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With this article, we propose using a Bayesian multilevel latent class (BMLC; or

mixture) model for the multiple imputation of nested categorical data. Unlike

recently developed methods that can only pick up associations between pairs of

variables, the multilevel mixture model we propose is flexible enough to auto-

matically deal with complex interactions in the joint distribution of the variables

to be estimated. After formally introducing the model and showing how it can be

implemented, we carry out a simulation study and a real-data study in order to

assess its performance and compare it with the commonly used listwise deletion

and an available R-routine. Results indicate that the BMLC model is able to

recover unbiased parameter estimates of the analysis models considered in our

studies, as well as to correctly reflect the uncertainty due to missing data,

outperforming the competing methods.
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multiple imputation

1. Introduction

Nested or multilevel data are typical in educational, social, and medical

sciences. In this context, Level 1 (or lower level) units, such as students, citizens,

and patients, are nested within Level 2 (or higher level) units such as schools,

cities, and hospitals. When lower level units within the same group are correlated

with each other, the nested structure of the data must be taken into account.

Although standard single-level analysis assumes independent Level 1 observa-

tions, multilevel modeling allows these dependencies to be taken into account. In

addition, variables can be collected and observed at both levels of the data set,

which is another feature not taken into account by single-level analyses.

Akin to single-level analysis, however, the problem of missing data arises and

must be properly handled also with multilevel data. Although multilevel
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modeling has in general gained a lot of attention in the last decades, issues related

to item nonresponses in this context are still open (Van Buuren, 2011). In this

respect, Van Buuren (2011) observed that the most common practice followed by

analysts is discarding all the units with nonresponses and performing the analysis

with the remaining data, a technique known as listwise deletion (LD). Although

LD can potentially lead to a large waste of data (for instance, with a missing item

for a Level 2 unit, all the Level 1 units belonging to that group are automatically

removed), it also introduces bias in the estimates of the analysis model when the

missingness is in the predictors. Another missing-data handling technique, max-

imum likelihood for incomplete data, which is considered one of the major

methods for missing data in single-level analysis (Allison, 2009; Schafer &

Graham, 2002) under the missing at random (MAR) assumption,1 has certain

drawbacks with multilevel data (Allison, 2009; Van Buuren, 2011). First, the

variables that rule the missingness mechanism must be included in the analysis

model. As a consequence, specifying and interpreting the joint distribution of

such data can become a complex task in this case. Furthermore, departures from

the true model can lead to biased estimates or incorrect standard errors (Van

Buuren, 2011). Second, with multilevel models, the derivation of the maximum

likelihood estimates, for instance, through expectation-maximization (EM) algo-

rithm or numerical integration can be computationally troublesome (Goldstein,

Carpenter, Kenward, & Levin, 2009).

A more flexible tool present in the literature is multiple imputation (MI;

Rubin, 1987). MI substitutes the original incomplete data set with M > 1 com-

pleted data sets, in which the missing values have been replaced by means of an

imputation model. Good performance of MI is obtained when the imputation

model preserves the original relationships present among the variables (reflected

in the imputed data), although the imputation model parameters are not of pri-

mary interest: The imputation model is only used to draw imputed values from

the posterior distribution of the missing data given the observed data. After this

step, standard full-data analysis can be performed on each of the M completed

data sets. By doing this, uncertainty coming from the sampling stage can be

distinguished from uncertainty due to the imputation step in the pooled estimates

and their standard errors. One of the major advantages of MI is that, after the

imputation stage, any kind of analysis can be performed on the completed data

(Allison, 2009). In particular, in this article, we deal with MI of missing Level 1

and Level 2 predictors of the analysis model.

Specification of the imputation model is one of the most delicate steps in MI.

Two main imputation modeling techniques are present in the literature: full

conditional specification (FCS; Van Buuren, Brand, Groothuis-Oudshoorn, &

Rubin, 2006) and joint modeling (JOMO; Schafer, 1997). Although the former

is based on a variable-by-variable imputation and requires specification of sep-

arate conditional models for each item with missing observations, the latter only

needs specification of a joint multivariate model of the items in the data set, from
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which the imputations are drawn. As a general rule, the imputation model should

be at least as complex as the substantive model in order not to miss important

relationships between the variables and the observations that are object of study

in the final analysis (Schafer & Graham, 2002).

In a multilevel context, this means also that the sampling design must be taken

into account. A number of studies have shown the effect of ignoring the double-

level structure of the data when imputing with standard single-level models

(Andridge, 2011; Carpenter & Kenward, 2013; Drechsler, 2015; Reiter, Raghu-

nathan, & Kinney, 2006; Van Buuren, 2011). Results indicate that including

design effects in the imputation model—when they are not actually needed—

can lead in the worst case to a loss of efficiency and conservative inferences,

while using single-level imputation models when design effects are present in the

data can be detrimental for final inferences. The latter case can result in biased

final estimates as well as in severe underestimation of the between-groups varia-

tion and biased standard errors of the fixed effects (Carpenter & Kenward, 2013).

To take the nested structure of the data into account, mixed effects models are

better equipped than fixed effects imputation models with dummy variables,

since the latter can overestimate the between-groups variance (Andridge,

2011). Furthermore, single-level imputation can yield different values for Level

2 variables within the same group, if these are included in the model. Conversely,

multilevel modeling automatically incorporates the nested structure of the data,

takes into account Level 1 units correlations within the same Level 2 unit, and

imputes the data respecting the exact level of the hierarchy under which the

imputations have to be performed.

Survey data often record categorical item responses. Although multilevel MI

for continuous data has already been discussed in the literature (Schafer & Yucel,

2002; Van Buuren, 2011; Yucel, 2008), to our knowledge, no ad hoc methods

have been proposed in the literature for categorical data and require better cov-

erage (Van Buuren, 2012). Most of the standard software focuses on single-level

imputation models (see Andridge, 2011, for a review of software packages

wrongly suggested for multilevel studies) or does not allow for the MI of multi-

level categorical data, such as the mice package (Van Buuren & Groothuis-

Oudshoorn, 2000; Zhao & Schafer, 2016), which bases its imputations on FCS

modeling. An MI technique based on multilevel JOMO can be found in the pan R-

library (Zhao & Schafer, 2016). However, pan is also not suited for categorical data

because it does not work with the original scale type and treats all the variables as

continuous. The imputed data are then imputed through rounding, which can

introduce bias in the MI estimates (Horton, Lipsitz, & Parzen, 2003). Recently

developed FCS approaches for multilevel data are the one-step FCS (Jolani,

Debray, Koffijberg, Van Buuren, & Moons, 2015) and the two-step FCS

(Resche-Rigon & White, 2016): The former uses a homoscedastic covariance

matrix for the Level 1 errors, while the second assumes heteroscedastic matrices.

These methods cannot handle more than two categories for each categorical
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variable and have not been extended yet to the imputation of Level 2 predictors. An

R package that allows for the MI of multilevel mixed type of data (catego-

rical and continuous) is the jomo package version 2.1 (Quartagno & Carpen-

ter, 2016), another JOMO approach. For each categorical variable with

missingness, JOMO assumes an underlying latent q-variate normal distribu-

tion, where qþ 1 is the number of categories of each variable at both levels.

The joint distribution of the lower and higher level variables is then esti-

mated, and the imputations are based on the normal variable components

scores. For more information about the functioning of JOMO, see Carpenter

and Kenward (2013). JOMO works under a Bayesian paradigm and uses the

Gibbs sampler (Gelfand & Smith, 1990) to perform the imputations.

Although representing a further step in the literature, JOMO still has some

major limitations. By working with multivariate normal distributions, impu-

tations yielded by JOMO can correctly reflect only pairwise linear relation-

ships in the data, that is, important relationships that may occur between

pairs of variables. Possible higher orders of associations, such as interactions

and nonlinearities, are disregarded by JOMO, making it less flexible and

possibly leading to less optimal imputations if more complex dependencies

are present which are of interest in the subsequent analysis of the MI data

set. Furthermore, the default prior distributions for the covariance matrices

used by JOMO can become very informative in case of small (Level 1)

sample sizes, leading to biased parameter estimates and/or standard errors,

as observed through a simulation study by Audigier et al. (2017).

Vermunt, Van Ginkel, Van der Ark, and Sijtsma (2008) proposed performing

single-level MI of categorical data with frequentist latent class (LC) or mixture

models, while Si and Reiter (2013) implemented the same model under a non-

parametric Bayesian framework. The attractive part of using LC models for MI is

their flexibility, since mixture models can pick up very complex associations in

the data at both levels when a large enough number of LCs (or mixture compo-

nents) are specified (Vermunt, Van Ginkel, Van der Ark, & Sijtsma, 2008).

Furthermore, the model works with the original scale type of the data, preventing

the risk of rounding bias (Horton et al., 2003). The Bayesian setting allows for an

easier and more appealing computation in the presence of multilevel data (Gold-

stein et al., 2009; Yucel, 2008) through Markov chain Monte Carlo (MCMC)

algorithms, and it is viewed as a natural choice in an MI context (Schafer &

Graham, 2002), since the posterior distribution of the missing data given the

observed data can be directly specified as a part of the model.

Multilevel MI of categorical data with LC models can be performed by

estimating single-level LC models separately for each higher level unit, perform-

ing in this way the imputations independently for each higher level unit. How-

ever, this approach has some disadvantages. First, by focusing on a single higher

level unit, it becomes impossible to either use or impute values of higher level

variables since these are constants within a higher level unit. Therefore, this
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method cannot be used when missingness is present also in the higher level

variables. Second, this method can be applied only when the number of Level

2 units is small and the number of Level 1 units for each group is large. When this

method is run with a large number of higher level units, model estimation (and

selection) becomes time-consuming because a larger number of LC models (and,

therefore, parameters) must be implemented. Furthermore, small Level 1 sample

sizes for (some of the) Level 2 units will make the LC model extremely unstable

(Vermunt, 2003), leading to overly uncertain imputations.

With this article, we propose the use of an LC imputation model, which is

more naturally tailored for multilevel data: the Bayesian Multilevel Latent

Class (BMLC) model. The BMLC imputation model we propose corresponds

to the nonparametric version of the multilevel LC model introduced by Ver-

munt (2003) in a frequentist setting. Unlike the single-level LC model, the

BMLC is able to capture heterogeneity in the data at both levels of the data

set, by clustering the Level 2 units into Level 2 LCs and, conditioned on these

clusters, Level 1 units are classified into Level 1 LCs. With this setting, units at

Level 1 of groups within the same Level 2 LC are assumed to be independent

from each other. The BMLC model extends the work of Vermunt (2003) to

include also Level 2 indicators, allowing for correct imputations at both levels

of the data set.

The outline of this article is as follows. In Section 2, the BMLC model is

introduced, along with model and prior selection and model estimation issues. In

Section 3, a simulation study is performed with two different sample size con-

ditions. Section 4 shows an application to a real-data situation. Finally, Section 5

concludes with final remarks by the authors.

2. The BMLC Model for MI

In MI, imputations are drawn from the distribution of the missing data con-

ditioned on the observed data. With Bayesian imputations, this is the posterior

predictive distribution of the missing data given the observed data and the model

parameter p, that is PrðDmisjDobs; pÞ, which can be derived from the posterior of

the model parameter given the observed data, PrðpjDobsÞ. This allows for mod-

eling uncertainty about p. Since PrðpjDobsÞ / PrðpÞPrðDobsjpÞ, we need to spe-

cify a data model—PrðDobsjpÞ—and a prior distribution—PrðpÞ—in order to

obtain the posterior of p. Model estimation, as well as the imputation step, is

performed through Gibbs sampling.

2.1. The Data Model

We now introduce the BMLC models as if there were no missing data in the

data set (Dobs ¼ D). Let D ¼ ðZ;YÞ denote a nested data set with J Level 2 units

and nj Level 1 units within Level 2 unit j (j ¼ 1; :::; J ), with a total sample size of
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n ¼
P

jnj. Suppose, furthermore, that the data set contains T Level 2 categorical

items Z1; :::; Zt ; :::; ZT , each with Rt observed categories (t ¼ 1; :::; T ) and S

Level 1 categorical items Y1 ; :::; YS , each with Us (s ¼ 1; :::; S) observed

categories.

We denote with zj ¼ ðzj1 ; :::; zjT Þ the vector of the T Level 2 item scores for

Level 2 unit j and with yj ¼ ðyj1 ; :::; yji ; :::yjnj
Þ the full vector of the Level 1

observations within the Level 2 unit j, in which yji ¼ ðyji1 ; :::; yjiSÞ is the vector of

the S Level 1 item scores for Level 1 unit i within the Level 2 unit j. The data

model consists of two parts, one for the Level 2 (or higher level) units and one for

the Level 1 (or lower level) units. Let us introduce the Level 2 LCs variable Wj

with L classes (Wj can take on values 1; :::; l; :::; L) and the Level 1 LCs variables

XjijWj—with K classes—within the l th Level 2 LC (with Xji ranging in

1; :::; k ; :::;K).

The higher level data model for unit j can then be expressed by

PrðZj ¼ zj;Yj ¼ yjÞ ¼
XL

l¼1

PrðWj ¼ lÞ
YT
t¼1

PrðZjt ¼ zjtjWj ¼ lÞ
Ynj

i¼1

PrðYji ¼ yjijWj ¼ lÞ:

This model is linked to the lower level data model for the Level 1 unit i within

the Level 2 unit j through

PrðYji ¼ yjijWj ¼ lÞ ¼
XK

k¼1

PrðXji ¼ kjWj ¼ lÞ
YS

s¼1

PrðYjis ¼ yjisjWj ¼ l;Xji ¼ kÞ:

Figure 1 represents the underlying graphical model. From the figure, it is possible

to notice both how the number of Level 1 latent variables is allowed to vary with j

(because within each Level 2 unit, we have nj Level 1 units and, accordingly, nj

latent variables Xji) and how Wj affects Zj, Xji, and Yji simultaneously.

As in a standard LC analysis, we will assume multinomial distributions for the

Level 1 LCs variable X jW and the conditional response distributions

PrðYsjW ;X Þ. Additionally, we will assume multinomial distributions for the

conditional responses at the higher level PrðZtjW Þ, and as we are considering

the nonparametric2 version of the multilevel LC model, also the Level 2 mixture

variable W is assumed to follow a multinomial distribution. Formally,

W*MultinomðpW Þ;

X jW ¼ l*MultinomðplX Þ for l ¼ 1; :::; L;

ZtjW ¼ l*MultinomðpltÞ for t ¼ 1; :::; T ; l ¼ 1; :::; L;

YsjW ¼ l;X ¼ k*MultinomðplksÞ for s ¼ 1; :::; S; l ¼ 1; :::; L; k ¼ 1; :::;K :

The parameters denote a vector containing the probabilities of each category of

the corresponding multinomial distribution. That is, pW ¼ ðp1; :::; pl ; :::; pLÞ,
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plX ¼ ðpl1 ; :::; plk ; :::; plKÞ, plt ¼ ðplt1 ; :::; pltr ; :::pltRt
Þ, and plks ¼ ðplks1 ; :::;

plksu; :::; plksUs
Þ. The whole parameter vector is p ¼ ðpW ; plX ; plt; plksÞ for each

l, t, k, s.

Assuming multinomiality for all the (latent and observed) items of the model,

we can rewrite the model for Prðzj; yjÞ as

PrðZj ¼ zj;Yj ¼ yj; pÞ ¼
XL

l¼1

pl

YT
t¼1

YRt

r¼1

ðpltrÞI
r
jt

Ynj

i¼1

pjil; ð1Þ

in which I r
jt ¼ 1 if zjt ¼ r and 0 otherwise, and pjil ¼ PrðYji ¼ yjijWj ¼ lÞ. The

latter quantity is derived from the lower level data model, given by

pjil ¼
XK

k¼1

plk

YS

s¼1

YUs

u¼1

ðplksuÞI
u
jis ; ð2Þ

where Iu
jis ¼ 1 if yjis ¼ u and 0 otherwise.

The model is capable of capturing between- and within-Level 2 unit variability

by first classifying the J groups in one of the L clusters of the mixture variable W

and subsequently, given a latent level of W , classifying the Level 1 units within j in

Wj

Zj2Zj1 · · · ZjT

Yji2Yji1 · · · YjiS

Xji

level-2

level-1

Unit j

Unit i

FIGURE 1. Graphical representation of the multilevel latent class model with observed

items at both levels of the hierarchy.
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one of the K clusters of the mixture variable X jW . In order to capture heterogeneity

at both levels, the model makes two important assumptions:

1. the local independence assumption, according to which items at Level 2 are inde-

pendent from each other within each LC Wj and items at Level 1 are independent

from each other given the Level 2 LC Wj and the Level 1 LC XjijWj;

2. the conditional independence assumption, where Level 1 observations within

the Level 2 unit j are independent from each other once conditioned on the

Level 2 LC Wj.

By virtue of these assumptions, the mixture variable W is able to pick up both

dependencies between the Level 2 variables and dependencies among the Level 1

units belonging to Level 2 unit j, while the mixture variable X is able to capture

dependencies among the Level 1 items. Both Equations 1 and 2 incorporate these

assumptions through their product terms. Diagnostics have been proposed to test

the conditional independence assumption of multilevel LC models by Nagel-

kerke, Oberski, and Vermunt (2016, 2017).

It is also noteworthy that by excluding the last product (over i) in Equation 1,

we obtain the standard LC model for the Level 2 units, while by excluding the

product over t in Equation 1 and setting L ¼ 1, we obtain the standard LC model

for the Level 1 units.

In Bayesian MI, the quantity PrðZj;Yj; pÞ tends to dominate the (usually

noninformative) prior distribution of the parameter because the primary interest

of an imputation model is the estimation of the joint distribution of the observed

data, which determines the imputations. Thus, as remarked by Vermunt et al.

(2008), we do not need to interpret p but rather obtain a good description of the

distribution of the items. Moreover, since an imputation model should be as

general as possible (i.e., it should make as few assumptions as possible) in order

to be able to describe all the possible relationships between the items needed in

the postimputation analysis (Schafer & Graham, 2002), we will work with the

unrestricted version of the multilevel LC model proposed by Vermunt (2003). In

such a version, both the Level 1 latent proportions and the Level 1 conditional

response probabilities are free to vary across the L Level 2 LCs. For a deeper

insight into the (frequentist) multilevel LC model, we refer to Vermunt (2003,

Vermunt et al., 2008).

2.2. The Prior Distribution

In order to obtain a Bayesian estimation of the model defined by Equations 1

and 2, a prior distribution for p is needed. For the multinomial distribution, a

class of conjugate priors widely used in the literature is the Dirichlet distribution.

The Dirichlet distribution gives a probability measure in the simplex

fðq1; :::; qDÞjqd > 0 8d and
P

dqd ¼ 1g (where D represents the number of cate-

gories of the multinomial distribution) and its parameters represent pseudocount
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artificially added by the analyst in the model. Thus, for the BMLC model, we

assume as priors:

(a) pW*DirðaW Þ;
(b) plX*DirðalX Þ;
(c) plt*DirðaltÞ;
(d) plks*DirðalksÞ:

Under this notation, the hyperparameters of the Dirichlet distribution denote

vectors, in which each single value is the pseudocount placed on the correspond-

ing category. Thus, aW corresponds to the vector ða1; :::; al ; :::; aLÞ, and similarly

alX ¼ ðal1 ; :::; alk ; :::; alKÞ 8 l, alt ¼ ðalt1 ; :::; altr ; :::; altRt
Þ 8 l; t, and alks ¼

ðalks1; :::; alksu ; :::; alksUs
Þ 8l; k; s. The vector containing all the hyperparameter

values will be indicated by a ¼ ðaW ; ::::; alksÞ 8 l; k; s; t.
Because in our MI application we will work with symmetric Dirichlet

priors,3 in the remainder of this article, we will use the value of a single

pseudocount to denote the value of the whole corresponding vector. For

instance, the notation al ¼ 1 will indicate that the whole vector aW will be

a vector of 1s.

In MI, a large number of LCs are usually required when performing the

imputations. The probability of empty clusters increases with the number of

classes L or K when standard priors (such as the uniform Dirichlet prior) are

used (Hoijtink & Notenboom, 2004). This causes the Gibbs sampler

(described in Section 2.4) to sample from the prior distributions of the empty

components, hence becoming unstable (Fruhwirth-Schnatter, 2006). In turn,

this can lead to imputations that produce poor inferences, especially in terms

of bias and coverage rate for some of the parameter estimates in the analysis

model, as shown in Vidotto, Vermunt, and van Deun (2018). Better infer-

ences can be obtained by setting the hyperparameters of the mixture compo-

nents in such a way that units are distributed across all the LCs during the

Gibbs sampler iterations. This is achievable by increasing the values of al

and alk (maintaining symmetric Dirichlet distributions) until all the LCs are

filled throughout the sampler iterations. Whether the selected values are large

enough can easily be assessed with MCMC graphical output.4 With such

priors, the Gibbs sampler is able to draw from the equilibrium distribution

pjZ;Y, and accordingly, it can produce imputations that lead to correct

inferences, since the model exploits all the selected classes. Because the

imputation model parameter values do not need be interpreted in MI, more

informative priors do not represent a problem here.

About the prior distribution of the conditional response probabilities,

Vidotto et al. (2018) advocated using hyperparameters that influence the impu-

tations as little as possible. Their results indicated that uniform Dirichlet priors

lead to biased parameter estimates of the analysis model, especially interaction

Vidotto et al.

519



terms (when present). However, decreasing the hyperparameter of the items’

conditional distribution probabilities to .01 (or .05) led the imputation model to

obtain unbiased terms. Making the prior distribution of the conditional response

probabilities as noninformative as possible is effective because it helps to

identify the LCs and create imputations that are almost exclusively based on

the observed data.

Concerning the BMLC model, little is known about the effect of the choice of

prior distributions for Model 1 because the model has not been extensively

explored in the literature. Nonetheless, we suspect that behaviors observed for

single-level LC imputation models will also hold at the higher level of the

hierarchy. In order to assess the effect of different prior specifications for the

Level 2 model parameters, we will manipulate al and altr in the study of Section

3. For the lower level model (Model 2 in the previous section), we will assume

that the findings of Vidotto et al. (2018) hold.5 Therefore, we will set informative

values for alk 8 l; k and noninformative values for alksu 8 l; k; s; u.

2.3. Model Selection

In MI, misspecifying a model in the direction of overfitting is less problematic

than misspecifying toward underfitting (Carpenter & Kenward, 2013; Vermunt

et al., 2008). Although the former case, in fact, might lead to slightly overcon-

servative inferences in the worst scenario, the latter case is likely to introduce

bias (and too liberal inferences) since important features of the data are omitted.

In mixture modeling, overfitting corresponds to selecting a number of classes

larger than what is required by the data.

For the BMLC model in MI applications, model selection can be per-

formed similar to Gelman et al.’s method (Chapter 22). The procedure

requires running the Gibbs sampler described in Algorithm 1 (without Step

7) of Section 2.4 with arbitrarily large L� and K� and setting hyperparameters

for the LC probabilities that can favor empty superfluous components. Fol-

lowing Gelman, Carlin, Stern, and Rubin’s (2013) guidelines,6 these values

could be equal to al ¼ 1=L� and ak ¼ 1=K�. At the end of every iteration of

the preliminary Gibbs sampler, we keep track of the number of LCs that are

allocated in order to obtain a distribution for L and K when the algorithm

terminates. If the posterior maxima Lmax and Kmax of such distributions are

smaller than the proposed L� and K�, in the next step, the imputations can be

performed with Lmax and Kmax. However, if either Lmax or Kmax (or both of

them) equals L� or K�, we rerun the preliminary Gibbs sampler by increasing

the corresponding value(s) and repeat the procedure until optimal L and K

are found. This method corresponds to the multilevel extension of the model

selection proposed by Vidotto et al. (2018) for single-level LC MI. The

method for BMLC models will be tested in the simulation study of Section

3 and in the real-data experiment of Section 4.
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2.4. Estimation and Imputation

Since we are dealing with unobserved variables (W and X ), model estimation

is performed through a Gibbs sampler with data augmentation configuration

(Tanner & Wong, 1987). Following the estimation and imputation scheme pro-

posed for single-level LC imputation models by Vermunt et al. (2008), we will

perform the estimation only on the observed part of the data set (denoted by

fYobs;Zobsg). In particular, in the first part of Algorithm 1 (see below), the

BMLC model is estimated by first assigning the units to the LCs (Steps 1 and

2) through the posterior membership probabilities—the probability for a unit to

belong to a certain LC conditioned on the observed data, PrðWjjYobs
j ;Zobs

j Þ and

PrðXjijWj;Y
obs
j ;Zobs

j Þ 8 i; j—and subsequently by updating the model parameter

(Steps 3–6). At the end of the Gibbs sampler (Step 7), after the model has been

estimated, we impute the missing data through M draws from PrðpjYobs;ZobsÞ.
After fixing K, L, and a, we must establish I , the number of total

iterations for the Gibbs sampler. If we denote with b the number of the

iterations necessary for the burn-in, we will set I , such that

I ¼ bþ ðI � bÞ, where I � b is the number of iterations used for the estima-

tion of the equilibrium distribution PrðpjYobs;ZobsÞ, from which we will draw

the parameter values necessary for the imputations. Of course, b must be

large enough to ensure convergence of the chain to its equilibrium (which

can be assessed from the output of the Gibbs sampler).

We initialize pð0Þ through draws from uniform Dirichlet distributions (i.e.,

Dirichlet distributions with all their parameter values set equal to 1), in order to

obtain pð0ÞW , pð0ÞlX , pð0Þlt , and pð0Þlks 8 l; k; t; s. After all these preliminary steps are

performed, the Gibbs sampler is run as shown in Algorithm 1.

Algorithm 1:
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Clearly, the M parameter values obtained in Step 7 should be independent,

such that no autocorrelations are present among them. This can be achieved by

selecting I large enough and performing M equally spaced draws between itera-

tion bþ 1 and iteration I . The Gibbs sampler output can help to assess the

convergence of the chain.

3. Study 1: Simulation Study

3.1. Study Setup

In Study 1, we evaluated the performance of the BMLC model and compared

it with the performance of the LD and the JOMO methods.

We generated 500 data sets from a population model, created missing data through

an MAR mechanism, and then applied the JOMO and BMLC imputation methods, as

well as the LD technique, to the incomplete data sets. To assess the performance of the

missing data methods bias, stability and coverage rates of the 95% confidence inter-

vals were compared, where the results of the complete data case (i.e., the results

obtained if there was no missingness in each data set) were taken as benchmark.

Population model. For each of the 500 data sets, we generated T ¼ 5 binary Level 2

predictors Zj ¼ ðZj1 ; :::; Zj5Þ for each higher level unit j ¼ 1; :::; J from the log-linear

model:

logPrðZjÞ ¼ �:1
X5

t¼1

Zjt þ :1
X4

t¼1

X5

u¼ðtþ1Þ
ZjtZju þ :8Zj1Zj2Zj4 :

Within each Level 2 unit j, S ¼ 5 binary Level 1 predictors Yji ¼ ðYji1 ; :::; Yji5Þ
were generated for each Level 1 unit i ¼ i; :::; nj from the (conditional) log-linear

model

logPrðYjijZjÞ ¼ 1:5
X5

s¼1

Yjis � :5
X4

s¼1

X5

v¼ðsþ1Þ
YjisYjiv � 1:5Yji1Yji2Yji3 þ Yji3Yji4Yji5

þ 2:25Yji4Zj1 þ 1:5Yj2Zj2 � 2:3Yj3Zj4;

Vidotto et al.

523



where cross-level interactions were inserted to introduce some intraclass correla-

tion between the Level 1 units. Finally, we generated the binary outcome Y6 from

a random intercept logistic model, where

logit PrðYji6jYji;ZjÞ ¼ bj0 þ b1Yji1 þ b2Yji2 þ b3Yji3 þ b4Yji4 þ ðb5 þ g35Zj3ÞYji5 þ b24Yji2Yji4;

ð3Þ

was the Level 1 response model and

bj0 ¼ b00 þ g1Zj1 þ g2Zj2 þ g3Zj3 þ g4Zj4 þ g5Zj5 þ uj; with uj*Nð0; t2Þ; ð4Þ

was the Level 2 model. Table 1 shows the numerical values of the Level 1

parameters b00; :::; b24, the Level 2 parameters g1 ;:::;g5, and the cross-level

interaction g35. Table 1 also reports the value of the variance of the random

effects, t2. Models 3 and 4 was the analysis model of our study, in which the

main goal was recovering its parameter estimates after generating missingness.

Sample size conditions. We fixed the total Level 1 sample size to n ¼
P

jnj ¼ 1;000, and

generated 500 data sets for two different Level 2 and Level 1 sample size conditions. In

the first condition, J ¼ 50 and nj ¼ 20 8 j, while in the second condition, J ¼ 200 and

nj ¼ 5 8 j.

Generating missing data. From each data set, we generated missingness according to the

following MAR mechanism. For each combination of the variables ðY3; Y4Þ, observa-

tions were made missing in Y1 with probabilities ð:05; :55; :4; :14Þ; for each combina-

tion of the variables ðY3; Y6Þ, observations were made missing in Y2 with probabilities

ð:15; :25; :65; :35Þ; for each combination of ðY4; Z4Þ, observations were made missing

in Y5 with probabilities ð0:01; 0:1; 0:55; 0:2Þ; for each possible value of the variable

Z2, missingness was generated on Z1 with probabilities ð0:15; 0:4Þ; finally, for each of

the values taken on by Z5, missingness was generated on Z2 with probabilities

ð0:1; 0:5Þ. Through such a mechanism, the rate of nonresponses across the 500 data

sets was on average 30% for each item with missingness.

Missing data methods. We applied three missing data techniques to the incomplete data

sets: LD, JOMO, and BMLC imputation, with the latter setup as follows. We applied

Gelman et al.’s (2013) method described in Section 2.3 for model selection by running

a preliminary Gibbs sampler (with 1,000 burn-in and 2,000 estimation iterations) and

obtaining a posterior distribution for L and K for each incomplete data set. From these

distributions, we selected the posterior maxima as the number of components to be

used in the imputation stage. This led to an average number of classes equal to L ¼
8:52 at Level 2 and K ¼ 10:89 at Level 1 when J ¼ 50, nj ¼ 20, and L ¼ 9:68 at Level

2 and K ¼ 10:85 at Level 1 when J ¼ 200 and nj ¼ 5. Hyperparameters of the Level 1

TABLE 1.

Parameter Values for Models 3 and 4

Parameter b00 b1 b2 b3 b4 b5 b24 g1 g2 g3 g4 g5 g35 t2

Value �0.5 1.35 �1 �0.4 0.8 �0.75 0.25 0.5 0.85 0.45 �0.6 0.3 0.15 1
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LCs and conditional responses (namely, alx and alks8 l; k; s) were set following the

guidelines of Section 2.2, that is, with informative prior distributions7 for the para-

meters plX and with a noninformative prior distribution for the parameters plks. In order

to assess the performance of the BMLC model under different Level 2 prior specifi-

cations, we manipulated the Level 2 hyperparameters al and altr. Each possible variant

of the BMLC model will be denoted by BMLCðal; altrÞ. In particular, we tested the

BMLC model with uniform priors for both the Level 2 LC variable parameters and the

Level 2 conditional response parameters—the BMLC(1, 1) model—or with noninfor-

mative prior for the conditional responses—the BMLC(1, .01) model. We alternated

the same values for the conditional response pseudocounts with a more informative

value for the Level 2 mixture variable parameter, the BMLC(*, 1) and the BMLC(*,

.01) model. Here, the “*” denotes the hyperparameter choice based on the number of

free parameters8 within each class l ¼ 1; :::; L; since this number could change with K,

different values for this hyperparameter were used across the 500 data sets. For each

data set, M ¼ 5 imputations were performed and a total of I ¼ 5;000 Gibbs sampler

iterations were run, of which b ¼ 2;000 were used for the burn-in and I � b ¼ 3;000

for the imputations.

For the JOMO imputation method, which also performs imputation through

Gibbs sampling, we specified a joint model for the categorical variables with

missingness and used the variables with completely observed data as predictors.

We set the number of burn-in iterations equal to b ¼ 10;000 and performed the

five imputations for each data set across I � b ¼ 3;000 iterations, in order to

have a number of iterations for the imputations equal to the Gibbs sampler of the

BMLC method. We ran the algorithm with its default noninformative priors and

cluster-specific random covariance matrices for the lower level errors.

In order to have a benchmark for results comparison, we also estimated

Models 3 and 4 to the complete data before generating the missingness.

Study outcomes. For each parameter of Models 3 and 4, we compared the bias of the

estimates, along with their standard deviation (to assess stability) and coverage rate of

the 95% confidence intervals. Analyses were performed with R version 3.3.0. JOMO

was run from the jomo R-library. For each data set, the analysis Models 3 and 4 was

estimated with the lme4 package in R.

3.2. Study Results

Figures 2a and b and 3 show the bias, standard deviations, and coverage rates

of the 95% confidence intervals for the 13 fixed effect coefficients of Models 3

and 4, averaged over the 500 data sets. The figures also show point estimates of

each coefficient, distinguishing between Level 1, Level 2, and cross-level inter-

action fixed effects.

Figure 2a reports the bias of the fixed effects estimates. When J ¼ 50 and

nj ¼ 20, the JOMO method is the best performing one in terms of bias of the

parameters. The BMLC model also retrieved, in general, parameter estimates
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close to the true parameter values; however, estimates for some of the Level 1

fixed effects resulted in a larger bias with the BMLC imputation model than with

the JOMO method. The choice of the prior distribution for the BMLC model did

not seem to affect the final results in terms of bias. The LD method, which was

negatively affected by a smaller sample size, yielded the most biased coeffi-

cients. In particular, some of the Level 1 and Level 2 fixed effects, as well as the

cross-level interaction, appeared heavily biased both down- and upward. In the

J ¼ 200 and nj ¼ 5 condition, the specification of the prior distribution seemed

to have an effect in the final estimates produced by the BMLC model. In par-

ticular, models with priors that favored a full allocation of the Level 2 units

FIGURE 2. Bias (a) and standard deviation (b) observed for the 13 fixed multilevel

logistic regression Level 1, Level 2, and cross-level coefficients obtained with complete

data and the missing data methods BMLC(*, .01), BMLC(*, 1), BMLC(1, .01), BMLC(1,

1), JOMO, and LD. Left: J¼ 50 and nj¼ 20. Right: J¼ 200 and nj¼ 5. BMLC¼ Bayesian

multilevel latent class. JOMO ¼ joint modeling. LD ¼ listwise deletion.
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across all the L classes, as the BMLC(*, .01) and the BMLC(*, 1), resulted with a

slightly smaller bias than models with priors that did not favor full allocation,

namely, the BMLC(1, .01) and the BMLC(1, 1). Furthermore, both the BMLC(*,

.01) and the BMLC(*, 1) imputation models could reduce the bias observed in the

condition with J ¼ 50 groups for some of the Level 2 fixed effects. In the second

condition (J ¼ 200 and nj ¼ 5), furthermore, the LD method still yielded the

most biased parameter estimates. As far as the JOMO imputation is concerned,

no particular improvements were observed in the bias of the estimates from the

scenario with J ¼ 50 to the scenario with J ¼ 200. On the contrary, some of the

Level 1 fixed effects (b2;b3 ;b4), as well as most of the Level 2 fixed effects,

resulted in a larger bias than the previous case. This was probably due to the

default prior distributions used by the JOMO method to perform the imputa-

tions, which can become too influential in case of small Level 1 sample

sizes. In addition, in both scenarios, the BMLC imputation model under all

prior specifications could retrieve the Level 1 interaction term (with almost

no bias) and the least biased cross-level interaction term among all missing

data techniques.

Figure 2b shows the stability of the estimates produced by all models, repre-

sented by their standard deviations across replications. The BMLC methods were

the most similar—in terms of magnitude—to the complete data case, with both

J ¼ 50 and J ¼ 200. For such models, the prior distribution did not seem to have

an influence on the stability of the estimates. LD technique estimates were the

most unstable, as a result of a smaller sample size. The JOMO imputation

FIGURE 3. Coverage rates observed for the confidence intervals of the 13 fixed multilevel

logistic regression Level 1, Level 2, and cross-level coefficients obtained with complete

data and the missing data methods BMLC(*, .01), BMLC(*, 1), BMLC(1, .01), BMLC(1,

1), JOMO, and LD. Left: J¼ 50 and nj¼ 20. Right: J¼ 200 and nj¼ 5. BMLC¼ Bayesian

multilevel latent class. JOMO ¼ joint modeling. LD ¼ listwise deletion.
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technique, on the other hand, resulted with the most stable estimates, even more

than the complete data case. This was probably due to the fact that the JOMO

method, by ignoring complex relationships, was an imputation model simpler

than what was required by the data and produced estimates that did not vary as

they should.

Figure 3 displays the coverage rates of the 95% confidence intervals obtained

with each method. LD produced, overall, coverage rates closed to the ones

obtained under the complete data case. However, the coverages of the confidence

intervals yielded by the LD method were the result of a large bias and large

standard errors of the parameter estimates, which led to too wide intervals.

Furthermore, the LD method generated coefficients for one of the parameters

(b3) with a too low coverage (about 0.7). The BMLC imputation method pro-

duced more conservative confidence intervals when J ¼ 50 than the J ¼ 200

condition, and their coverage rates strongly depended on the specified prior

distribution. In particular, in the case with J ¼ 50 groups, the BMLC(1, .01)

model produced the closest confidence intervals to their nominal level. On the

other hand, the BMLC(*, .01) imputation model was the best performing one (on

average) in terms of coverage rates of the confidence intervals with J ¼ 200

groups, although also BMLC models with different priors, overall, led to confi-

dence intervals rather close to their nominal 95% level. Last, the JOMO method

produced in both conditions confidence intervals with coverage rates—on aver-

age—larger than the ones produced by the BMLC imputation models.

Table 2 reports the results obtained for the variance of the random effects in

terms of bias. All the BMLC models yielded a random effect variance very close

to the complete data case under both scenarios, while the JOMO method—which

uses continuous random effects for the imputations—led to the least biased

estimates for such parameter. Interestingly, in the condition with J ¼ 50 groups,

the variance estimated by JOMO was less biased than the complete data estima-

tor. Finally, the LD method produced the most biased variance of the random

effects, in particular when the number of Level 2 units was equal to J ¼ 50.

4. Study 2: Real-Data Case

The European Social Survey (Norwegian Centre for Research Data [NSD],

2012), or ESS, collects sociological, economical, and behavioral data from Eur-

opean citizens. The survey is performed by the NSD every 2 years and consists of

items both at the individual (Level 1) and at the country (Level 2) level. The data

are freely available at the website (http://www.europeansocialsurvey.org/). In

order to assess the performance of the BMLC model with real data, we carried

out an analysis using the ESS data of Round 6, which consists of multilevel data

collected in 2012.

After cleaning the data set, we estimated a possible analysis model using one

of the items as outcome variable. Subsequently, we introduced missingess
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according to an MAR mechanism. Finally, the results (bias of the estimates,

standard errors, and p values) obtained after BMLC imputation were compared

with the results obtained under the complete data case and the LD method. We

also made an attempt to perform imputations with the JOMO technique, but the

data set was too large for this routine. After 5 days of computation on a normal

calculator (Intel Core i7), JOMO had not completed the burn-in iterations yet,

and we decided to stop the process. This highlights another issue of the JOMO

method (as implemented in the jomo package): When dealing with large data

sets, the routine must handle too many multivariate normal variables and random

effects and becomes extremely slow. As a comparison, computations with the

BMLC model required less than 2 days on the same machine for both the model

selection and the imputation stages (see below for details).

4.1. Study Setup

Data preparation. The original data sets consisted of n ¼ 54;673 Level 1 respon-

dents within J ¼ 29 countries and 36 variables, of which T ¼ 15 were observed

at the country level, S ¼ 20 at the person level and one item was the country

indicator. At Level 1, items consisted either of social, political, economical, and

behavioral questions, which the respondents were asked to rate (e.g., from 0 to

10) according to their opinion, or of background variables, such as age and

education. At Level 2, some economical and political (continuous) indicators

related to the countries were reported. Some of the units (at both levels) con-

tained missing or meaningless values (such as “not applicable”), and those units

were removed from the data set in order to work with “clean” data. Furthermore,

we recoded the qualitative levels of the rating scales and converted them to

TABLE 2.

Bias of the Variance of the Random Effect for the Complete Data and the Missing Data

Methods BMLC(*, .01), BMLC(*, 1), BMLC(1, .01), BMLC(1, 1), JOMO, and LD

t2 ¼ 1: Bias

Method J ¼ 50; nj ¼ 20 J ¼ 200; nj ¼ 5

Complete data �.11 �.03

BMLC(*, .01) �.15 �.06

BMLC(*, 1) �.13 �.04

BMLC(1, .01) �.15 �.06

BMLC(1, 1) �.13 �.05

JOMO �.09 �.03

LD �.31 .07

Note. Significant bias (with respect to the complete data estimator) is marked in boldface. BMLC ¼
Bayesian multilevel latent class; JOMO¼ joint modeling; LD ¼ listwise deletion.
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numbered categories and transformed some continuous variables (such as age or

all the Level 2 items) into integer valued categories.9 This enabled us to run the

BMLC model on this data set.

After removing Level 1 items related with the study design and least “recent”

versions of the items (i.e., all the replicated items across the survey waves,

observed before 2010) and discarding units younger than 18 years old and/or

not eligible for voting (in the next subparagraph, we will explain the reason of

this choice), T ¼ 11 Level 2 and S ¼ 17 Level 1 items were left, observed across

n ¼ 28;704 Level 1 units within J ¼ 21 countries. These countries were Bel-

gium (nj ¼ 1;497), Switzerland (nj ¼ 1;002), Czech Republic (nj ¼ 1;308),

Germany (nj ¼ 2;285), Denmark (nj ¼ 1;321), Estonia (nj ¼ 1;485), Spain

(nj ¼ 1;429), Finland (nj ¼ 1;772), France (nj ¼ 1;581), UK (nj ¼ 1;575),

Hungary (nj ¼ 1;327), Ireland (nj ¼ 1;948), Iceland (nj ¼ 519), Italy

(nj ¼ 623), the Netherlands (nj ¼ 1;591), Norway (nj ¼ 1;312), Poland

(nj ¼ 1;281), Portugal (nj ¼ 1;263), Sweden (nj ¼ 1;473), Slovenia

(nj ¼ 706), and Slovakia (nj ¼ 1;406).

Analysis model. We looked for a possible model of interest that can be estimated

with the data at hand. First, we selected the binary variable “voted in the last

elections” (Y0) as outcome. This is why we deleted the Level 1 units “not eligible

for voting” from the data set in the previous step. Second, we looked for possible

items that could significantly explain the variability of this item through a multilevel

logistic model. Selection of the predictors (and of the random effects) was performed

through stepwise forward selection including in the model only the significant

predictors (i.e., with p values lower than .05), which led to a drop of the AIC index

of the model. The final model for “voted in the last elections” was a multilevel

logistic model with random intercept and random slope and was specified as

logit PrðYji0jYji;ZjÞ ¼ bj0 þ ðb1 þ g11Zj1ÞYji1 þ b2Yji2 þ b3Yji3 þ b4Yji4 þ b5Yji5

þ b6Yji6 þ bj7Yji7 þ b8Yji8 þ b9Yji9;
ð5Þ

at Level 1 and

bj0 ¼ b00 þ g1Zj1 þ uj0; with uj0*Nð0; t2
0 ¼ 0:29Þ;

bj7 ¼ b70 þ uj1; with uj1*Nð0; t2
1 ¼ 0:02Þ; ð6Þ

at Level 2. A description of the 11 variables used in the model can be found at the

top of Table 3, while the values of the coefficients (both fixed and random) are

reported in the second column of Table 4. Furthermore, Columns 5 and 8 of

Table 4 show standard errors and p values (for the hypothesis of null coefficients)

of the fixed effect parameters, obtained with the original data.

Entering missingness. Subsequently, we entered MAR missingness in the data

set. Missingness was generated on Y2, Y4, Y7, Y6, and Z1 through logistic models

for the nonresponse indicator. We did not only use the variables in Models 5 and
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6 in order to generate the missingness but also other items still present in the data

set. The latter are listed in the bottom part of Table 3. Table 5 shows the logistic

models used to create missingness. The coefficients of these models were chosen

in such a way to ensure between (about) 14% and 25% of missingness for each of

the selected items. At the end of the process, only 18 countries and 9,871 Level 1

units (about one third of the data set) were left with fully observed data.

Missing data methods. We applied LD and BMLC to the sample with nonre-

sponses. The BMLC was run with all the 23 variables listed in Table 3 and was

TABLE 3.

ESS Data Items Used in Study 2

Item Name Description Coding

Y0 Voted in the last elections 0 ¼ no, 1 ¼ yes

Y1 TV watching: news and politics 0 ¼ no time, 7 ¼ >3 hours

Y2 Trust in politicians 0 ¼ no trust, 10 ¼ complete trust

Y3 Placement in the right/left scale 1 ¼ left, 5 ¼ right

Y4 Life satisfaction 0 ¼ dissatisfied, 10 ¼ satisfied

Y5 Immigration is bad/good for economy 0 ¼ bad, 10 ¼ good

Y6 National elections are free and fair 0 ¼ not important, 10 ¼ extremely

important

Y7 Age (range) 1 (18/34), 5 (68/103)

Y8 Marital status 0 ¼ not married, 1 ¼ married

Y9 Highest level of education 1 ¼ <secondary, 7 ¼ >tertiary

Z1 Social expenditure (country level) 1 ¼ low, 2 ¼ high

Y1Z1 Cross-level interaction between Y1 and Z1 —

Other items used to generate missingess

Item name Description

Y10 Subjective general health

Y11 Political parties offer alternatives

Y12 Media provide reliable information

Z2 Area (country level)

Z3 Median age (country level)

Z4 Population size (country level)

Z5 Unemployment level (country level)

Z6 Number of students (primary–secondary education; country level)

Z7 Number of students (tertiary education; country level)

Z8 Governmental capabilities (country level)

Z9 Transparency (country level)

Z10 Health Expenditure (country level)

Note. ESS ¼ European Social Survey.
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set as follows. We performed model selection using the method exposed in

Section 2.3 based on Gelman et al.’s (2013) technique. A preliminary run of the

Gibbs sampler with L� ¼ 6 and K� ¼ 30 indicated that running Algorithm 1 with

L ¼ 2 (the posterior maximum of L) and K ¼ 26 (the posterior maximum of K)

was sufficient to perform the imputations. We set the hyperparameter priors

altr ¼ alksu ¼ :05 for each l; k; t; s; r; u, and the prior hyperparameters for the

TABLE 4.

Study 2: Estimates, Standard Errors, and p Values Obtained With Complete Data, LD,

and BMLC Methods for the Fixed and Random Effects Parameters of Models 5 and 6,

Attained After Applying Each Method to the (Fully or Partially) Observed Data

Parameter

Estimates Standard Errors p Values

Complete

Data LD BMLC

Complete

Data LD BMLC

Complete

Data LD BMLC

b00 �3.45 �2.72 �3.29 .33 .44 .36 .00 .00 .00

b1 0.15 0.07 0.16 .04 .08 .04 .00 .42 .00

b2 0.07 0.07 0.07 .01 .02 .01 .00 .00 .00

b3 0.05 0.01 0.05 .02 .03 .02 .00 .82 .00

b4 0.06 0.07 0.06 .01 .02 .01 .00 .00 .00

b5 0.02 0.04 0.02 .01 .01 .01 .02 .01 .01

b6 0.12 0.10 0.11 .01 .02 .01 .00 .00 .00

b70 0.34 0.35 0.33 .03 .05 .03 .00 .00 .00

b8 0.39 0.33 0.40 .03 .07 .03 .00 .00 .00

b9 0.23 0.23 0.22 .01 .02 .01 .00 .00 .00

g1 0.71 0.57 0.62 .20 .24 .23 .00 .03 .02

g11 �0.06 �0.01 �0.07 .03 .06 .03 .02 .87 .03

t2
0 0.29 0.42 0.32

t2
1 0.02 0.03 0.01

Note. Not significant 5% p values are marked in boldface. BMLC ¼ Bayesian multilevel latent class;

LD ¼ listwise deletion.

TABLE 5.

Missingness Generating Mechanism for the Items of the ESS Data Set

Missingness in Missingness Generating Model

Y2 1:3þ 0:1Y11 � 0:4Y12 � 0:15Z7

Y4 0:5� 0:5Y10 � 0:5Y9 þ Z5

Y6 �1� 1:7Y0 þ 0:3Z10 þ 0:15Z8

Y7 �0:5þ 0:2Y3 þ 0:25Z3 � 1:5Z4

Z1 �1� Z9 � 0:5Z6 þ Z2

Note. ESS ¼ European Social Survey.
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mixture weights which guaranteed full allocation were al ¼ 1;500 for each l at

Level 2 and alk ¼ 50 for each l; k at Level 1. M ¼ 100 imputations were per-

formed across 25,000 iterations after a burn-in period of b ¼ 5;000 iterations, for

a total of I ¼ 30;000 iterations.

Outcomes. We applied the considered methods (LD and BMLC) and evaluated

bias, standard errors, and p values of the final estimates and compared them with

the complete data case.

4.2. Study Results

Table 4 shows the results of the experiment. From the table, it is possible to

observe how the BMLC method led to final parameter estimates very close to the

complete data case. Only two coefficients (b00 and g1) were slightly off the

complete data case value. The LD method tended to retrieve slightly more biased

estimates (in particular b00, b1, and g1), but overall the retrieved values with such

technique were acceptable. In Columns 5 through 7 of the table, standard errors

of the estimates are reported. The standard errors obtained with the LD method

were larger than the ones yielded by the BMLC imputation model, as a conse-

quence of a smaller sample size. On the other hand, the BMLC imputation model

could exploit the full sample size and retrieved standard errors very close to the

complete data case. The effect of the smaller standard errors obtained with the

BMLC imputation model can be observed in the last three columns of Table 4,

reporting the p values of the fixed effects: The fixed effects estimated through the

BMLC imputation were all significant (p < :05), as they were supposed to be.

The LD technique, on the other hand, produced some nonsignificant coefficients

(b1, b3, and g11), showing how this method, unlike MI, could lead to loss of

power in statistical tests.

With respect to the variance of the random components (reported in the

bottom of Table 4), the complete data case and the BMLC imputation method

yielded roughly similar values of t2
0 and t2

1. Conversely, the LD method led to an

overly large estimate of the random intercept t2
0.

5. Discussion

In this article, we proposed the use of BMLC models for the MI of multilevel

categorical data. After presenting the model and its configurations in Section 2,

we performed two studies in order to assess its performance under different

conditions.

In Study 1, a simulation study with two sample size conditions was carried out

in which the BMLC imputation method was compared to the LD method (still

one of the most applied techniques in the presence of multilevel missing data

according to Van Buuren, 2011) and the JOMO technique, one of the few avail-

able routines that allow for the MI of multilevel categorical data. The analysis
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model used was a random intercept logistic model. In Study 2, data coming from

the ESS survey were used to investigate the behavior of the BMLC model with

real-case data and compared with the LD method. In this second study, the

analysis model was a multilevel logistic model with random intercept and slope.

Overall, the BMLC model showed a good performance in terms of bias,

stability of the estimates, and coverage rates of the coefficient intervals of the

final estimates. Unlike the LD and the JOMO methods, which had limitations

either because of a too small sample size used (LD) or because of too influential

default prior distributions (JOMO), the BMLC model offers a flexible imputation

technique, able to pick up complex orders of associations among the variables of

the data set at both levels, returning unbiased and stable parameter estimates of

the analysis model. This imputation model can be a useful tool for applied

researchers that need to deal with missing multilevel categorical data (e.g.,

coming from surveys), since it can help to recover potentially valuable informa-

tion that could be lost if the subjects with missingness were simply discarded, as

the results coming from the LD method have shown in both Study 1 and Study 2

of this article.

Despite the proven utility of the BMLC imputation model, some issues still

need to be better crystallized by further studies. First, the current article aimed to

give a general introduction of the BMLC model as a tool for MI, highlighting

some of its strengths. Therefore, the simulation study in Section 3 was carried out

under two sample size conditions typical of multilevel analysis (i.e., few large or

several small Level 2 units) and a moderately large proportion of missing data

(about 30% per item). The performance of the BMLC imputation model may be

investigated further with other more extensive simulation studies, in which the

model is tested against more extreme missingness rates and sample size condi-

tions (e.g., with few small or several large higher level units). Second, the setting

of the prior distribution for the higher level mixture weights must be better

examined, especially when the Level 2 sample size is small and the number of

classes selected with the method of Section 2.3 is (relatively) large. In these

cases, achieving full allocation of the higher level units across all the Level 2

LCs is problematic, no matter how large the value of al. For instance, in the

condition with J ¼ 50 groups in the simulation study of Section 3, in which we

selected an average number of Level 2 LCs equal to L ¼ 8:53 and a value for the

hyperparameter al equal to the number of free parameters within each higher

level LC, the number of classes filled by the Gibbs sampler was on average

roughly equal to L ¼ 5. We tried to rerun the experiment by increasing the

value of al, always obtaining similar results (in terms of classes allocated and

MI inferences). It is possible that, because of the small sample size J , the

Gibbs sampler reached the maximum possible number of classes that could

be filled, and the groups could not be allocated to any new LC. We noticed,

however, that the informative values used for al could help the Gibbs sam-

pler to stabilize the number of occupied classes at that possible maximum.
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That is, for a maximum number of classes �L that the sampler could occupy

with informative hyperparameter al, the posterior distribution of the occupied

number of classes during the imputation stage was PrðL ¼ �LjZ;YÞ ¼ 1.

Therefore, it is possible that in order for the Gibbs sampler to work correctly

in the presence of a small number of higher level groups, it is more impor-

tant to have the Level 2 units allocated to a stable number of classes rather

than to reach the full allocation of all the specified LCs. This can be the

reason of the good results obtained in the simulation study of Section 3 with

J ¼ 50. However, in order to confirm our intuition, a more comprehensive

study with different settings for the number of higher level units and LCs, as

well as for the value of the Level 2 mixture weights hyperparameter al,

should be carried out in future research.

Finally, the proposed approach can be extended in various meaningful ways.

First, the BMLC model can be also applied to longitudinal data, in which mul-

tiple observations in time (Level 1 units) are nested within individuals (Level 2

units). If the Level 1 observations within the same subject are independent with

each other, but depend on a (discrete) time indicator, it suffices to include the

latter in the BMLC model as Level 1 item and perform the imputations. Second,

while we dealt with multilevel categorical data, the BMLC model can also be

applied to continuous or mixed type of data. This can be achieved, for instance,

by assuming mixture of univariate normal (for the continuous data) and multi-

nomial (for the categorical data) distributions. In this case, Gelman et al.’s (2013)

method might still be used for the model selection. Third, the model can be easily

extended to deal with three or more levels of the hierarchy. This can be the case,

for instance, when a sample of students (Level 1) is drawn from a sample of

schools (Level 2) which, in turn, is drawn from a sample of countries (Level 3).

Fourth, the proposed BMLC imputation model with LCs at two levels can easily

be generalized to situations with more levels, where there is no need that the

multiple levels are mutually nested. For example, one could deal with children

nested within both schools and neighborhoods, where schools and neighborhoods

form crossed rather than nested levels. These extensions are straightforward by

making sure that the Gibbs sampler gets the LCs at one level conditioning on the

sampled LCs for all other levels.
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Notes

1. That is, the distribution of the missing data depends exclusively on other

observed data and not on the missing data itself.

2. Vermunt (2003) denoted with “nonparametric” the version of the multilevel

latent class (LC) model that uses a categorical random effect, for which a multi-

nomial distribution is assumed. This is opposed to the “parametric” version of the

model, which uses a (normally distributed) continuous random effect.

3. That is, Dirichlet distributions whose all the pseudocounts are equal to each

other.

4. The value of the pseudocounts for the LC proportions hyperparameter should

be at least equal to half times the number of free parameters to be estimated

within each LC, in order to cause the sampler to give nonzero weights to the

extra components. See Rousseau and Mergensen (2011) for technical details.

5. This conjecture is justified by noticing that, given a Level 2 LC Wj, the lower

level model corresponds to a standard LC model.

6. Importantly, while Gelman, Carlin, Stern, and Rubin’s (2013) goal was to find

a minimum number of interpretable clusters for inference purposes, here, our

goal is to find a large enough number of LCs for the imputations. Therefore,

Gelman et al. determined the number of classes based on the posterior mode,

while we perform model selection based on the posterior maximum. More-

over, Gelman et al.’s method was designed for single-level mixture models.

We extend here the mechanism to the Level 2 mixture variable.

7. We set alk ¼
�P

sðUs � 1Þ
�
8 l; k, that is, the number of free parameters

within each Level 1 LC; this value was sufficiently large to ensure units’

allocation across all the Level 1 LCs.

8. Calculated through al ¼
�P

tðRt � 1Þ þ ðK � 1Þ þ Kð
P

sUs � 1Þ
�
8 l.

9. In particular, percentiles were used to create break points and allocate units

into the new categories. The choice of the percentiles depended on the number

of categories used for each item.
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