Skip to main content
. 2018 Oct 8;9:1475. doi: 10.3389/fpls.2018.01475

FIGURE 8.

FIGURE 8

Schematic model demonstrating the distinct regulatory role of Si in mediating differential stress tolerance responses in two contrasting tomato lines exposed to osmotic stress. Under osmotic stress, the two tomato genotypes LA0147 (drought tolerant) and FERUM (drought sensitive) showed differential stress tolerance responses facilitated by supplemental Si. In LA0147, under osmotic stress, application of Si mediated increased uptake and translocation of NH4+ and S, which led to consequent alterations in the accumulation of different amino acids like arginine, methionine, serine, and glycine and regulation of genes involved in Arg and Met synthesis. An upsurge of these amino acids further resulted in augmentation of polyamines putrescine and spermidine which maintained shoot growth and other stress tolerance responses. On the other hand, Si supply provided to the osmotic stressed plants of sensitive line FERUM showed a completely different pattern in accumulation of specific amino acids proline and GABA, which are known to provide better stress tolerance in plants by balancing the redox homeostasis with evident decrease in GSSG/GSH ratio. The higher accumulation of GABA was caused by Si induced expression of SlGAD1 and SlGAD3, which are involved in GABA synthesis. A simultaneous increase in the levels specifically of the free polyamine Put was also observed in FERUM which subsequently promoted an improved osmotic stress tolerance as suggested by increased shoot growth and higher chlorophyll content (Red arrows = increase/upregulation, blue arrows = decrease/downregulation).