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Abstract

Purpose of Review: We present study design and methodological suggestions for population-

based studies that integrate molecular -omics data and highlight recent studies that have used such 

data to examine the potential impacts of prenatal environmental exposures on fetal health.

Recent Findings: Epidemiologic studies have observed numerous relationships between 

prenatal exposures (smoking, toxic metals, endocrine disruptors), fetal and early-life molecular 

profiles, though such investigations have so far been dominated by epigenomic association studies. 

However, recent transcriptomic, proteomic, and metabolomic studies have demonstrated their 

promise for the identification of exposure and response biomarkers.

Summary: Molecular -omics have opened new avenues of research in environmental health that 

can improve our understanding of disease etiology, contribute to the development of exposure and 

response biomarkers. Studies that incorporate multiple -omics data from different molecular 

domains in longitudinally collected samples hold particular promise.
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Introduction:

Environmental health research aims to identify the ways in which environmental exposures 

contribute to human disease. This is a complex task given that around 140,000 [1] and 

85,000 [2] chemicals have been registered for use in Europe and the United States, 

respectively, demonstrating the vast array of chemicals, pollutants and contaminants that 

humans may potentially be exposed to, the majority of which lack the substantive data to 

perform comprehensive risk assessment. Traditional environmental epidemiology has aimed 

to characterize how individual, or small subsets of exposures, are associated with one or a 

few health outcomes. Though this hypothesis-driven approach has successfully identified 
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and characterized numerous environmental risk factors for disease, it cannot efficiently 

search across this vast exposure space to discover or characterize all environmentally-

associated risks.

Technological advancements over the last decade have resulted in the improved capacities 

and precision in the generation of high-dimensional molecular data, measuring the quantities 

and interactions of numerous small molecules in biological samples, that are informative 

about internalization of exposures and perturbations to genomic regulation and physiological 

activity [3]. These types of data have broadened researchers’ capabilities for examining the 

underlying etiology of environmentally-associated diseases. This approach to studying the 

environment, when used as a complement to traditional environmental epidemiology and 

experimental studies, can lead to the breakthroughs in understanding the impacts of 

chemicals on health, identification of exposure and/or pre-symptomatic biomarkers of health 

outcomes, and an expanded understanding of disease etiology. In this review, we aim to 

introduce the role that molecular -omics data currently play in population-based studies of 

environmental health issues, discuss issues to consider when designing an epidemiologic 

study utilizing molecular -omics, and highlight recent studies that have incorporated these 

types of data into investigations of prenatal and early life exposures.

Genomics, an extension of genetics beyond individual candidate loci to encompass the 

complete sequence of DNA, was the first -omic approach to be utilized in population-based 

studies. Since publication of the first genome-wide association study (GWAS) in 2005, the 

scale of testable genetic loci has risen from 116,204 single nucleotide polymorphisms 

(SNPs) [4] to tens of millions of loci when integrating modern laboratory assays with 

imputation based on reference genomes [5]. Additionally, other -omics disciplines have 

emerged and grown at a similar pace, including (1) epigenomics: covalent chemical 

additions to DNA and histones that regulate gene-expression potential without altering the 

genetic sequence [6], (2) transcriptomics: RNA expression, which includes protein-coding 

and non-coding RNAs [7], (3) proteomics: the abundance of and interactions between 

proteins [8], and (4) metabolomics: the identification, quantification, and profiling of 

metabolites [9]. While genomics largely represents an individual’s inherited biological 

blueprint, these other molecular -omic features represent intermediary domains that capture 

a combination of biological potential, adaptive or reactive responses to stimuli, or 

internalization of exogenous exposures. The genome being most proximal to the underlying 

biological potential, the metabolome more proximal to the internalization of exposures and 

immediate physiological response, with the epigenome, transcriptome and proteome 

representing intermediate steps linking that potential to an actual response (Figure 1).

Integrative personal -omics profiling (iPOP), gathering high-throughput data on multiple 

molecular markers from the same individual, is increasingly recognized for its utility in 

personalized medicine [10,11]. Initial iPOP studies have demonstrated that personal 

molecular profiles may be particularly useful for identifying molecular events that mark 

transitions between healthy and diseased states. The Adverse Outcome Pathway (AOP) 

framework, characterizing how chemical exposures perturb different aspects of biology and 

ultimately lead to some adverse biological event, provides a context in which -omics 

profiling may be particularly useful in broadening environmental health research [12]. This 
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idea has been proposed in the context of epigenetic epidemiology – organizing the findings 

from these studies into an AOP framework could improve causal reasoning by characterizing 

biologic plausibility in an evidence-based manner [13]. Incorporating other molecular 

features, beyond those studied in epigenomics, could help to clarify which biological 

perturbations represent molecular initiating events (MIE), key events (KE), and key event 

relationships (KER) on the path to different adverse outcomes (AO). In fact, molecular -

omics integration into environmental health studies has been suggested as an approach that 

would improve health risk assessment by informing the development of AOPs via 

identifying the molecular targets of environmental exposure and determining whether groups 

of chemicals and/or stressors impact related biological processes [14]. Multiple exposures 

that have the same molecular targets or affect similar biological pathways may be more 

likely to exhibit joint-effects, multiplicative and or additive, on health outcomes and should 

be studied as mixtures or co-exposures. In addition to furthering our understanding of AOPs, 

incorporating iPOP approaches into population based studies can distinguish inter- and intra-

individual variations in molecular characteristics [10] and help to characterize whether the 

impacts of an exposure depend on genetics, lifestage, or prior exposure and/or disease status 

[14].

Design Considerations:

Population-based studies that involve molecular -omics need to consider unique potential 

sources of bias related to sampling of tissues and analyzing of high-dimensional data, so that 

appropriate conclusions can be drawn from these studies.

In human environmental health research, -omics data are typically measured in tissues or 

biological matrices that are easily accessible and may be composed of heterogeneous cell 

populations. This presents two potential issues: (1) whether the expected exposure-outcome 

relationships are detectable and meaningful in the accessible tissue, and (2) whether cellular 

or tissue heterogeneity could confound these exposure-outcome relationships. Whether the 

available tissue samples are the target tissue or can be an effective surrogate, is largely 

dependent on the exposure-outcome relationships being studied and whether the specific loci 

or features demonstrate tissue-specific patterns [15,16]. Thus, in epidemiologic studies, 

investigators need to consider whether the tissues that will be accessible or available are 

expected to capture the associations between exposures and the biological responses. 

Additionally, some epigenetic loci are differentially methylated [17] and certain genes are 

differentially expressed [18] in highly cell-type specific patterns. Thus, when attempting to 

investigate differences between groups of samples (exposed vs unexposed, or cases vs 

controls) it is difficult to disentangle whether the observed differences are capturing an 

average change across all cell-types, a change in just a subset of cells, or a shift in the 

distribution or composition of the cell mixture itself.

Some researchers have suggested that epigenomic studies should focus on analyses within 

sorted subsets of specific cell types [19] and a similar argument could be made for studies of 

other molecular features including telomere length, transcriptomics, etc. Performing these 

types of studies within specific subsets of cells should yield some important benefits, 

including (1) larger magnitudes of associations, (2) improved sensitivity and specificity for 
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classification, (3) a more focused understanding of the biological consequences of those 

epigenetic changes, and (4) reduced sample size requirements given the potentially larger 

effect sizes [19]. However, this approach also has some limitations that cannot be ignored. In 

order to perform an association study within specific cell-types, researchers require a priori 
knowledge of which cell-types are most likely to be involved in the exposure-response 

relationship, something that is largely unknown for many prenatal and early-life exposures 

and outcomes. Additionally, cell-sorting of most tissues can only be performed on 

biosamples that have been collected, transported and stored in a manner that preserves 

cellular membranes and epitopes, and the steps to preserve these structures can differ for 

specific cell-types. Thus, many existing biosamples which were not collected according to 

such protocols would be inappropriate for cell-type specific studies, and the incorporation of 

such protocols in future studies would require additional resources that may limit the sample 

size that can be investigated. Finally, although cell-type specific association studies have the 

potential to yield larger magnitudes of effect, and possibly improved sensitivity/specificity 

as biomarkers, the additional steps required (collection, enrichment, purification, sorting) to 

utilize those biomarkers may also make them prohibitive in some settings. Thus, although 

these approaches may have utility in directed, hypothesis driven mechanistic studies, they 

may hold less utility in the broader, discovery-style studies that are the current state of the 

science for prenatal and early life genomics research.

For studies that aim to perform molecular assessments in heterogenous biosamples that will 

not be sorted, direct measurements of cell-mixtures or heterogeneity of tissue should be 

obtained in parallel to the molecular -omic data when possible, or estimated when this is 

infeasible. Numerous tools have been developed which estimate tissue heterogeneity using 

epigenomic [20–22] or transcriptomic [23,24] data, so that the mixture can be statistically 

adjusted for during data analysis. Controlling for cellular heterogeneity in epigenome-wide 

association studies is often critical to reducing the rate of false-positive findings [17]. Even 

when the goal of an analysis is solely to detect molecular biomarkers of an exposure or 

disease, it is important to explore whether those epigenetic markers are acting purely as 

surrogates for different distributions of cell types, as this can be informative of the toxicant’s 

mechanism of action or on the potential consequences of these alterations. Though similar 

tools are not yet available in the context of proteomic or metabolomic data, and it is not as 

apparent that these molecular features are as susceptible to confounding by tissue 

heterogeneity, studies incorporating these data-types should consider whether cellular 

heterogeneity may potentially confound the relationships that the investigators seek to 

identify.

It is also important to discuss how the tissue of origin can impact findings in molecular 

epidemiology. The majority of studies with research questions about prenatal and early-life 

exposures utilize tissues that are most readily accessible, including placenta, blood 

(peripheral or cord), and buccal cells. In some cases, the accessible tissues are relevant to the 

expected exposure-outcome relationships. The placenta, for instance, is known to play 

critical roles in the growth and development of the fetus, and placental activities have been 

shown to be responsive to multiple maternal exposures and lead to restricted fetal growth 

[25]. Thus, the placenta is a likely target tissue for environmental exposures that are thought 

to impair fetal growth. However, the available tissues do not always represent the ideal target 
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tissues for some of health outcomes that are most relevant to the exposures of interest. For 

instance, neurotoxicants that affect behavior or cognition are most likely to alter the 

development and/or functions of brain cells, but brain tissue can only be obtained from 

humans post mortem. Thus, before utilizing a surrogate tissue, such as blood, to study the 

impacts of neurotoxicants it is critical to consider whether a molecular response in that 

surrogate tissue is meaningful for the health outcomes that are relevant for that exposure. 

Bakulski et al (2016) provide a thorough review of human epigenomic studies of 

neuropsychiatric disorders in both target brain tissues and surrogate tissues such as blood 

and buccal cells – they found that surrogate tissues could be useful for both biomarker of 

disorders and to provide insights in disease mechanisms [26]. Molecular epidemiologists 

need to carefully consider their research questions and examine the existing literature to 

determine whether the tissues that will be available to them, and the molecular measure they 

are considering, can capture the expected exposure-response relationships.

The ability to detect true associations, statistical power, is dependent on the magnitude of 

effect, the variation in the effect, and noise. Studies with small sample sizes are more likely 

to be underpowered, which increases the probability of false positives, false negatives, and 

exaggerated estimated effect sizes [27]. Additionally, variations in levels of DNA 

methylation [28], transcription [28], and metabolite concentrations [29] can originate from 

many sources including within- and between-individual variability, as well as technical 

variability. Thus, when designing environmental health studies that will incorporate 

molecular -omics data, power calculations must be performed to estimate an adequate 

sample sizes to identify the estimated effects in the face of these multiple sources of 

variability. Additionally, all of these molecular data need to undergo appropriate quality 

control, normalization, processing, and statistical adjustments to correct for batch effects to 

limit the influence of technical variability on study results [30–33].

A number of experimental considerations also must be contemplated when designing an -

omics experiment. The timing of sampling may be critical, on multiple scales of time. In 

considering disease outcomes, prospective sampling will allow for unbiased assessment of 

causality, but may be difficult to obtain dependent on the type of outcome being 

interrogated. On a more immediate scale, time of day can impact certain -omics measures, 

particularly metabolomics or transcriptomics where circadian patterns or timing specific 

confounders may alter specific readouts. In addition, timing and protocol from sample 

collection through processing is also a critical consideration, particularly when the 

molecular feature may be labile, such as those of RNA and some metabolites.

Carefully addressing the above considerations when designing an -omics based 

environmental health study can help investigators deal with the potential sources of bias 

proactively and improve the rigor and reproducibility of those studies. In addition to the 

above potential issues that are specific to molecular analysis in population-based studies, 

other traditional epidemiologic concepts should be carefully considered, including 

confounding, selection bias, effect modification, mediation, and temporality.

We present illustrative examples of how molecular -omics data have been successfully 

integrated into environmental health studies to date, with a focus on prenatal and/or early life 
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exposures. Prenatal exposures may be particularly important to human health since organs 

are undergoing development and programming at this time, and alterations to these 

processes can have acute consequence to the fetus and alter long-term risk of disease later in 

life [34]. The mechanisms through which prenatal environmental exposures may impact 

birth outcomes and long-term health in humans have primarily been studied through the lens 

of fetal epigenetics [34], though transcriptomics, proteomics and metabolomics have begun 

to provide valuable insights into these exposure-outcome relationships as well.

Highlights of -omics studies of prenatal exposures and early life health

The prenatal exposure that has been most thoroughly studied in relation to fetal molecular -

omics is maternal smoking during pregnancy (MSDP), largely because the relationship 

between smoking and reduced birth size has been observed consistently across numerous 

independent studies [34] and small size at birth is a risk factor for the development of 

chronic diseases later in life. Multiple single-cohort epidemiologic studies have examined 

the relationship between MSDP and fetal epigenetics, as a potential mechanism through 

which smoking may impact birth weight and long-term health outcomes. To date, the largest 

of such studies was undertaken by Joubert et al (2016) who performed a meta-analyses of 13 

independent cohorts from the Pregnancy and Childhood Epigenetics (PACE) consortium 

[35], including 6,685 newborns. This meta-analysis identified over 6,000 epigenetic loci that 

were differentially methylated in relation to MSDP at a 5% FDR threshold. The top 

differentially methylated loci was at the aryl hydrocarbon receptor repressor (AHRR) gene 

[36], which had been associated with tobacco smoke exposure in multiple previous studies. 

Joubert et al (2016) implemented numerous epidemiologic principles that contribute to the 

strength of evidence surrounding these findings, performing functional network and pathway 

enrichment analyses, testing the relationships between methylation and expression, and 

testing for associations between MSDP and DNA methylation in older children, to provide 

additional evidence for biological plausibility that these epigenetic variations may impact 

biological function and can persist after birth [36]. This meta-analysis served as a 

confirmatory study not only for the AHRR gene, which is predictive of smoking-associated 

morbidity and mortality [37], but for 967 epigenetic loci that had previously been reported as 

differentially methylated with MSDP, thus identifying numerous candidate loci that may 

deserve follow-up in future studies. Additionally, Reese et al (2017) have since developed a 

method for estimating prenatal exposure to maternal smoking from cord blood methylation 

data, demonstrating the utility of high-throughput epigenomics data for developing 

biomarkers of environmental exposure [38]. Epigenetic variations in other fetal tissues have 

also been associated with MSDP, such as placenta [39] and fetal cortex [40]. The top hits 

from these studies were in different genomic locations than those identified in cord blood 

and may represent tissue-specific responses to MSDP, which emphasizes the need for 

additional studies of MSDP in other fetal tissues, and well as validation studies in placenta 

and brain tissue in independent studies with larger sample sizes.

Studies of the fetal transcriptome in response to MSDP have also been performed, 

identifying differentially expressed genes involved in xenobiotic metabolism, coagulation, 

and thrombosis, despite these studies being done in independent samples with relatively 

small sample sizes [41,42]. Additionally, a study of the placental proteome found that 
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protein networks involved in cellular morphology, organization and compromise, or involved 

in DNA replication, recombination, and repair, energy production and nucleic acid 

metabolism may be impacted by MSDP. The authors also examined difference in selected 

transcript levels of candidate genes, again finding genes involved in xenobiotic metabolism 

to be differentially expressed [43]. All three of these placental transcriptome/proteome 

studies have been performed on small sample sizes, but produced some strikingly similar 

results, warranting more comprehensive examinations in larger studies.

Multiple studies have also examined the relationships between air pollution exposure and 

molecular profiles measured via -omics technologies in fetal tissues. Small numbers of 

differentially methylated loci have been identified in placental tissue associated with 

distance to roadway [44] and in cord blood associated with nitrogen dioxide (NO2) exposure 

[45], suggesting possible air-pollution-associated differential epigenetic regulation of protein 

tyrosine phosphatase receptors and mitochondrial activity. Kingsley et al (2016) also 

identified that prenatal exposure to black carbon and PM2.5 were associated with variations 

in expression of a large proportion of placental imprinted genes [46], some of which had 

been previously linked to birthweight in the same cohort and are known to play roles in fetal 

development [47]. Winckelmans et al. (2017) examined relationships between maternal 

long-term and short-term PM2.5 exposure and gene expression patterns in cord blood related 

to immune and DNA damage response, and that many of the observed relationships may be 

highly dependent on fetal sex with [48]. While Martens et al (2017) studied associations 

between PM2.5 and cord blood oxylipins, a subset of metabolites generated from fatty-acid 

oxidation, observing associations with metabolites derived from the lipoxygenase pathway 

which is involved in inflammatory signaling [49]. These studies have begun to elucidate how 

maternal air pollution exposure can impact the molecular activities in fetal tissues, but 

independent studies with large sample sizes are needed to validate many of these findings.

Prenatal exposures to toxic metals have also received substantial attention for their potential 

impacts on fetal epigenetic patterns. Multiple studies have demonstrated that DNA 

methylation levels in cord blood and/or placenta are associated with prenatal exposure to 

metals, including arsenic (As) [50–54], mercury (Hg) [55,56], cadmium (Cd) [57–59], and 

lead (Pb) [60]. These studies demonstrate how molecular markers may be able to detect 

functional changes in developing tissues associated with maternal exposures to 

environmental contaminants, often trace exposure levels, and explore the implications for 

health and development. For instance, Everson et al (2018) found numerous epigenetic loci 

associated with Cd in placental tissue that were consistent across two populations, then 

incorporated transcriptomic data to infer the biological processes in the placenta that may be 

impacted by these variations, such as inflammatory signaling, cellular growth, and 

metabolism [59]. Prenatal As exposure has also been studied for associations with fetal 

metabolomics and proteomics. Prenatal exposure to inorganic arsenic (iAs) has been 

associated with variations in the cord serum metabolome, potentially related to regulation of 

the citrate cycle, as well as vitamin and amino acid metabolism [61], and a pilot study 

implicated that the toxic effects of in-utero iAs on birth weight may be mediated through 

alterations to metabolic activity in cord blood, specifically laurate, 17-methylstearate, and 4-

vinylphenol sulfate [62]. Additionally, prenatal iAs has been associated with the expression 
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of numerous proteins that are involved in Tumor necrosis factor (TNF) mediated immune 

and/or inflammatory response [63].

Other prenatal environmental exposures have been studied in relation to fetal molecular 

profiles as well. Using a meet-in-the-middle approach, Pennings et al (2016) found that cord 

blood expression levels of 52 genes that had been associated with prenatal PFAS exposure 

were also associated with episodes of the common cold or rubella titers, thus providing 

supporting evidence that prenatal PFAS exposure may have immunotoxic effects on 

offspring [64]. Remy et al (2016) examined how the cord blood transcriptome was perturbed 

by multiple prenatal environmental exposures, including multiple endocrine disruptors, 

metals, and particulates, and identified p, p’-DDE the most impactful environmental 

exposure on the fetal transcriptome, and p, p’-DDE was most strongly associated with 

differential expression of the glucocorticoid receptor (NR3C1) which plays critical roles in 

fetal development [65]. The approach used by Remy et al (2016) identifies the molecular 

targets, in this case RNA transcripts, that are associated with environmental exposures, 

which could be informative for identifying sets of exposures that impact the same molecular 

features and which exposures have the greatest impact on individual features.

Although metabolomics does have the ability to describe molecular profiles that are 

informative about physiological activity that may be related to fetal programming, it can also 

be utilized to characterize internalized exposures or health states during pregnancy. Sulek 

(2017) compared metabolomic profiles derived from maternal hair samples between cases of 

fetal growth restriction (FGR) to controls [66]. They identified 32 metabolites that 

significantly differed between cases and controls, and a multivariate model including just 5 

of these metabolites achieved an ROC of 0.998, and speculate that many of these difference 

may be related to loss of redox control [66]. Maitre et al (2016) examined the relationships 

between maternal urinary metabolites with FGR and preterm birth in the Rhea cohort, FGR 

pregnancies were less likely among mother with higher levels of tyrosine, acetate, 

trimethylamine and formate, while medically induced preterm births were associated with 

higher levels of N-acetyl glycoproteins and spontaneous preterm birth was associated with 

high lysine and low formate levels, and posit that these metabolites may be related to 

maternal metabolic health during pregnancy [67]. Maternal urinary metabolomics was also 

studied in two independent Spanish birth cohorts, Sabadell and Gipuzka, and the authors 

observed 10 maternal urinary metabolites that were strongly predictive of birth weight, 

including branched-chain amino acids (BCAAs) and steroid hormone by-products [68]. 

Hellmuth et al (2017) performed a metabolomics study of cord blood, and found numerous 

strong associations with birth weight, but these metabolites were not strongly predictive of 

weight gain or BMI in adolescences; they propose that this may be due to the metabolome 

being highly influenced by the immediate environment, and thus may be more sensitive for 

detecting associations in cross-sectional settings [69]. On the other hand, Isganaitis et al 

(2015) identified several cord blood metabolites that were strongly associated with postnatal 

weight gain, and observed that the ratio of glutamine to glutamate was lower, a potential 

marker of cardiometabolic risk, among those with accelerated weight gain [70]. Prenatal and 

early-life vitamin D exposure has also been shown to influence metabolomics profiles of 

children at 3 years of age, which may suggest a potential role for metabolomics in detecting 

metabolic reprogramming [71]. Maternal smoking during pregnancy has been associated 
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with alterations to both the maternal and fetal metabolome [72], as well as the placental 

proteome and metabolome and suggest that these differences may be related to increased 

oxidative stress in placenta of smoking mothers [43]. Though only a few studies have 

currently been performed, early studies of fetal metabolomics in association with maternal 

exposures are promising. These studies demonstrate the promising potential of 

metabolomics for examining biomarkers of maternal exposures, as well as maternal and fetal 

health states, to more comprehensively assess how the maternal exposome impacts fetal and 

neonatal health.

Multi-omics Analyses

The above studies highlight many of the successful incorporations of -omics data within 

environmental health studies of prenatal exposures. However, most of these studies only 

include a single high-dimensional molecular data set and thus are only capable of identifying 

associations within the molecular domains they investigated. Multi-omics analyses on the 

other-hand examine the associations between features across multiple high-throughput data 

sets. Two approaches for multi-omics analyses include the quantitative trait approach and the 

multi-omics integration approach.

Quantitative trait loci (QTL) studies seek to identify all associations between features on 

different molecular datasets, or at least those within close genomic proximity to each other, 

thus characterizing the functional relationships between molecular -omics domains. 

Methylation QTLs (mQTLs) are CpG sites whose methylation levels are influenced by 

genetic variants, while expression QTLs (eQTLs) are genes whose expression levels are 

influenced by genetic variants, and expression quantitative trait methylations (eQTM) are 

genes whose expression levels are influenced by DNA methylation [73]. Gutierrez-Arcelus 

(2013) performed eQTL, mQTL, and eQTM in umbilical cord tissue samples [74], Peng et 

al (2017) performed an eQTL analysis of placental tissues [75], and Gaunt et al. (2016) have 

developed a database of mQTLs in human blood at various ages throughout the life-course 

[76]. These may serve as valuable resources that should be accessed by researchers when 

interpreting -omics data obtained from fetal tissues. In addition to providing functional 

context, QTL approaches can be performed within individual cohorts in a reductive way, to 

only test the features that exhibit QTL associations for additional associations with 

exposures or outcomes. Teh et al. (2014) did this, identifying mQTLs in fetal tissue, 

followed by an association study between mQTLs and maternal exposures that likely affect 

the in-utero environment (smoking, maternal depression, maternal BMI, infant birth weight, 

gestational age, and birth order). They identified numerous strong exposure-methylation 

associations via this method, also finding that variations in mQTLs were better explained by 

gene-by-environment interactions, than by genetics alone at ~75% of the identified mQTLs 

[77]. In the majority of these G-by-E associated mQTLs, the environment tended to be 

associated with DNA methylation only among individuals of a particular genotype [77]. An 

alternative approach can be applied to the loci identified in epigenome-wide association 

studies, correlating DNA methylation with gene expression, to characterize whether the top 

hits from an EWAS may be regulators of nearby gene expression. For instance, the 

expression of the LYRM 2 gene was shown to be inversely correlated with DNA methylation 

at the loci identified from an EWAS of prenatal As exposure [54], and the expression the 
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TNFAIP2 gene was positively correlated with DNA methylation at the loci identified from 

an EWAS of placental Cd concentrations [59]. Incorporating gene-expression analyses into 

EWAS studies such as these, improves the biological plausibility that an environmentally-

associated epigenetic variation can influence the functions of the tissue from which it was 

measured.

The other multi-omic approach involves -omics integration, similar to iPOP, to examine 

interrelationships between multiple different -omics data simultaneously, and ideally 

longitudinally. To date the iPOP framework has primarily been applied to small sample sizes 

and focused on changes in health states rather than environmental exposures [10,11]. Chen 

et al. (2012) followed one individual over a 14-month period while examining changes in 

molecular profiles over time and speculated about indicators for the onset risk for type II 

diabetes, recognizing that risk cannot be ascertained on a study of one individual [11], while 

Piening et al. (2018) extended this iPOP framework to a sample of 23 individuals, examining 

how molecular profiles change with weight gain and weight loss, compared profiles between 

insulin-sensitive and insulin-resistant persons, and evaluated inter- and intra-individual 

variations in those profiles [10]. The iPOP framework has primarily been studied through a 

lens of personalized medicine and the possibility of improved clinical outcomes. However, 

the clinical utility of the vast majority of detectable molecular markers is currently unknown 

and requires additional study. We posit that incorporating longitudinal multi-omic profiling 

in human population-based studies, particularly in birth cohort studies, can help to 

characterize how molecular profiles change throughout the life-course, in response to 

environmental exposures, and in association with various health outcomes. Some 

epidemiologic investigations have utilized multiple integrated -omics data in larger sample 

sizes. Inouye et al (2010) examined interrelationships between genomics, transcriptomics, 

and metabolomics in relations to immune response, metabolism and adiposity [78], then 

performed a multi-sample study that incorporated longitudinal follow-up to validate the 

original findings and more comprehensively characterize immuno-metabolic cross-talk [79]. 

These illustrative examples demonstrate the abilities of multi-omics data integration to 

comprehensively characterize physiological activity, but such integrative approaches have 

only been applied to environmental health research in a limited capacity.

Conclusions and Future Directions

The pathophysiologies of environmentally induced diseases are complex and often will not 

be centered around one individual molecular target. Instead, environmental exposures may 

influence the activity of multiple biological factors, and combinations of these factors may 

lead to disease development. The emergence and rapid growth of -omics technologies are 

opening avenues of research for environmental health, that will allow for better detection 

and characterization of intermediate molecular biomarkers along these exposure-response 

relationships, and provide novel opportunities to develop preventive strategies or 

identification of therapeutic targets. Epigenomics has become a common component to 

investigating the mechanisms underlying how maternal exposures may alter fetal 

programming and thus impact birth outcomes and fetal health, and has demonstrated 

substantial utility for this task. However, studies focused on transcriptomic, proteomic, and 

metabolomic data have also yielded promising results, particularly for identifying 
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biomarkers of exposure and predictors of outcomes. As -omics technologies continue to 

improve and become more affordable, epidemiologic studies need obtain multiple -omics 

measures from the same individuals, and from multiple tissues, ideally in a longitudinal 

manner so that inter- and intra-individual variations can be more well characterized, and 

targets identified as possible biomarkers to be validated in independent populations. The 

issues and challenges associated with molecular -omics data require that investigators 

consider traditional epidemiologic sources of bias, such as confounding, selection bias, 

measurement error, and reverse causation, but also include unique source of bias which 

could be biological confounders or technical variability. To ensure that environmental health 

research benefits from these advancements, environmental health researchers should receive 

cross training in molecular epidemiology and -omics and seek collaborations with 

researchers that have expertise in the use of these tools.
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Figure 1 Caption: 
Environmental exposures, as well as behaviors and disease processes, can influence the 

activities of multiple molecular domains individually or at the systems-level. Epigenomics 

includes molecules that interact with DNA to regulate gene expression potential, 

transcriptomics includes expression of RNAs, proteomics includes the expression levels of 

peptides, and metabolomics includes the activities and interactions of metabolites. While the 

genomic sequence is biologically inherited, genotype may influence the biological response 
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to certain exposures across multiple domains. SNP = single nucleotide polymorphisms, 

CNV = copy number variations, CpG = cytosine-phosphate-guanine.
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