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Abstract

Purpose: Determination of the minimum number of gradient directions (Nmin) for robust 

measurement of spherical mean diffusion weighted signal (S).

Methods: Computer simulations were employed to characterize the relative standard deviation 

(RSD) of the measured spherical mean signal as a function of the number of gradient directions 

(N). The effects of diffusion weighting b-value and signal-to-noise ratio (SNR) were investigated. 

Multi-shell high angular resolution Human Connectome Project diffusion data were analyzed to 

support the simulation results.

Results: RSD decreases with increasing N, and the minimum number of N needed for RSD ≤ 5% 

is referred to as Nmin. At high SNRs, Nmin increases with increasing b-value to achieve sufficient 

sampling. Simulations showed that Nmin is linearly dependent on the b-value. At low SNRs, Nmin 

increases with increasing b-value to reduce the noise. RSD can be estimated as σ
S N , where σ = 

1/SNR is the noise level. The experimental results were in good agreement with the simulation 

results. The spherical mean signal can be measured accurately with a subset of gradient directions.

Conclusion: As Nmin is affected by b-value and SNR, we recommend using 10×b/b1 (b1 = 1 ms/

μm2) uniformly distributed gradient directions for typical human diffusion studies with SNR ~ 20 

for robust spherical mean signal measurement.
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Introduction

Diffusion MRI is a non-invasive tool to detect tissue microstructural information based on 

restricted water Brownian motion within tissues. The conventional technique measuring 

tissue microstructure is diffusion tensor imaging (DTI), a technique that models water 

diffusion in each voxel as a symmetric tensor [1]. The DTI derived mean diffusivity (MD) 

and fractional anisotropy (FA), measures widely used to quantify tissue microstructure, are 

rotationally invariant. However, for two voxels with different fiber directions, the measured 

FAvoxel1 and FAvoxel2 cannot be simply averaged to obtain the entire voxel FA. In other 

words, the single tensor model is inappropriate for quantifying tissue microstructure in 

situations with complex fiber orientation distribution (FOD). Another diffusion-based 

approach to quantify tissue microstructure is direct measurement of tissue properties, such as 

axon size and intra-axonal volume fraction (Vin) [2–5]. Vin is rotationally invariant, 

independent of FOD, and can be averaged. The crossing fiber problem still needs to be 

considered in order to measure Vin accurately. Simultaneous fitting of FOD and Vin is 

challenging as the number of unknown parameters increases with increasing the complexity 

of FOD [6–9]. Recently, it was demonstrated that the FOD information can be factored out 

by analyzing the spherical mean diffusion weighted signal (S) averaged over all gradient 

directions [10–12]. A simple linear relation between Vin and S was further derived 

analytically [12]. S-based analysis has been applied in various recent works, such as 

apparent fiber density [13–15], spherical mean technique [11,16,17], fiber ball imaging 

[12,18], power-law scaling [19,20], and rotationally-invariant framework [21–23].

Previous S-based studies employed a large number of gradient directions, but subsequent 

sparse sampling analysis demonstrated that the number of gradient directions could be 

reduced without significant effect on accuracy [16–18]. Clinical diffusion scan protocols are 

typically less than 5 min, which only allows acquiring ~ 30 different directions. It is 

undetermined as whether 30 directions is enough for accurate S measurement, especially at 

high b-values (b ≥ 3 ms/μm2). Multi-shell acquisition schemes are able to obtain a more 

comprehensive diffusion dataset, and hence, provide greater sensitivity in detecting tissue 

microstructure than single-shell schemes [11,16,24]. The increased scanning time requires 

optimal design of number of directions for each shell.

Given the substantial recent interest in using S to quantify tissue microstructure, it is 

worthwhile to determine the minimum number of gradient directions for robust 

measurement of S. The current study aims to determine the minimum number of gradient 

directions for robust measurement of spherical mean signals at different b-values. Similar to 

previous DTI and spherical deconvolution studies [25–27], we employed computer 

simulations to investigate the effect of signal-to-noise ratio (SNR) on the required number of 

gradient directions. Multi-shell Human Connectome Project (HCP) diffusion datasets were 

used to support the simulation results.
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Materials and methods

Theory

The results of single fiber analysis can be generalized to crossing fibers as illustrated by 

Tournier et al. [27] in the determination of the minimum number of directions for spherical 

deconvolution. The problem of determining the minimum number of directions for spherical 

mean signal can also be restricted to single fiber analysis. The total spherical mean signal in 

each voxel is simply the sum of each single fiber’s spherical mean signal, and the spherical 

mean signal of a single fiber is independent of the fiber orientation [10,11]. For this reason, 

we focus on the analysis of a single fiber pointing in the direction n. Based on the widely 

used two-compartment model of intra- and extra-axonal spaces, the diffusion weighted 

signal (S) along gradient direction g can be expressed as

S(b, g) = S0 ⋅ [V in ⋅ e
−bDin

⊥ − b(Din
∥ − Din

⊥) ⋅ (n ⋅ g)2
+ (1 − V in) ⋅ e

−bDex
⊥ − b(Dex

∥ − Dex
⊥ ) ⋅ (n ⋅ g)2

] (1)

where S0 is the signal for b=0, and Din
∥ , Din

⊥, Dex
∥ , Dex

⊥  are intra-axonal axial diffusivity, intra-

axonal radial diffusivity, extra-axonal axial diffusivity, and extra-axonal radial diffusivity, 

respectively. Following previous multi-compartment modeling studies, we assume Din
⊥ = 0

[16,18,23], Dex
⊥ = (1 − Vin) ⋅ Dex

∥  [16,28], and Dex
∥ = Din

∥ = the intrinsic diffusivity λ [16]. The 

ground truth S is the signal averaged over all gradient directions, and it can be expressed as

S(b) = S0 ⋅ [
V in ⋅ π ⋅ erf( bλ)

2 bλ
+

(1 − V in) ⋅ π ⋅ erf( bλV in)
2 bλV in

⋅ e
−bλ(1 − Vin)

] (2)

where erf is the error function. Due to the exponential decay term, the extra-axonal water 

contribution can be neglected with sufficiently large b-values. In that case, a simple linear 

relation between S and Vin can be derived as S = S0 ⋅ Vin ⋅ π
2 bλ  [12,13]. Note that erf 

( bλ) ≥ 0.98 when bλ ≥ 3.

Simulations

Diffusion-weighted signals were simulated with gradient directions approximately evenly 

distributed on a unit sphere as proposed by Jones et al. [29]. The number N of gradient 

directions varied from 6 to 100, and the spherical mean signal S was calculated as the signal 

averaged over N directions. For each value of N, 10,000 different directions of the single 

fiber n (uniformly sampled on a sphere) were simulated, from which the mean and standard 

deviation of S were calculated. The relative standard deviation (RSD), defined as the ratio of 

the standard deviation to the mean, was used to indicate the precision of S measurement. 

Nmin was determined as the minimum number of gradient directions for RSD(S) ≤ 5%. Nmin 

is the number of gradient directions needed to achieve sufficient sampling.
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Computer simulations were performed in MATLAB with S0 = 1, Vin = 0.6, and λ = 2 

μm2/ms to mimic typical brain white matter parameters [16,18,23]. The diffusion weighting 

b-value varied from 1 to 10 ms/μm2. To investigate the effect of SNR on Nmin, complex 

Gaussian noise was added to the simulated signal S(b,g), and the magnitude of the noisy 

signal was then taken as the measured signal M(b,g). To correct for Rician bias in the 

measured signal, here we used the corrected amplitude signal A(b, g) = M2(b, g) − 2σ2, 

where σ = 1/SNR is the noise level. The corresponding M, A, RSD(M), and RSD(A) were 

calculated accordingly. Two typical SNRs in the b=0 image of 20 and 40 were used for 

current study. Two factors are expected to affect RSD(M) or RSD(A). The first is the 

noiseless RSD(S), and the second is the impact of noise. Since the standard deviation of the 

mean of N normally distributed random variables is σ
N , the noise related RSD is estimated 

as σ
S N . Therefore, we used the maximum of RSD(S) and σ

S N  to approximate RSD(M) or 

RSD(A).

RSDapp = max{RSD(S), σ
S N

} (3)

Nmin was determined as the minimum number of gradient directions for RSDapp ≤ 5%.

Human data

High-quality HCP data from 3 healthy adults, as part of the MGH-USC Adult Diffusion 

Dataset, were downloaded from ConnectomeDB (http://db.humanconnectome.org). 

Diffusion data were acquired with 4 different b-values (i.e., 4 shells): 1 ms/μm2 (64 

directions), 3 ms/μm2 (64 directions), 5 ms/μm2 (128 directions), and 10 ms/μm2 (256 

directions). The gradient direction sets were specifically designed so that a lower shell set is 

a subset of higher shell set. At each shell, the gradient directions were approximately 

uniformly distributed [29–31]. One non-diffusion weighted b=0 image was collected for 

every 13 diffusion weighted images. The signal-to-noise ratio (SNR) was about 20 for white 

matter in the b=0 image, which was estimated with a maximum-likelihood approach [32].

To demonstrate the accuracy of subsampling for M measurement, a subset of gradient 

directions at each shell were selected: 10 directions for b = 1 ms/μm2, 30 directions for b = 3 

ms/μm2, 50 directions for b = 5 ms/μm2, and 100 directions for b = 10 ms/μm2. Those 

subsets were determined with the incremental sampling scheme to guarantee reasonably 

uniform coverage [31]. The numbers of gradient directions in subsets were guided by the 

simulation results. The relative differences of M between full data sets and subsets were 

calculated.

Results

The simulated signal S, measured magnitude M, and corrected amplitude A were dependent 

on the number N of gradient directions (Figure 1). The markers represent the mean values 

over 10,000 different directions of the single fiber n, and the error-bars represent the 
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standard deviations. The solid lines are the ground truth spherical mean signals based on Eq. 

(2). As shown in Figure 1(a), the mean S is consistent with the ground truth at each b-value 

and the standard deviation decreases with increasing N. The Rician bias is evident in Figure 

1(b), especially at high b-values. Increasing N did not help reduce the Rician bias. The 

corrected amplitude A is closer to the ground truth than M.

RSD(S) decreases with increasing N, and the minimum number of N needed for RSD(S) ≤ 

5% is referred to as Nmin. Figure 2(a) shows the calculated RSD(S) as a function of the 

number of gradient directions. As expected from previous spherical deconvolution work 

[27], the diffusion signal profile becomes sharp with increasing b-value and more gradient 

directions are needed for accurate measurements of S. Figure 2(b) shows the linear 

dependence of Nmin on b-value.

Our simulations showed that RSD(A) can be properly fit by Eq. (3). Figures 3 (a) and (c) 

show the calculated RSD(A) at SNR = 20 and 40, respectively. The solid curves represent 

the approximated RSDapp based on Eq. (3). Here the minimum number of N needed for 

RSDapp ≤ 5% is referred to as Nmin. The lower the SNR, the higher the number of gradient 

directions needed for accurate measurement. At SNR = 40, Nmin is the same with that of 

SNR = ∞. At SNR = 20, RSD(A) is dominated by σ
S N . Nmin is still linearly dependent on 

b-value.

Multi-shell high angular resolution HCP diffusion data were analyzed to support the 

simulation results. SNR was ~ 20 for white matter in the b=0 image, suggesting that Figure 

3 (b) can be used to determine the number of gradient directions for each subset. Since the 

subset is not fully uniformly distributed, it is better to use a slightly larger N than Nmin in 

Figure 3(b) to guarantee reasonably uniform coverage, which could also help reduce the 

noise. Here we used 10 directions for b = 1 ms/μm2, 30 directions for b = 3 ms/μm2, 50 

directions for b = 5 ms/μm2, and 100 directions for b = 10 ms/μm2. Figure 4 shows the 

comparison between full data sets and subsets for M measurements at different b-values. The 

relative differences were shown in the last row. The high relative difference in cerebrospinal 

fluid (CSF) at b = 1 ms/μm2 is due to the low signal in CSF and small number of gradient 

directions in subset. Overall, the whole brain relative differences are 3.14 ± 0.26%, 2.56 

± 0.17%, 2.77 ± 0.10%, and 2.34 ± 0.07% for b = 1, 3, 5, and 10 ms/μm2, respectively. Thus, 

the experimental results were in good agreeement with the simulation results. The spherical 

mean signal can be measured accurately with a subset of gradient directions.

Discussion

The conventional DTI method is significantly limited by the crossing fiber problem for 

accurate quantification of tissue microstructure. To factor out the complex fiber orientation 

distribution, the spherical mean technique was proposed to analyze the spherical mean signal 

instead of the individual signal along each gradient direction [11,16]. The current study 

investigated the minimum number of gradient directions for robust measurement of spherical 

mean signals at different b-values. In the case of SNR = ∞, Nmin is the number of gradient 

directions needed to achieve sufficient sampling. Computer simulations were employed to 
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characterize the dependence of RSD(S) on N and b-value (see Figure 2). In the case of 

limited SNR, RSD can be estimated by the maximum of the noiseless RSD(S) and noise-

dependent σ
S N . For typical human diffusion studies with SNR ~ 20, we recommend using 

10×b/b1 (b1 = 1 ms/μm2) uniformly distributed gradient directions for robust S
measurement. For example, 30 gradient directions is sufficient for robust S measurement at b 
= 3 ms/μm2, which is achievable within 5 min.

Although our simulations were based on a simplified two-compartment model with 

predefined λ and Vin, the conclusion can be generalized to other situations. The assumption 

of Dex
⊥ = (1 − Vin) ⋅ Dex

∥  is based on the first-order tortuosity approximation for a system of 

randomly placed parallel cylinders [28]. Several studies have proposed to estimate Dex
∥  and 

Dex
⊥  using more comprehensive diffusion datasets [18,21,23]. The choice of an extra-axonal 

model is insignificant to our study as the extra-axonal water contribution is negligible with 

sufficiently large b-values [12,13]. Due to the small axon size in brain white matter, the 

intra-axonal transverse diffusion is highly restricted, and it is commonly assumed that 

Din
⊥ = 0 [12,16,23,33]. Recent power-law scaling studies supported that the approximation is 

reasonable for white matter [19,20]. This approximation is also insignificant to our study as 

a larger Din
⊥ = 0 is expected to make the diffusion profile more isotropic, which in turn 

requires less number of gradient directions for sufficient sampling. The intrinsic diffusivity 

λ was fixed in our simulations. Recent studies demonstrated that λ varies substantially in 

the brain and that the variation may provide information about the underlying cellular milieu 

[16,18,23]. However, according to Eq. (2), changing λ is equivalent to changing b-value. 

The extra simulation with varying λ is unnecessary. Similarly, changing Vin is equivalent to 

changing SNR. Eq. (3) is always valid for determination of the minimum number of gradient 

directions for robust measurement of spherical mean signal.

The Rician bias correction was not implemented on the HCP data. Our simulations suggest 

that A(b, g) = M2(b, g) − 2σ2 is better than the standard A(b, g) = M2(b, g) − σ2 [34] for S
measurement in white matter. For repeated measurements along a single gradient direction 

or isotropic diffusion measurements along different directions, A(b, g) = M2(b, g) − σ2 is 

preferable [34]. However, for anisotropic diffusion in white matter, the measured signals 

along different directions are different and S is the mean of the signals from N different 

Rician distributions. In that case, simulations suggest that A(b, g) = M2(b, g) − 2σ2 is better. 

Note that the reconstruction method and data preprocessing may alter the noise properties 

[16,35]. The Rician bias correction will need to be investigated further in future studies.

Conclusion

In this study we characterized the relative standard deviation of the spherical mean signal as 

a function of the number of gradient directions. The minimum number of gradient directions 

for robust spherical mean signal measurement was then determined. At high SNRs, Nmin 

increases with increasing b-value to achieve sufficient sampling. At low SNRs, Nmin 

Li et al. Page 6

Magn Reson Imaging. Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



increases with increasing b-value to reduce the noise. We recommend using 10×b/b1 

uniformly distributed gradient directions for typical human diffusion studies with SNR ~ 20 

for robust spherical mean signal measurement.
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Figure 1. 
Dependence of the calculated S (a), M (b), and A (c) on the number N of gradient directions. 

The markers represent the mean values, and the error-bars represent the standard deviations. 

The solid lines are the ground truth spherical mean signals based on Eq. (2). SNR = 20 for 

(b) and (c).
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Figure 2. 
Dependence of the calculated RSD(S) on N for different b-values (a), and dependence of 

Nmin on b-value (b). SNR = ∞ for the simulated S.
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Figure 3. 
The markers are the calculated values of RSD(A) at SNR = 20 (a) and 40 (c). The solid 

curves in (a) and (c) represent the approximated RSDapp based on Eq. (3). Nmin is the 

minimum number of gradient directions for RSDapp ≤ 5%. Figure 3 (b) and (d) show the b-

value dependent Nmin at SNR = 20 and 40, respectively.

Li et al. Page 12

Magn Reson Imaging. Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Comparison between full data sets and subsets for M measurements from a representative 

subject. The relative differences were shown in the last row. The low relative differences 

demonstrate that M can be measured accurately with a subset of gradient directions.
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