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Abstract

Background: Neuroblastoma is characterized by substantial clinical heterogeneity. Despite intensive treatment, the survival rates
of high-risk neuroblastoma patients are still disappointingly low. Somatic chromosomal copy number aberrations have been shown
to be associated with patient outcome, particularly in low- and intermediate-risk neuroblastoma patients. To improve outcome pre-
diction in high-risk neuroblastoma, we aimed to design a prognostic classification method based on copy number aberrations.
Methods: In an international collaboration, normalized high-resolution DNA copy number data (arrayCGH and SNP arrays)
from 556 high-risk neuroblastomas obtained at diagnosis were collected from nine collaborative groups and segmented using
the same method. We applied logistic and Cox proportional hazard regression to identify genomic aberrations associated
with poor outcome.

Results: In this study, we identified two types of copy number aberrations that are associated with extremely poor outcome.
Distal 6q losses were detected in 5.9% of patients and were associated with a 10-year survival probability of only 3.4% (95%
confidence interval [CI] = 0.5% to 23.3%, two-sided P = .002). Amplifications of regions not encompassing the MYCN locus
were detected in 18.1% of patients and were associated with a 10-year survival probability of only 5.8% (95% CI = 1.5% to
22.2%, two-sided P < .001).

Conclusions: Using a unique large copy number data set of high-risk neuroblastoma cases, we identified a small subset of
high-risk neuroblastoma patients with extremely low survival probability that might be eligible for inclusion in clinical trials
of new therapeutics. The amplicons may also nominate alternative treatments that target the amplified genes.

Neuroblastoma is a pediatric tumor of the sympathetic nervous 5% of childhood cancer diagnoses, while accounting for approxi-
system, affecting mainly children younger than age five years mately 10% of childhood cancer deaths (2,3). Neuroblastoma is
(1). It is the most common extracranial solid cancer, making up characterized by extensive clinical heterogeneity, illustrated by
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different clinical evolutions ranging from spontaneous regres-
sion to aggressive disease. Therefore, prognostic markers that
accurately differentiate low- and high-risk patients are essen-
tial. Current risk stratification of neuroblastoma patients is
mainly  performed according to the International
Neuroblastoma Risk Group (INRG) classification system and is
based on clinical parameters including age and stage of the dis-
ease, histopathological parameters including differentiation
status of the tumor, and genetic parameters including MYCN
amplification, 11q loss, and the global copy number profile (4,5).
Despite intensive multimodal treatment, five-year survival
probability within the high-risk group remains disappointingly
low (4). Therefore, there is a need for more precise biomarkers
for risk stratification that can discriminate patients who will
benefit from current high-risk treatment protocols from those
with very poor prognosis who might benefit from experimental
therapy trials.

For several adult cancer types, transcriptome profiling en-
abled the identification of new prognostic biomarkers, some of
which are currently used in clinical practice (6). Also for neuro-
blastoma, several studies have shown that classifiers based on
gene expression data can predict survival outcome (7-9).
However, most published classifiers perform well in the global
cohort of neuroblastoma patients but have only limited prog-
nostic value within the high-risk patient subgroup. No gene ex-
pression classifier is currently in routine clinical use.

While recurrent single nucleotide mutations, such as those
targeting ALK and ATRX, occur in up to 10% of patient tumors at
diagnosis (10,11), several copy number aberrations occur at
much higher frequency and are strongly associated with dis-
ease outcome. Large segmental chromosomal imbalances and
focal aberrations are abundant in high-stage tumors, while low-
stage tumors typically present with whole-chromosome imbal-
ances (12). More specifically, tumors with only numerical aber-
rations have a favorable prognosis, while any presence of
segmental aberrations is indicative of poor survival outcome
(13). However, as the majority of high-risk tumors have segmen-
tal aberrations, prognostic stratification based on the absence
or presence of segmental aberrations is not applicable within
high-risk neuroblastoma. Moreover, no studies have been un-
dertaken so far to identify copy number aberrations that are dis-
criminating patients who will die or survive within the high-
risk subgroup.

Therefore, the aim of this study is to investigate whether
specific (combinations of) segmental DNA copy number aberra-
tions allow better discrimination of high-risk patients with fatal
outcomes. To achieve this with sufficient statistical power, we
collected the DNA copy number profiles of 556 high-risk neuro-
blastoma patients within the Ultra-High-Risk (UHR) working
group of the International Neuroblastoma Response Criteria
(INRC) consortium (5). Using this unique data set, we aimed to
identify genomic aberrations associated with survival outcome
in high-risk neuroblastoma patients. First, we attempted to cre-
ate a genome-wide classifier to stratify high-risk patients.
Second, we used this unique large data set to identify single
events associated with survival.

Methods

DNA Copy Number Data

DNA copy number data were collected from 671 high-risk neu-
roblastomas enrolled in the SIOPEN (cohort 1), GPOH (cohort 2),
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COG (cohort 3), and Japanese (cohort 4) treatment protocols.
Parts of the SIOPEN cohort (14,15) and the Japanese cohort (10)
have been published previously. After quality control analyses
(eg, excluding samples with normal cell contamination and/or
silent profiles), 556 samples remained (Table 1; Supplementary
Table 1, available online). Data were segmented using
SegAnnDB (16) and then converted into a regions-by-samples
matrix at 1 kb resolution (using R) (see the Supplementary
Methods, available online for details). The data have been de-
posited in GEO (accession number GSE103123).

Copy Number Aberration Calling

SegAnnDB, a webtool that combines mathematical modeling
with visual inspection, was used to identify segments with
equal copy number status and to call breakpoints from copy
number data. We focused on clonal events by setting platform-
dependent cutoffs to call aberrations: gains (aCGH: 0.2, SNP:
0.15), losses (aCGH: -0.3, SNP: -0.25), amplifications (Agilent: 2),
and homozygous deletions (-2 for all platforms). This computa-
tional pipeline generates a good general view of the aberrations
present in the study population but occasionally misses some
aberrations (see the Supplementary Methods, available online,
for details).

Identifying Prognostic Copy Number Biomarkers

The construction of a genome-wide classifier is described in the
Supplementary Methods (available online). To select copy num-
ber aberrations associated with overall survival, the R statistical
package was used to perform regression analyses for each of
the 27 565 regions in the regions-by-samples matrix. The pri-
mary end point was binary: death from any cause within 18
months of diagnosis (=case) vs survival with at least five years
of follow-up (=control). Logistic regression was performed on 83
case vs 53 control samples from the training set (cohort 1
and 2). A secondary end point was overall survival time, defined
as the time from diagnosis until death from any cause, whereby
patients who were alive were censored on the date of last con-
tact. Cox proportional hazards regression for overall survival
was performed on all 273 training samples (proportionality as-
sumption verified by testing whether Schoenfeld residuals
slope equals 0). From logistic and Cox regression analyses,
regions with a statistically significant P value (not adjusted for
multiple testing) and occurring in at least 5% of the samples
were selected (neighboring statistically significant regions were
collapsed to one). The selected regions were evaluated in valida-
tion cohorts 3 and 4 by assessing survival differences (log-rank
test) of patients with and without an aberration in the selected
region.

Statistical Analysis and Data Visualization

Kaplan-Meier estimates were calculated with the R package
“survival” (default settings). P values reported with Kaplan-
Meier plots result from log-rank tests. P values to test
co-occurrences result from chi-square tests. All P values are
two-sided and tested against an « of .05; multiple testing correc-
tion relies on the Benjamini-Hochberg method. More details
and additional methods for data visualization are described in
the Supplementary Methods (available online).
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Table 1. Summary of characteristics for the 556 samples included in
the study

Patient cohort No. (%)
MYCN status

Nonamplified 301 (54.1)

Amplified 255 (45.9)
Stage

Non-stage 4 41 (7.4)

Stage 4 515 (92.6)
Age,y

<1 24 (4.3)

1-1.5 45 (8.1)

>1.5 485 (87.2)

NA 2(0.4)
Treatment cohort

1 159 (28.6)

2 122 (21.9)

3 207 (37.2)

4 68 (12.2)
Results

Exploratory Analysis of Copy Number Aberrations in
High-risk Neuroblastoma Patients

In a first step, we explored the collected data by evaluating copy
number aberrations known to be linked to high-risk neuroblas-
toma disease. Of interest, 2.5% (14/556) of high-risk tumors pre-
sented with a copy number profile of only numerical
aberrations that is typically observed in low-risk neuroblastoma
(12). Kaplan-Meier analysis confirmed a statistically signifi-
cantly better outcome (P = .001) for this small group of patients,
with a 10-year survival probability of 92.9% (95% confidence in-
terval [CI] = 80.3% to 100%) for both overall (Figure 1A) and
event-free survival (P < .001) (Supplementary Figure 3, available
online). Because these samples represent a different class of ge-
nomic aberrations, they were omitted from further analysis.
The frequency plot of chromosomal gains and losses in the 542
high-risk tumors with segmental aberrations (Figure 1B) shows
recurrent loss of 1p, 3p, 4p, and 11q, gain of 1q, 2p, 7, and 17q,
and amplification of MYCN (255/542, 47.0%) at expected fre-
quency levels (12). Comparing the aberration frequencies
according to MYCN status confirms known associations
(Supplementary Figure 4, available online); that is, MYCN ampli-
fication frequently co-occurs with 1p loss (Pagjustea < -001), and
MYCN-nonamplified cases more frequently present with 3p, 4p,
11q loss and 1q and 17q gain (all Pagjustea < -001). Overall, these
analyses confirm previous findings on the copy number data of
high-risk neuroblastoma tumors (12). A detailed heatmap
depicting all aberrations per sample is provided in
Supplementary Figure 5 (available online).

Construction of a Multiregion DNA Copy Number
Prognostic Classifier

To construct a prognostic classifier that would discriminate
high-risk patients with different outcomes, we compared geno-
mic profiles of high-risk patients of cohorts 1 and 2 with con-
trasting disease outcome, that is, 83 high-risk patients who died
from any cause within 18 months (cases) vs 53 high-risk
patients who survived with at least five years of follow-up (con-
trols). From the regions-by-samples matrix, 754 out of 27 565

regions were selected using logistic regression as being associ-
ated with survival outcome (Supplementary Table 2,
Supplementary Figure 6, available online) and subsequently
used to train a classifier with random forests. However, the
prognostic value of the classifier could not be validated in co-
hort 3 (201 samples, P = .66) and cohort 4 (68 samples, P = .63)
(Supplementary Figures 7 and 8, available online). The alterna-
tive approach, in which one-third of the pooled samples were
used for training, also resulted in poor classification of the
remaining samples (data not shown). In addition, a classifier
built using prognostic regions identified with the random forest
algorithm, with Cox regression or a combination of Cox and lo-
gistic regression analysis, could not improve the classification
performance (data not shown).

DNA Copy Number Breakpoint Counts

Given previous reports on the association of the number of copy
number breakpoints with survival (17), we investigated whether
the number of DNA copy number breakpoints is linked to sur-
vival outcome in high-risk patients. On average, the copy num-
ber profiles in the high-risk cohort contain 10.7 breakpoints,
ranging from 1 to 69. A high number of breakpoints (above the
median) is associated with worse overall and event-free sur-
vival, both in the global cohort (P = .01 for overall survival and
P = .005 for event-free survival) (Supplementary Figure 9, avail-
able online) and in a subset of MYCN-amplified patients (P = .01
for overall survival and P = .004 for event-free survival)
(Figure 2, A and B). Within the subset of MYCN-nonamplified
patients, a subtle but statistically nonsignificant difference in
survival was observed (P = .19 for overall survival and P = .15 for
event-free survival) (Figure 2, C and D).

Amplifications in Regions Not Encompassing the MYCN
Locus

MYCN amplification is an important prognostic biomarker for
neuroblastoma patients. In this data set of high-risk patients,
the difference in survival of MYCN-amplified vs nonamplified
cases is statistically significant (log-rank P = .02), but the pro-
portional hazards assumption is violated, and in the end the
survival curves coincide (Figure 3, A and B).

We then questioned whether the presence of amplifications
in regions not encompassing the MYCN locus has prognostic po-
tential in high-risk neuroblastoma. Importantly, not all copy
number platforms could accurately identify the presence of
MYCN amplification (Supplementary Figure 10, available on-
line), agreeing with published findings (18). Copy number data
generated on the Agilent array platform showed a large dy-
namic range at the MYCN locus. Therefore, only the 199 profiles
analyzed on this platform (cohort 2 and part of cohort 1) were
selected to evaluate the prognostic power of amplicons.
Amplicons (log2 ratio > 2), other than those encompassing
MYCN, were observed in 36 of these samples (18.1%). Eight
regions were recurrently amplified: that is, 2p25.1 encompass-
ing the ODC1 locus (12 samples), 2p23.2 including ALK (5), 2p25.1
including GREB1/NTSR2 (4), 6q16.3 including LIN28B (3), 12q15 in-
cluding MDM2 (2), 12q13.3/14.1 including CDK4 (2), 11q13.2/13.3
including MYEOV and CCND1 (2), and 5p15.33 including TERT (2).
Several other amplicons, including 8q24.21 encompassing the
MYC gene, were detected in only one sample. All identified
amplicons are summarized in Supplementary Table 3 (available
online).
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Figure 1. Exploratory analysis of DNA copy number aberrations. A) Overall survival of high-risk patients with numerical DNA copy number profiles compared with
patients with segmental profiles, showing two-sided P value of log-rank test. Curve labels represent the number of samples with number of events between brackets.
B) Frequency of copy number gains/amplifications (upper part) and losses (lower part) for chromosomes 1 to 22 in 542 high-risk neuroblastoma samples with segmen-

tal copy number aberrations. OS = overall survival.
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Figure 2. Impact of number of breakpoints on patient survival. Comparison of overall survival (A and C) and event-free survival (B and D) of cases with many break-
points (9-61, above or equal to median) vs cases with a lower number of breakpoints (2-8, below median), within both the subgroup of MYCN-amplified cases (A and B)
and the subgroup of MYCN-nonamplified cases (C and D). P values represent two-sided log-rank tests. Curve labels represent the number of samples with the number
of events between brackets. EFS = event-free survival; MNA = MYCN-amplified; non-MNA = MYCN-nonamplified; OS = overall survival.
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Figure 3. Association of patient survival with the presence of amplicons (MYCN locus and other loci). A and B) Comparison of survival of patients with and without
MYCN amplification, for overall survival (A) and event-free survival (B). C and D) Within the subgroup of patients with MYCN-amplified tumors, comparison of overall
(C) and event-free survival (D) of patients with an additional amplicon (not encompassing the MYCN locus) and patients with only the MYCN amplification. E and F)
Within the subgroup of patients with MYCN-nonamplified tumors, comparison of overall (E) and event-free (F) survival for patients with an amplicon (not encompass-
ing MYCN) and patients without an amplicon. P values represent two-sided log-rank tests. Curve labels represent the number of samples with the number of events be-
tween brackets. EFS = event-free survival; MNA = MYCN-amplified; non-MNA = MYCN-nonamplified; OS = overall survival.

also presented with MYCN amplification, associated with a 10-
year overall survival probability of 6.5% (95% CI = 1.7% to 24.7%)
(Figure 3C). Only five cases without MYCN amplification pre-
sented with another amplicon. Those patients show a 10-year

Remarkably, patients with an amplicon other than the
MYCN amplicon have a very low 10-year survival probability of
5.8% (95% CI = 1.5% to 22.2%, P < .001). (Supplementary Figure
11, available online). Most of the cases with these amplicons
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B Cohort 3
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Figure 4. Association of distal 6q loss with patient survival. Overall survival of patients with a distal 6q loss compared with patients without a distal 6q loss in the train-
ing set (cohort 1+ 2) (A) and the two validation sets, cohort 3 (B) and cohort 4 (C). P values represent two-sided log-rank tests. Curve labels represent the number of sam-

ples with the number of events between brackets. OS = overall survival.

overall survival probability of 0.0% (95% CI not available)
(Figure 3E). Event-free survival is depicted in Figure 3, D and F.
The presence of an amplicon other than MYCN thus identifies a
small subgroup of patients with extremely low survival
probability.

On the other hand, the presence of homozygous deletions
(26 samples), such as CDKN2A, could not be linked with survival
outcome (deletions are listed in Supplementary Table 4, avail-
able online).

Distal 69 Losses

We also investigated whether a single prognostic region identi-
fied using Cox or logistic regression analysis could delineate a
subgroup of high-risk patients with aggressive disease. Cox re-
gression analysis (on 27 565 genomic regions) in the training set
(cohort 1 and 2) identified five genomic aberrations statistically
significantly associated with survival outcome including a 7 Mb
region at distal 6q (6q27) that could be validated in cohort 3 (P =
.02, Padjusted = .09, Benjamini-Hochberg method)

(Supplementary Figure 12, available online). While not statisti-
cally significant (P = .96), the presence of 6q loss seems also to
be associated with survival outcome in cohort 4 as all six cases
with a 6q loss died of disease. Thirteen patients out of 273
(4.8%), 13 patients out of 201 (6.5%), and six out of 68 (8.8%) har-
bored a loss at the distal 6q region in the training cohort, cohort
3, and cohort 4, respectively. These patients showed a 10-year
overall survival probability of 0.0% (no 95% CI), 7.7% (95% CI =
1.2% to 50.6%), and 0.0% (no 95% CI), respectively (only two of
these patients survived) (Figure 4). Overall survival and event-
free survival for combined and individual cohorts are shown in
Supplementary Figures 13 and 14 (available online), respec-
tively. Interestingly, two samples with a 6q loss have a focal
LIN28B gain or amplification adjacent to the 6q loss, suggesting
that a single event generated the amplification and deletion. In
addition, we observed that only 25.0% of samples with 6q loss
also harbor MYCN amplification and that 6q loss samples have
statistically significantly more breakpoints than samples with-
out 6q loss (P = .003) (Supplementary Figure 15, available on-
line). Cox regression analysis with both 6q loss and the number
of breakpoints as covariate shows that the presence of 6q loss
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Figure 5. Detailed view of distal 6q losses. Top: Exact location of the distal 6q deletions found in 32 patients (all cohorts). Censored patients are indicated with a lighter
shade. Middle: -1og10 of P values (uncorrected) of Cox regression for chromosome 6 in the training set (cohort 1+ 2). Bottom: Genes in the statistically significant region
(based on Cox regression) that met at least one of the following criteria: statistically significantly lower expression of the gene in neuroblastoma cell lines with vs with-
out a 6q deletion (squares), at least one mutation in the gene as described in primary tumors (circles), and statistically significantly worse survival outcome when gene
expression is low (lowest 10th percentile) in high-risk neuroblastoma tumors (triangles). SRO = smallest region of overlap.

confers an additional decrease in survival probability, indepen-
dent from the presence of a high number of breakpoints (above
the median; P = .006 and .03 for 6q loss/breakpoints
coefficients).

In Figure 5, the 7 Mb region at distal 6q is depicted together
with 14 genes that meet at least one of the following criteria: (1)
statistically significantly lower expression of the gene in neuro-
blastoma cell lines with vs without a 6q loss, (2) at least one mu-
tation in the gene as described in 625 primary tumors, and (3)
statistically significantly worse survival outcome when gene ex-
pression is low (<10th percentile) in 125 high-risk neuroblas-
toma tumors.

In summary, losses overlapping with the distal 6q region are
present in 5.9% of samples and are associated with extremely
poor survival outcome (10-year survival probability of 3.4%, 95%

CI = 0.5% to 23.3%, P = .002) and pinpoint interesting tumor sup-
pressor candidate genes.

The presence of a distal 6q deletion and/or an amplification
distinguish a group of 21.1% of the high-risk patients (within
the subgroup tested using Agilent arrays) with poor outcome
(Figure 6).

Discussion

As an international effort of the UHR working group of the INRC
consortium, we collected an unprecedentedly large DNA copy
number profiling data set of high-risk neuroblastoma tumors.
After validation of this unique data set, we investigated differ-
ent approaches to identify a prognostic multiregion classifier;
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Figure 6. Survival of a small subset of high-risk patients characterized by the presence of a 6q loss and/or an amplification not encompassing the MYCN locus. Kaplan-
Meier and log-rank analyses of the cases with and without these genomic aberrations are depicted for overall survival (A) and event-free survival (B). Only samples ana-
lyzed on Agilent arrays are taken into account. P values represent two-sided log-rank tests. Curve labels represent the number of samples with the number of events

between brackets. EFS = event-free survival; OS = overall survival.

however, this classifier could not be validated in independent
cohorts. As the developed multiregion classifier was biased
toward the more abundant aberrations, we shifted our focus to
the identification of more infrequent recurrent aberrations that
are associated with clinical outcome. Indeed, with this ap-
proach, we could distinguish two small subgroups of highly ag-
gressive neuroblastoma disease, that is, patients with tumors
that present with an amplicon other than MYCN and patients
with tumors with a deletion that encompasses the distal 6q
region.

The observation that patients with an amplicon not encom-
passing MYCN have a 10-year survival probability of only 5.8%
might impact therapeutic stratification of neuroblastoma
patients in two ways. Not only is the presence of an additional
amplicon in the tumor genome a strong prognostic biomarker,
it may also predict the sensitivity to small molecule inhibitors
that target proteins encoded by genes within the amplified
region. Indeed, it has previously been described that
ERBB2-amplified breast cancers are more sensitive to trastuzu-
mab (19) and FGFR1-amplified squamous cell lung carcinoma to
FGFR1 inhibitors (20). The low survival probability for neuroblas-
toma patients whose tumors at diagnosis harbor an amplifica-
tion in a region not encompassing MYCN might justify novel
therapeutic approaches such as enrollment of these patients in
clinical trials of therapies targeting the amplified genes. Of the
36 patients, 23 present with amplicons encompassing the genes
ODC1, ALK, CDK4, MDM2, CCND1, TERT, and MYC, for which
inhibitors are currently being tested in clinical trials (21-23). A
previous study by Guimier et al. (24) has also investigated the ef-
fect of additional amplifications on survival probability, how-
ever, in a global cohort of neuroblastoma, also including low-
risk cases. The present study only includes high-risk cases and
thus underlines the clinical significance of amplifications in
this patient subgroup.

A second important observation in this study is the identifi-
cation of a recurrent but infrequent 6q loss in 32 neuroblastoma
tumors collected at diagnosis, associated with a 10-year survival
probability of 3.4%. The importance of 6q deletions in aggressive
neuroblastoma is further evidenced by a recent study in which
five neuroblastoma cases were identified with a distal 6q dele-
tion upon relapse of the tumor (not present in the primary

tumor) (25). Moreover, the observation that 22.9% (8/35) of neu-
roblastoma cell lines (originating from high-risk tumors) harbor
a 6q deletion further supports the association of 6q deletion
with tumor aggressiveness. Distal 6q deletions have also been
described in other diseases such as ovarian cancer and 6q ter-
minal deletion syndrome causing cognitive disorders, both of
which suggest important roles for genes localized to 6q27
(26,27).

One of the genes in the 7 Mb statistically significant 6q re-
gion is PHF10 (BAF45a), which is a member of the npBAF com-
plex, a SWI-SNF complex specifically active in neuron
progenitor cells. The expression of this gene is lower in neuro-
blastoma cell lines with vs without 6q deletion, and two PHF10
mutations (one probably and one possibly damaging) have been
described in neuroblastoma tumors (28). Interestingly, the
npBAF complex also contains ARID1B, which has been described
to be mutated or deleted in a subset of very aggressive neuro-
blastoma tumors (29). ARID1B is located on 6q slightly proximal
to the 7 Mb statistically significant region and is deleted in 27 of
the 32 tumors with 6q deletion.

Our observation that tumors with 6q loss, encompassing
PHF10 and/or ARID1B, have a more unstable genome, as indi-
cated by the higher number of breakpoints, agrees with the
findings of Dykhuizen et al. (30), which showed that mutations
in BAF members such as BRG1 lead to anaphase bridge forma-
tion that can ultimately lead to chromosome gains and losses,
and Watanabe et al. (31), which showed that cancer cells lacking
certain SWI/SNF factors, including ARID1A/B, are deficient in
DNA repair and vulnerable to DNA damage. Further scrutinizing
the potential tumor-suppressive role of PHF10 or other 6q genes
in neuroblastoma disease is needed to better understand their
role in tumor progression, therapy resistance, and as a potential
target.

Of further interest, our extensive study revealed a number of
high-risk neuroblastoma tumors (14 or 2.5%) with only numeri-
cal aberrations. Despite the high-risk clinical parameters (all are
stage 4, with age at diagnosis between one and four years),
these patients with only numerical aberrations have statisti-
cally significantly better survival outcome (10-year survival
probability = 92.9%), confirming published findings (13).
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In addition, we demonstrated that a high number of break-
points is linked to worse outcome within this high-risk cohort.
This observation was previously made in a global neuroblas-
toma population (17) as well as in children older than 1.5 years
with localized unresectable neuroblastoma without MYCN am-
plification (32). The importance of this observation in high-risk
neuroblastoma cases, however, should not be overestimated as
the difference in survival is not sufficient to influence clinical
decisions.

Although the presented approach to design a classifier to
predict the outcome of high-risk disease patients was unsuc-
cessful, other classification methods might be more suitable for
this type of data, such as methods based on Bayesian models
and support vector machines (33-35) or identifying heteroge-
neous markers (36). Moreover, focusing on extreme outcomes
(case—control study) may not be as useful as anticipated.
Another approach would be the integration of other omics-level
data such as transcriptomics to build a robust prognostic classi-
fier, as shown in other studies (37-39). In addition, interpreta-
tion of survival data could benefit from adding minimal follow-
up time to sample selection criteria. However, this is difficult
without compromising sample size. A minor limitation of this
study is that the full potential of this unique large sample set
could not be exploited maximally due to the fact that amplifica-
tions could only be correctly identified in samples analyzed on
the Agilent platform.

In conclusion, we report that the presence of a distal 6q loss
and amplicons not encompassing the MYCN region are strongly
predictive of poor outcome within high-risk neuroblastoma.
These two observations combined distinguish a group of ap-
proximately 20% of high-risk patients with poor outcome.
These patients may harbor chemotherapy-resistant tumors,
and in case of resistance or progression, these alterations
should be taken into account when considering biomarker-
based early clinical trials.
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