditions, 

YAP/TAZ activity remains localized at the tip of the organoid's crypt-like, budding 

protrusions, a location characterized by elevated cellular strain where YAP/TAZ preserve the 

intestinal stem cells of the organoid36. Similarly, skeletal stem cells require the activity of 

matrix metalloproteinase Mmp14 to remodel the surrounding collagen matrix in order to 

form integrin clustering, raising F-actin cytoskeletal tension that ultimately results in 

YAP/TAZ activation35. What remains mysterious is what determines the spatial specificity 

of crypt formation in developing growing organoids. Is it stochastic variegation in the 

Matrigel hydrogel or is it intrinsic to cell heterogeneity within the organoids, for example 

arising from differential MMP expression?

It must be noted, however, that cell spreading can lead to YAP/TAZ activation independently 

of the formation of FAs33. Signaling by diverse ECM components can trigger YAP/TAZ 

activity in different tissue types. For example, in the neonatal mouse heart, the ECM 

proteoglycan Agrin binds the dystrophin/glycoprotein complex (DGC) and induces YAP 

nuclear accumulation, promoting cardiomyocyte proliferation37–39 (FIG. 1). Mechanical 

signaling by Agrin regulates also HCC cells, in which Agrin is bound by the receptor LRP4/

MUSK to enhance Integrinβ1-FAK1 signaling and enhance YAP/TAZ 

mechanotransduction40. Other membrane bound proteins, which are not necessarily 

adhesion molecules, can transduce mechanical signals to YAP/TAZ, as the Ca2+ ion channel 

Piezo1 in human neural stem cells (NSCs), which is activated when NSCs are experiencing a 

stiff substrate, resulting in YAP/TAZ activation41.

A major open question in the field is how, mechanistically, signaling information generated 

by the F-actin cytoskeleton turns YAP/TAZ subcellular localization and activity ON or OFF. 

One possibility is that Angiomotin family proteins (AMOTs) act as mechanical mediators 

between F-actin structures and YAP/TAZ. AMOTs directly bind and potentially inhibit 

YAP/TAZ42; moreover, AMOTs interact with F-actin, in manner mutually exclusive with 

their YAP/TAZ association43. However, validation of AMOTs as mechanotransducers and 

bona fide YAP/TAZ inhibitors is lacking81.
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The nucleus itself can act as a mechanosensitive subcellular compartment by means of the 

interaction between F-actin and the LINC protein complex, as extensively reviewed 

elsewhere44. Recent work has proposed that YAP/TAZ entry in the nucleus occurs by 

increasing permeability through nuclear pores45 through LINC-regulated nuclear stretching 

(FIG. 1). At the same time, disruption of F-actin anchoring to LINC causes a global collapse 

of the stress fibers spanning the nucleus, with ensuing YAP/TAZ inhibition32.

YAP/TAZ regulation by cell polarity through Hippo signaling

The Hippo pathway is an evolutionary conserved kinase cascade initially uncovered by 

genetic screens for tissue overgrowth mutants in Drosophila melanogaster46–50. The core of 

the mammalian Hippo pathway is composed by a two-kinase module in which MST1 and 

MST2 (orthologues of Hippo in Drosophila), in cooperation with their binding partner Sav1, 

phosphorylate and activate LATS1 and LATS2 (orthologues of Warts in Drosophila); in turn, 

activated LATS proteins, aided by the co-factor MOB-1, directly phosphorylate YAP and 

TAZ inhibiting their activity through cytoplasmic retention and protein degradation51 (FIG. 

2A). Alternatively to MST1/2, members of the MAPK4K family of mitogen activated 

protein kinases phosphorylate and activate LATS, resulting in YAP/TAZ inhibition52,53. A 

potent upstream inducer of the Hippo pathway is Merlin which serves as scaffold for the 

core Hippo kinase module at cell-cell junctions in epithelial cells54,55. Indeed, epithelial 

architecture, with the engagement of cell-cell junctions and apicobasal polarity, is a strong 

inhibitor of YAP/TAZ activity. Mechanistically, cell polarity is associated to the membrane 

localization of Scribble, which serves as scaffold for a MST/LATS/TAZ complex that favors 

YAP/TAZ inhibition56. Other polarity proteins also impact on YAP/TAZ function, such as 

the apical crumbs complex (CRB), which binds to YAP/TAZ and favors their cytoplasmic 

localization57 (FIG. 2A). Loss of cell polarity is a general feature of EMT, a change in cell 

morphology associated with changes in cell fate and acquisition of stemness traits. 

Consistently, YAP/TAZ are activated by EMT and are required downstream of EMT to 

confer cancer stem cell attributes56,58.

The Hippo cascade is a prime input for YAP/TAZ activity and the first mechanisms 

discovered for YAP/TAZ regulation. Therefore “Hippo signaling” is often used as a 

surrogate term for “YAP/TAZ activity”. This would seem incorrect both because the Hippo 

cascade regulates downstream effectors other than YAP/TAZ 59, and because the Hippo 

pathway might not be the main player of YAP/TAZ modulation in diverse physiological and 

pathological settings. In fact, there are several LATS-independent cases of YAP/TAZ 

regulation, including mechanotransduction, Rho-GTPase signaling, inflammation and 

metabolism12,13,21,60–71. Worth noting is that, in mammary gland, lung, heart, kidney, 

pancreas, epidermis and nervous system, tissues in which tumor emergence is associated to 

high YAP/TAZ activity, genetic depletion of Hippo pathway components does not result in 

tumor formation60,68,72–76. This highlights how a combination of events, Hippo-

dependent and -independent must accumulate to activate YAP/TAZ above the threshold 

required for tumorigenesis7. Moreover, direct phosphorylation of YAP by LATS may not be 

sufficient to inhibit YAP nuclear accumulation: First, YAP phosphorylation on the prime 

LATS target residue S127 does not prevent YAP nuclear localization77; second, inhibition of 

nuclear export results in nuclear accumulation of phosphorylated YAP12,78; and third, 
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mechanical deformation of the nucleus can modulate subcellular localization of YAP in a 

phosphorylation-independent manner45. That said, although cell mechanics can regulate 

YAP/TAZ in a manner uncoupled from their phosphorylation by LATS1/2, LATS1/2 kinase 

activity can also be modulated by F-actin levels, and contribute to YAP/TAZ 

mechanotransduction13,33,79,80. We thus envision Hippo signaling as one segment of a 

broader framework of molecular events by which the cell structure act as overarching 

determinant of YAP/TAZ function. The reader may refer to other reviews for a more detailed 

discussion on this topic9,81.

Wnt-YAP/TAZ signaling

Besides their roles as effectors of the Hippo and mechanotransduction pathways, YAP and 

TAZ are also biochemical and transcriptional mediators of Wnt signaling, providing a 

mechanistic link to the observed overlap between Wnt and YAP/TAZ biology. At the core of 

the canonical Wnt pathway, the destruction complex is a multiprotein machinery that 

controls the intracellular levels of β-catenin, but is also a critical checkpoint coordinating 

both β-catenin and YAP/TAZ activity7,81 (FIG. 2B and see its legend for details). 

Strikingly, in the mouse small intestine, YAP/TAZ are not only massively activated by 

inactivation of destruction complex components (as in APC mutant cells) but also essential 

for the protumorigenic effects of aberrant Wnt signaling82–84. Similarly, YAP/TAZ mediate 

the effects of Wnt signaling in promoting proliferation and tumorigenesis of cancer stem 

cells (CSCs)61,82,85–89, to regulate differentiation of MSC61, and to sustain the intestinal 

crypt regeneration either of organoids in vitro or after tissue damage in vivo26,36,82,88.

Notably, cytoplasmic YAP/TAZ favors the recruitment of β-TrCP to the destruction 

complex, and as such facilitate β-catenin degradation82 (FIG. 2B). Therefore YAP/TAZ 

nuclear translocation induced by mechanical signals or Hippo inactivation can lead to β-

catenin nuclear localization73,82,90,91. This suggests a coherent regulation of YAP/TAZ 

and β-catenin, that explains why activation of the Hippo pathway, by controlling YAP/TAZ 

cytosolic localization, also restrains Wnt/β-catenin signalling81. Moreover YAP/TAZ can 

inhibit Wnt signaling by inhibiting Dishevelled (DVL)92,93. β-catenin itself is regulated by 

mechanical cues as well94. This mechanism raises the possibility that mechanical regulation 

of YAP/TAZ and β-catenin may be connected. Indeed, in epithelial monolayers, mechanical 

strains induce nuclear translocation of YAP followed by that of β-catenin, collectively 

leading to transcriptional activation required for cycle reentry95. Finally, an additional layer 

of interconnection between YAP/TAZ and β-catenin occurs on chromatin as outlined below.

In addition to the canonical Wnt/β-catenin pathway, the activation of the Wnt-FZD/ROR 

pathway promote YAP/TAZ signalling required for cell migration and osteogenic 

differentiation, acting through a Ga12/13-RhoGTPases96 (FIG. 2B).

Metabolic control of YAP/TAZ

A number of reports indicate a close connection between glucose homeostasis and YAP/TAZ 

activity97. Glucose availability has been recently found to sustain YAP/TAZ activity by 

feeding the hexosamine biosynthesis pathway (HBP). Mechanistically, high levels of glucose 
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lead to production of UDP-GlcNAc and this results in increased YAP O-GlcNAcylation 

which can stabilize YAP protein levels98,99. Moreover, phosphofructokinase 1 (PFK1), 

responsible for the most rate limiting step of the glycolytic cascade, promotes the YAP/TAZ 

transcriptional program by stabilizing their interaction with TEAD transcription factors63.

A metabolic shift from oxidative respiration to aerobic glycolysis, the “Warburg effect”, is a 

hallmark of cancer. Under these conditions, glycation of Hsp90 impairs its chaperone 

activity on LATS1 ultimately contributing to YAP/TAZ activation100. On the other hand, 

shortage of glucose availability inhibit YAP/TAZ activity mainly through the activation of 

the cellular energy sensor AMP-activated protein kinase (AMPK), which in turn regulates 

YAP/TAZ activity through multiple parallel phosphorylation events, either directly or 

through LATS197. Collectively, these studies suggest that the increased glucose 

consumption supporting cell proliferation in cancer cells also sustains a pro-tumorigenic 

transcriptional program through YAP/TAZ.

The metabolism of lipids, through the mevalonate/cholesterol biosynthetic pathway, is linked 

to the regulation YAP/TAZ, by promoting proliferation and migration of mammalian cells or 

tissue overgrowth in Drosophila embryos. Mechanistically, mevalonic acid sustains 

YAP/TAZ activity through the production of geranylgeranyl-pyrophosphate, which is 

covalently attached to the RhoA GTPase and required for membrane localization and 

activation of this protein. In turn, membrane active RhoA activates YAP/TAZ in a LATS1/2 

independent manner70,101.

The mTOR pathway represents a prototypical mechanism for control of cell size and 

proliferation in response to nutrients, growth factors and cellular energy levels102. The 

mTORC1 kinase complex sustains YAP/TAZ activity in a model of perivascular epithelioid 

tumors, by inhibiting the autophagosome-dependent lysosomal degradation of YAP protein 

in response to nutrients availability103. Moreover, the mTORC2 kinase complex can 

activate YAP/(TAZ) through inhibitory phosphorylation of AMOT proteins104, or 

MST1105, although the physiological relevance remains unknown.

YAP/TAZ regulation by GPCR signaling

Several metabolic regulators, hormones and growth factors act as extracellular signals 

through different classes of G-protein-coupled receptors (GPCRs), that, in turn, are able to 

induce or repress YAP/TAZ activity51,97. Specifically, stimulation of Gα-coupled receptors 

by multiple ligands, including lysophospholipids sphingosine 1-phosphate (S1P), 

lysophosphatidic acid (LPA), thrombin, estrogens and acetylcholine, results in YAP/TAZ 

activation through the promotion of a RhoGTPase-regulated F-actin cytoskeleton in a 

manner that is either LATS1/2-dependent or independent51,65,79,97. Conversely, Gαs-

coupled GPCR signaling elicited by glucagon or epinephrine represses YAP/TAZ activity 

through cAMP/PKA-dependent inhibition of RhoA-GTPase79,106 (FIG. 2A).

Constitutive YAP/TAZ activation by aberrant expression of GPCRs or by genetic mutations 

affecting their associated heterotrimeric G-proteins is implicated in the malignant promotion 
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of uveal melanoma107, skin basal-cell carcinoma108 and in sarcomas associated with 

Kaposi herpesvirus (KSHV)109.

Crosstalk with growth factor and inflammatory signaling

YAP/TAZ are interconnected with signaling pathways initiated by soluble growth factors 

through reciprocal mechanisms of regulation. As reviewed elsewhere, these include 

transforming growth factor beta (TGFβ), bone morphogenetic protein (BMPs), Hedgehog 

(Hh) and EGFR pathways51. Following intestinal injury, during which inflammation 

contributes to cell proliferation110, the release of IL-6 and IL-11 activates YAP/TAZ-

dependent proliferation in the intestinal crypt. Mechanistically, interleukin-mediated gp130 

signalling induces the activation of Src family kinases (SFKs), that trigger YAP activity by 

direct tyrosine phosphorylation71. Moreover, increased YAP/TAZ activity can upregulate 

gp130 signaling through a transcriptional mechanism, resulting in an amplification loop, as 

observed during tumor growth initiated by APC loss111. TAZ also regulates the 

differentiation of CD4+ T cells in the TH17 pro-inflammatory subset and promotes the 

expression of TH17 cell–associated genes, including IL17A112. This may be relevant for 

colorectal cancer (CRC), as a high level of IL17A and inflammatory T helper 17 (TH17) 

cells in the tumor microenvironment promote CRC progression170.

Controlling YAP/TAZ in the nucleus

Following nuclear translocation, YAP/TAZ elicit their biological functions mainly by 

regulating gene transcription through their association with the DNA-binding TEA domain 

family members (TEAD 1-4)113–115. Genome-wide, the mammalian complex of YAP or 

TAZ with TEAD (YAP/TAZ-TEAD) is directly recruited to promoter regions only for a 

minority of YAP/TAZ targets, as most associations to chromatin occur at distant enhancers, 

that contact their cognate promoters through DNA looping114. Enhancer-bound YAP/TAZ-

TEAD complexes regulate gene transcription by inducing a p300-dependent acetylation at 

lysine 27 of histone H3 (H3K27ac)113, by recruiting the Mediator complex and by inducing 

transcriptional elongation through the pause release of RNA Pol-II115 (FIG. 3A).

On DNA, YAP/TAZ-TEAD usually act combination with other TFs bound at neighboring 

cis-regulatory elements. Analysis of ChIP-seq data revealed that the AP-1 (Activator Protein 

1) TFs are recruited on a large set of enhancers bound by YAP/TAZ-TEAD, allowing 

synergistic cooperation in the control of tumor proliferation, migration and invasion, to drive 

epigenetic reprogramming of cancer cells into a stably chemoresistant state, and for bone 

metabolism114,116–118. Other TFs acting in combination with YAP/TAZ on the cis-

regulatory elements of individual genes are listed in Table 1 (for example RUNX2119,120), 

which also includes work on the potential role of YAP/TAZ as transcriptional repressors.

YAP/TAZ can interact with nuclear proteins that compete with their association with TEAD. 

Vgl-like-4 (VGLL4) counteracts the YAP/TAZ-dependent tumor growth by disrupting their 

interaction with TEADs in gastric, lung and breast cancer121–123. Notably, Vgll proteins 

can also serve as binding partners to TEAD, alternative to YAP/TAZ, promoting anchorage 

independent growth and cell proliferation. The structural determinants of this association 
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were recently reported124. Another example of a nuclear inhibitor is TIAM1, which 

prevents the interaction between TEAD and YAP or TAZ in the nucleus, probably by 

sequestering YAP/TAZ, inhibiting migration and invasion of CRC cancers87.

YAP/TAZ downstream genes and effector pathways

Sustained cell proliferation is probably one of the best characterized YAP/TAZ-dependent 

biological responses. Mechanistically, YAP/TAZ stimulate cell proliferation by controlling 

the expression of genes directly involved in the cell cycle, such as proteins involved in DNA 

replication and repair, cyclins and their regulators, mitotic kinases and factors required for 

completion of mitosis114,125–127. Moreover, YAP/TAZ indirectly control cell proliferation 

through the induction transcriptional regulators of the cell cycle114,127 (FIG. 3B). 

Intriguingly, Myc-dependent transcription requires the recruitment of YAP to MYC/TEAD-

loaded promoters, potentially amplifying the effects of YAP/TAZ on cell proliferation128. 

Thus, Myc-driven transcription is substantially a YAP/TAZ-driven gene expression program. 

This expands the long-neglected chromatin layer as a pivotal element of the integration of 

YAP/TAZ with other oncogenic or lineage specific transcription factors. YAP/TAZ further 

controls the expression of the CTGF, CYR61 and AXL and anti-apoptotic genes of the Bcl2 

and IAP family. These targets may support YAP/TAZ-driven chemoresistance129–131 and 

protection against apoptosis7,132. In some experimental contexts, YAP may display poorly 

understood tumor suppressive responses. Intriguingly, individual cells retaining elevated 

YAP levels undergo apoptosis, when they are no longer enmeshed into a YAP-supporting 

microenvironment133. Similar tumor suppressive responses exist in colorectal cancer92. 

Exciting evidence in Drosophila suggests that part of these tumor suppressive effects of YAP 

are connected to "cell competition" phenomena134. Whether cell competition occurs in 

adult mammalian tissues, and, if so, in a YAP/TAZ regulated manner, remains unknown.

YAP/TAZ also activate a transcriptional program required for cardiomyocyte protection 

from reactive oxygen species (ROS) generated after cardiac injury and ischemic 

damage135,136. In these conditions, active YAP fosters cardiomyocyte survival and partial 

heart regeneration either by cooperating with TEAD/Pitx2 to regulate the expression of a 

large subset of Pitx2 targets136, or by using FoxO1 as DNA-binding platform to induce the 

expression of antioxidant genes135.

As outlined above, several metabolic pathways can regulate YAP/TAZ. In response, 

YAP/TAZ activation reprograms cell metabolism to sustain massive cell proliferation. 

Mechanistically, YAP/TAZ modify metabolism through direct transcriptional regulation of 

glycolysis enzymes137–139, HBP99, glutamine metabolism and nucleotide 

biosynthesis140,141. In addition, YAP/TAZ can induce the BCAR4 lncRNA, leading to 

upregulation of the glycolytic PFKFB3139, supporting YAP/TAZ transcriptional 

responses63. Furthermore, YAP/TAZ upregulation through EphA2-RhoA-ROCK signaling 

is connected to raised glutamine metabolism141.

YAP/TAZ activate mTOR signaling by promoting the transcription of several regulators of 

the mTOR pathway, such as the mTORC1 activator Ras homolog enriched in brain (RHEB), 

required for proliferation of transient-amplifying (TA) cells during tissue renewal of mouse 
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incisors67; the L-type amino acid transporter 1 (LAT1)142, which enhances amino acid 

uptake and consequent mTORC1 activation and the microRNA miR-29, which inhibits 

PTEN translation and PI3K-mediated activation of mTORC1 and mTORC2 kinases143. 

However, large gaps remain in our understanding of the potential overlap between Hippo, 

mTOR and YAP/TAZ for control of cell and organ size.

YAP/TAZ impact on Notch

Work in various cellular context has revealed the importance of functional and molecular 

connections between YAP/TAZ and Notch signaling144. YAP/TAZ-dependent regulation of 

Notch ligands in one cell triggers activation of Notch signaling in neighboring cells. For 

example, YAP/TAZ-induced JAG1 expression activate Notch signaling to promote 

differentiation of neural crest progenitors into smooth muscle cells during arterial wall 

development145. Moreover, contraction of muscle fibers triggers YAP mechanotransduction 

to induce JAG2 and turn on Notch signaling in neighboring satellite cells, preventing their 

differentiation146.

Besides inducing Notch activity in trans (non-cell autonomously), YAP/TAZ-driven 

expression of Notch ligands can protect the cells endowed with the highest YAP/TAZ levels 

from receiving Notch signaling, so called “cis-inhibition”147. Indeed epidermal progenitors 

are maintained in an undifferentiated state by mechanical activation of YAP/TAZ that 

upregulate DLL1, JAG2 and DLL3 ligands, resulting in cell-autonomous cis-inhibition of 

Notch signaling148. Thus the structural features of the microenvironment are translated into 

dynamic changes of YAP/TAZ activity to orchestrate spatial control of self-renewal vs. 

differentiation of stem cells.

Another exciting discovery is that YAP mechanotransduction feeding on Notch signaling is 

at the centerpiece of the enigmatic somitic "segmentation clock" (periodic waves of gene 

function that travel through the presomitic mesoderm)149. It appears that what regulates this 

oscillatory system are the extensive biomechanical changes occurring in cells exiting 

gastrulation, including collective movement and compaction, patterning YAP activity 

leading to repression of Notch150.

The influence of YAP/TAZ on cell mechanics

In light of the overarching role of cell mechanics in controlling YAP/TAZ activity, it should 

be mentioned that an important subset of the YAP/TAZ transcriptional program is devoted to 

the installment of a positive feedback loop that promotes F-actin remodeling and high 

mechanical signaling that further supports YAP/TAZ activity. Such a feedback mechanism is 

illustrated by the medaka fish hirame mutant, in which a loss-of function mutation of YAP 

causes flattening of the entire animal body, due to impaired development of actomyosin-

mediated tissue tension151. Further, ChIP-seq analysis on MSCs cultured on substrates of 

different rigidities has revealed that mechanically-activated YAP/TAZ can enhance the 

assembly of FA complexes by directly promoting the transcription of integrins and FAs 

docking proteins152 (FIG. 3C). During cardiomyocyte regeneration, YAP/TAZ directly 

promote the expression of F-actin regulatory proteins and adhesion molecules, including 
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components of the DGC38 (FIG. 3D). During liver fibrosis, YAP/TAZ promote the sustained 

expression of Integrinβ1 by activated myofibroblasts17 (FIG. 3E).

Branching morphogenesis of the lung is impaired in YAP conditional knockout mice, and a 

number of YAP/TAZ targets modulate actomyosin contractility153 (FIG. 3F). YAP/TAZ also 

crosstalk with the vascular endothelial growth factor (VEGF) during angiogenesis. During 

vascular development, cytoskeletal rearrangement of endothelial cells induced by VEGF 

triggers the activation of YAP/TAZ which feeds back on cytoskeletal gene expression to 

sustain endothelial remodeling and to ensure correct VEGF receptor trafficking154,155 

(FIG. 3G).

Another “inside-out” positive feedback loop is found in breast cancer associated fibroblasts 

(CAFs), in which YAP/TAZ directly promote the expression of modulators of F-actin 

contractility. Increased contractility fosters the deposition of fibrous collagen, that, by 

enhancing ECM stiffness, sustains YAP/TAZ activity in both CAFs and epithelial cancer 

cells22 (FIG. 3H). In breast cancer cells, expression of TAZ can induce cancer stem cell 

properties56 but also sustain its own activity by inducing transcription of laminin 511, a pro-

YAP/TAZ ECM component156 (FIG. 3I). In cancer cell lines, YAP/TAZ-TEAD and AP1 

cooperate to activate Dock proteins, a family of small GTPases that regulate Rac1 and 

Cdc42 to drive cytoskeletal organization, cell adhesion and motility116.

Outstanding questions

The interest in YAP/TAZ biology and regulation was initially inspired by pioneering work 

on the Hippo cascade and its roles in controlling organ size and tumorigenesis. Subsequently 

we learned that the Hippo kinase cassette is a segment of a broader framework in which 

YAP/TAZ are regulated by the structural features of cells and tissues, in Hippo-dependent 

and -independent ways. New data have shed light on the molecular mechanisms by which 

YAP/TAZ act as sensors and effectors of the cell’s behavior in a tissue context.

A model is emerging in which cytoskeletal organization reflecting tissue-level mechanical 

forces, serves as an overarching determinant of YAP/TAZ activation. In turn, through 

feedback and crosstalk mechanism, YAP/TAZ impact on a variety of cellular events, from 

growth factors responsiveness to metabolism. Here we tried to integrate data from different 

model systems to offer a comprehensive picture, but it should be noted that the relative 

relevance of each step may be different in distinct cells and in vivo conditions. YAP/TAZ 

activation can endow cell plasticity, reprogramming primary, genetically normal 

differentiated cells into their corresponding tissue-specific stem or progenitors157. There are 

obvious implications for regenerative medicine, but many questions remain. What are the 

constituents of this program? What are the partner transcription factors by which YAP/TAZ 

operate in various histotypes? Are these tissue-specific or universal? What are the 

downstream genes? Can we use YAP/TAZ to epigenetically explore the so far enigmatic 

self-renewal properties of stem cells?

Furthermore, the mechanisms by which YAP/TAZ are regulated by cell mechanics remain 

poorly understood. YAP/TAZ mechanotransduction can be independent from LATS, still, 
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LATS itself can be regulated by F-actin potentially reinforcing the mechanotransduction 

pathway. Moreover, the Hippo pathway feeds back on cytoskeletal organization by directly 

phosphorylating cytoskeletal components43,158. However, it’s unclear how this interplay is 

orchestrated.

The Hippo pathway has additional targets other than YAP/TAZ, including regulation of 

chromosome segregation, the spindle checkpoint, p53, hormonal receptors and immune cell 

function59,171. Ironically, it is still unclear whether YAP/TAZ are instrumental or 

dispensable for organ size control that made the Hippo pathway famous.

Finally, YAP/TAZ activation is instrumental for both cancer and regeneration. The essential 

role of YAP/TAZ for the emergence of solid tumors resembles the “transcriptional 

addiction” phenomenon observed in cancer cells, through the disproportional use of 

enhancer elements7,159 It’s currently unclear whether the knowledge outlined above can be 

used to combat excess of YAP/TAZ activity in cancer. Addressing these issues might have 

immediate clinical implications for an anti-YAP/TAZ based cancer therapy.
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Figure 1. Biomechanical signal transduction to YAP/TAZ.
Let top panel: cells respond to ECM rigidity by adjusting their tensional state through 

Integrin-mediated cell-ECM adhesions. Low ECM resistance corresponds to reduced 

adhesion and focal adhesion maturation, low actomyosin contractility and YAP/TAZ 

inactivation by yet unclear cytoplasmic or nuclear inhibitors (brown ring). Right panel: High 

ECM resistance favors integrin clustering and intracellular tension, disabling YAP/TAZ 

mechanically-regulated inhibitory mechanisms (red cross), allowing for YAP/TAZ function. 

Center: The F-actin cytoskeleton integrates mechanical strain arising from cell-ECM and 
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cell-cell adhesions. These physical inputs are transduced into YAP/TAZ function. YAP/TAZ 

activation is mediated by release of YAP/TAZ from inhibitors but also entails modulation of 

YAP/TAZ nuclear-cytoplasmic shuttling. The F-actin cytoskeleton impacts on the mechanics 

and shape of the nucleus through Nesprin and SUN complexes, favoring YAP/TAZ nuclear 

entry by inducing nuclear deformation and increased permeability of the NPC. Bottom 

panels: Schematic representation of the signaling cascade that triggers actomyosin 

deposition and contractility at Integrin-mediated focal adhesions (left). ECM components 

Laminin and Agrin can signal to the actomyosin cytoskeleton through the dystroglycan-

dystrophin complex (right). βPIX: PAK-interacting exchange factor; ECM: extracellular 

matrix; FAK: Focal adhesion kinase; NPC: nucelar pore complex; PAK: p-21 activated 

kinase; Rho GEFs: Rho Guanidine nucleotide exchange factors; ROCK: Rho-associated 

protein kinase; SUN: SUN domain-containing protein.
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Figure 2. YAP/TAZ regulation by Hippo and Wnt signaling.
A) Schematic representation of the upstream components that activate the core module of 

the Hippo pathway, composed by the kinases MST1/2 and LATS1/2. The “Hippo ON” state 

results in YAP/TAZ phosphorylation with ensuing proteasomal degradation and/or 

cytoplasmic sequestration (left panel). In the “Hippo OFF” state YAP/TAZ are set free of 

inhibitory phosphorylations; in presence of other YAP/TAZ inducing/permissive extrinsic or 

intrinsic signals, YAP/TAZ activity is unleashed (right panel). B) YAP/TAZ - Wnt signaling 

interplay. The destruction complex is a multiprotein machinery at the core of the canonical 
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Wnt pathway, controlling the intracellular levels of β-catenin. In the “Wnt OFF” state, 

YAP/TAZ associate with Axin to be incorporated in the destruction complex together with 

β-catenin. As such, the complex restrains both β-catenin and YAP/TAZ activity regulating 

their sequestration and/or degradation in the cytoplasm (left panel). In the presence of a 

“Wnt ON” state, the destruction complex is inhibited as Axin and GSK3 bind to the Wnt 

receptors LRP5/6 being internalized into MVBs. The disassembly of the complex by Wnt 

ligands abolishes both β-catenin and YAP/TAZ cytosolic inhibition, triggering their nuclear 

accumulation with consequent activation of transcriptional responses81 (right panel). The 

role of the destruction complex as checkpoint coordinating YAP/TAZ activity has been 

further corroborated by recent reports, including the findings that: i) SCD1 activity promotes 

the secretion of active (i.e., lipid-modified) Wnt ligands, leading to YAP/TAZ activation86; 

ii) cytosolic TIAM1 is incorporated in the destruction complex to promote β-TrCP-

dependent YAP/TAZ degradation and sequestration87; iii) the actin regulator WIP stabilizes 

YAP/TAZ proteins by inhibiting the destruction complex into MVBs85; iv) the tumor 

suppressor PKCζ associates with the destruction complex to inhibit YAP nuclear 

localization88. APC: adenomatous polyposis coli; AMPK: AMP-activated protein kinase; 

βcat: β-catenin; β-TrCP: beta-transducin repeat containing protein; FZD: Frizzled; GSK3: 

Glycogen synthase kinase 3; LATS: large tumor suppressor kinase; LRP5/6: low-density 

lipoprotein receptor-related protein 5/6; MAP4K: MAP kinase kinase kinase kinase; MVB: 

multi-vesicular body; MST: mammalian Ste20-like kinase; NF2: neurofibromatosis type 2; 

PKCζ: protein kinase C, zeta; SAV1: Salvador 1; SCD1: stearoyl-CoA-desaturase 1; WIP: 

WASP-interacting protein.
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Figure 3. YAP/TAZ nuclear activities and positive feedback mechanisms.
A. Active YAP/TAZ in the nucleus bind preferentially to TEAD co-transcription factors at 

cognate TEAD/AP-1 binding sequences. Complexes formed by YAP or TAZ with TEAD are 

in most cases formed at enhancer regions distal to the TSS, at which Pol-II is activated by 

chromatin looping. B. YAP/TAZ promote cell cycle progression by directly activating the 

transcription of different genes required for DNA replication, mitosis and checkpoint 

progression and indirectly by activating the transcription of other master transcription 

factors, as indicated. YAP/TAZ direct transcriptional target genes are shown in red.. C-I. 
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Schematic representation of different physio-pathological and developmental conditions in 

which YAP/TAZ transcriptional program leads to the installment of a positive mechanical 

feedback. C) Mechanically activated MSCs152; D) regenerating cardiomyocytes38; E) 

activated myofibroblasts during liver fibrosis17; F) lung branching morphogenesis153; G) 

endothelial cells during vascular development154,155; H-I) activated CAFs and breast 

cancer cells22,156., AP-1: activator protein 1; CAFs: cancer associated fibroblasts; DGC: 

dystrophin-associated glycoprotein; FA: focal adhesions; MCM: mini chromosome 

maintenance; MSCs: mesenchymal stem cells; Pol-II: RNA polymerase II; Polα: DNA 

polymerase alpha; Polε : DNA polymerase epsilon; TEAD: TEA-domain family member; 

TSS: transcription start site.
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Table 1
Main transcription factors cooperating with YAP/TAZ.

The biological model in which the ChIP experiments were performed is indicated in brackets, when available. 

ND: Not determined, hESC: human embryonic stem cell, PDAC: pancreatic ductal adenocarcinoma, SSC: 

skeletal stem cells, TF: transcription factor.

YAP/TAZ-TEAD cooperation with other transcription factors.

TF cis-Regulatory element Biological role and tissue context Transcriptional effect Ref

AP1 Enhancer Tumor proliferation, migration and invasion (A549, 
HCT116, SK-N-SH, ECC1, MDA-MB-231); 
chemoresistance; bone metabolism

Activation 114,116–118

PITX2 Enhancer/Promoter Mouse myocardial regeneration upon ischemic 
injury (P2 mouse ventricle)

Activation 136

NICD/RBPJ Enhancer Trophectoderm lineage specification in mouse 
blastocyst

Activation 160

ZEB1 Promoter Breast cancer aggressiveness (MDA-MB-231) Activation 161

ICD-ERBB4 ND Breast cancer cell migration Activation 162

E2F Promoter Cell cycle progression (S2R+); PDAC proliferation 
(KrasG12D-driven pancreatic tumors and primary 
cell cultures)

Activation 125,127

MYC Promoter Cell cycle entry and cell proliferation (3T9MycER 

fibroblasts)
Activation 128

SNAIL/SLUG Promoter Osteoprogenitors proliferation (SSC-derived 
osteoblast progenitors)

Activation 119

p65 Promoter Breast cancer cell migration (MCF7) Activation 138

NuRD complex Enhancer Mesoderm specification of hESCs (hESC) Inhibition 163

Promoter Epithelial cells growth and migration (MCF-10A) Inhibition 164,165

Promoter Maintenance/Preservation of smooth muscle 
mesenchymal progenitors (C3H10T1/2)

Inhibition 166

SMADs Enhancer Mesoderm specification of hESCs (hESC) Inhibition 163

YAP/TAZ cooperation with DNA binding platforms

RUNX2 Promoter Osteogenic differentiation (SSC-derived osteoblast 
progenitors; C2C12)

Activation 119,120

p73 Promoter DNA-damaged induced apoptosis (HCT119, 
HEK293)

Activation 167,168

p53 Mutant Promoter Cancer cell proliferation (MDA-MB-468) Activation 169

FoxO1 Promoter Myocardial response to ischemic injury (H9C2) Activation 135

NICD/RBPJ Enhancer Embryonic differentiation of neural crest precursors 
(MDA-231)

Activation 145

β-catenin/TCF Promoter/ND Heart development (E14.5 hearts) Activation 73

β-catenin/TBX5 Promoter Cancer cell lines pro-survival genes (HuTu80) Activation 29
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