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PAX5 is a well-known haploinsufficient tumor suppressor gene in
human B-cell precursor acute lymphoblastic leukemia (B-ALL) and is
involved in various chromosomal translocations that fuse a part of
PAX5 with other partners. However, the role of PAX5 fusion proteins
in B-ALL initiation and transformation is ill-known. We previously
reported a new recurrent t(7;9)(q11;p13) chromosomal translocation
in human B-ALL that juxtaposed PAX5 to the coding sequence of
elastin (ELN). To study the function of the resulting PAX5-ELN fusion
protein in B-ALL development, we generated a knockin mouse model
in which the PAX5-ELN transgene is expressed specifically in B cells.
PAX5-ELN–expressing mice efficiently developed B-ALL with an in-
cidence of 80%. Leukemic transformation was associated with recur-
rent secondary mutations on Ptpn11, Kras, Pax5, and Jak3 genes
affecting key signaling pathways required for cell proliferation.
Our functional studies demonstrate that PAX5-ELN affected B-cell
development in vitro and in vivo featuring an aberrant expansion
of the pro-B cell compartment at the preleukemic stage. Finally, our
molecular and computational approaches identified PAX5-ELN–regu-
lated gene candidates that establish the molecular bases of the pre-
leukemic state to drive B-ALL initiation. Hence, our study provides a
new in vivo model of human B-ALL and strongly implicates PAX5
fusion proteins as potent oncoproteins in leukemia development.
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B-cell precursor acute lymphoblastic leukemia (B-ALL) is the
most common pediatric cancer. B-ALL is characterized by a

blockade of B-cell differentiation combined with an uncontrolled
proliferation of blastic cells. Current chemotherapy is efficient at
inducing long-term remission in childhood B-ALL, but the most
common cause of treatment failure remains relapse that occurs in 15
to 20% of patients (1). The prognosis is even worse in adult B-ALL,
as only 30% of adults achieve long-term disease-free survival (2).
B-cell development is initiated by the entry of hematopoietic

progenitors into the B-cell lineage transcription program and
the concomitant sequential rearrangement of Ig genes through
V(D)J recombination, ultimately leading to the generation of
immunocompetent plasma cells. B-cell development can be
dissected into pre-pro-B, pro-B, pre-B, immature B, and mature
B-cell populations corresponding to different stages of differ-
entiation (3). PAX5 is critical from early stages of B-cell devel-
opment up to mature B cells (4). B-cell differentiation is
completely blocked at the pro-B stage in Pax5 knockout mice,
revealing its importance for early B lymphogenesis (5). Indeed,
PAX5 plays a critical role in B-cell lineage commitment by ac-
tivating the transcription of B cell-specific genes such as CD19
and BLK and suppressing alternative lineage choices (6–8).
PAX5 is the main target of genetic alterations in B-ALL.

Heterozygous deletions and loss-of-function mutations of PAX5 are

found in more than one-third of human B-ALL (9–11). These al-
terations result in loss of PAX5 expression and impairment of
DNA-binding activity and/or transcriptional activity of PAX5. PAX5
is also rearranged in 2.6% of pediatric B-ALL cases, being fused to
various fusion partners (9, 12–14). PAX5 translocations have been
associated with a blockade of B-cell differentiation, as illustrated by
PAX5-ETV6 and PAX5-FOXP1, which fuse the PAX5 paired do-
main to ETV6 and FOXP1 transcription factors, respectively (15).
We previously reported the molecular characterization of a new

chromosomal t(7;9)(q11;p13) translocation in two cases of adult
B-ALL. This translocation juxtaposed the 5′ region of PAX5 and
almost the entire sequence of elastin (ELN) (13). The resulting
PAX5-ELN fusion protein had conserved the nuclear localization
sequence (NLS) and the DNA-binding paired-box domain of PAX5,
and could therefore act as a constitutive repressor of the residual
wild-type PAX5. Indeed, similar to PAX5-ETV6 and PAX5-FOXP1,
transient expression of PAX5-ELN displayed a dominant-negative
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effect on PAX5 by down-regulating the transcription of PAX5 target
genes (11, 13, 16, 17). However, the generality of the dominant-
negative effect was recently questioned in vivo (15).
A detailed and dynamic analysis of the PAX5-ELN effect on

B-ALL initiation and transformation requires the availability of a
mouse model that allows a B-cell restricted expression of PAX5-
ELN. Here, we demonstrate, by using a knockin (KI) mouse line,
that PAX5-ELN is an initiating oncogenic event that perturbs
normal B-cell development by aberrantly expanding pro-B cells
at the earliest steps of leukemogenesis. Nonetheless, complete
B-ALL transformation induced by PAX5-ELN involved the ac-
quisition of additional mutations and the deregulated expression
of multiple genes. Our study provides novel insights into the
functional role of PAX5-ELN as a potent oncoprotein in B-ALL
development, and should help to elucidate the molecular
mechanisms that underlie B-ALL initiation and transformation.

Results
Constitutive Expression of Human PAX5-ELN Leads to B-ALL
Development. To investigate the B-leukemic potential of PAX5-
ELN, we developed a KI mouse model in which the cDNA
encoding the human PAX5-ELN fusion protein was expressed in
B-cell progenitors. This was achieved by inserting the human
cDNA at the IgH locus under the control of a VH promoter
(PVH) and the endogenous Eμ enhancer whose activity is trig-
gered early in B-cell development (18). To avoid transcriptional
readthrough from upstream promoters at different devel-
opmental stages, a pause/polyadenylation site (19) was added
upstream of the ectopic PVH promoter (Fig. 1A and SI Ap-
pendix, Fig. S1). Unless otherwise indicated, the experiments
have been performed on heterozygous mice.
Mutant mice that constitutively expressed PAX5-ELN (here-

after PEtg mice) efficiently developed leukemia with a pene-
trance of 80% at 300 d (Fig. 1B). Leukemic development was
associated with a splenomegaly (Fig. 1C, Upper) characterized by
a massive infiltration of B220+ cells and a dramatic perturbation
of the spleen architecture (Fig. 1D). Moreover, PEtg mice de-
veloped a lymphadenopathy (Fig. 1C, Lower) and exhibited blast
cells in the bone marrow (BM) (Fig. 1E). Importantly, although
the expression of PAX5-ELN was driven by IgH regulatory se-
quences, immunoblot analysis of protein extracts with a PAX5
paired domain-specific antibody revealed that the abundance of
PAX5-ELN was not higher than that of endogenous PAX5 (Fig.
1F). This observation indicates that the reported effects on PEtg

mice cannot be ascribed to high expression levels of PAX5-ELN
fusion protein. Immunophenotypic characterization showed that
BM, spleen, and lymph nodes (LNs) of leukemic PEtg mice
contained an aberrant proportion of CD19+ B cells associated
with an aberrant and variable expression of CD23 and Igκ/λ
markers (Fig. 1G and SI Appendix, Fig. S2).

Clonal Transformation and Collaborating Events with PAX5-ELN
Oncoprotein. The IgH variable region can broadly be divided in-
to the VH domain, including the distal VHJ558 and the proximal
VH7183 gene families, and the DHJH domain, comprising a dozen
DH segments followed by four JH segments (Fig. 2A, Upper) (20).
Assembly of the IgH variable region involves two recombination
steps: first DH to JH, followed by VH to DHJH. To determine the
rearrangement status of the IgH locus in leukemic cells, we
performed a qPCR-based V(D)J recombination assay (21) on
genomic DNA purified from blasts of five independent B-ALL
mice (Fig. 2A, Upper). The data reveal prominent DHJH and
VHDHJH rearrangements, involving both proximal and distal VH
segments, in all B-ALL samples (Fig. 2A, Lower). These results
indicate that PAX5-ELN fusion protein induces the clonal
transformation of a B-cell progenitor that has already rearranged
its IgH locus, and support the notion that PAX5-ELN acts as a
potent B-ALL oncoprotein.

Our observations on B-ALL transformation delay (>90 d) (Fig.
1B) led us to suspect potential acquisition of secondary mutations.
To further identify these additional genetic alterations that po-
tentially cooperate with PAX5-ELN, we performed whole murine
exome sequencing in five PEtg leukemias and identified recurrent
somatic mutations in Ptpn11, Kras, Jak3, and Pax5 genes. These
mutations were also found after specific sequencing of these loci
in an additional 11 PEtg leukemias (Fig. 2B). These findings
strengthen the notion that aberrant activation of JAK/STAT and/
or RAS/MAPK signaling pathways is required for an overt B-cell
leukemia transformation in our model.
To address the critical question of the recurrence of these so-

matic mutations in human B-ALL, we performed the targeted se-
quencing of several exons of PAX5, PTPN11, NRAS, KRAS, JAK3,
and JAK2 genes in a cohort of 101 pediatric B-ALL patients (Fig.
2C and Dataset S1). Importantly, we detected recurrent mutations
in PAX5 (9/101), PTPN11 (15/101), NRAS (33/101), and KRAS (33/
101) genes in all of the different B-ALL oncogenic subtypes (Fig.
2C). Interestingly, the patient cohort contained five PAX5-
rearranged B-ALL patients, including one with the PAX5-ELN
translocation that exhibited, just as in our mouse line, PAX5,
NRAS, KRAS, and JAK3 mutations (Fig. 2C and Dataset S1). To-
gether, the above data establish that our PAX5-ELN mouse model
recapitulates the multistep pathogenesis of human B-ALL.
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Fig. 1. Human PAX5-ELN expression induces efficient B-ALL development.
(A) Generation of knockin mouse model expressing PAX5-ELN fusion protein.
The sequence encoding the human PAX5-ELN fusion protein was inserted
downstream of Eμ enhancer. Desmos, Desmosine; HD, homeodomain; OP,
octapeptide; pVH, VH gene promoter. (B) Kaplan–Meier curves of the time to
leukemia for cohorts of PEtg mice (n = 28). WT mice (n = 8) were used as
controls. Pre-Leuk, preleukemic time. (C–E) PAX5-ELN induces B-ALL devel-
opment characterized by leukemic cell invasion in the bone marrow, spleen,
and lymph nodes. (C) Pictures of spleens (Upper) and LNs (Lower) from WT
and leukemic PEtg mice are shown. (D) Staining with hematoxylin and eosin
(HE) and immunohistochemistry of B220 are shown of spleens from WT and
leukemic PEtg mice. (E) Pictures of May-Grünwald–Giemsa–stained cytospin of
BM cells from WT and leukemic PEtg mice. (F) Protein extract of leukemic cells
from a B-ALL PEtg mouse (no. 83) was subjected to immunoblotting with anti–
N-terminal Pax5 (N19) antibody for the detection of PAX5-ELN and endoge-
nous Pax5 and with anti-ELN antibody for the detection of PAX5-ELN and
endogenous Eln. (G) Total cells from the BM, spleen, and LNs of WT (Left)
and leukemic PEtg (Right) mouse (no. 39) were immunophenotyped using
the B220, CD19, CD23, and Igκ/λ markers.
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PAX5-ELN Oncoprotein Perturbs Early B-Cell Progenitor Cell
Differentiation at Preleukemic Stage. The survival curve of PEtg

mice revealed a leukemia onset starting at 90 d after birth (Fig. 1B).
This leukemia development latency allowed us to explore the effect
of PAX5-ELN oncoprotein on the early steps of leukemogenesis.
Cytological examination of the preleukemic PEtg mice confirmed
the absence of blasts in the BM (SI Appendix, Fig. S3A) and any
obvious perturbation of the main cell lineages (SI Appendix, Fig.
S3B). Moreover, the absence of detection of Ptpn11, Kras, Pax5,
and Jak3 mutations in the BM of preleukemic PEtg mice (Fig. 2B)
allowed us to precisely address the role of PAX5-ELN in leukemia
initiation, before the onset of clonal transformation induced by the
acquisition of additional cooperating oncogenic events.
To identify the earliest cell types that are affected by PAX5-

ELN oncoprotein, we analyzed B-cell progenitors (SI Appendix,
Fig. S3C) in the BM of PEtg mice during early and late pre-
leukemic stages, namely at 30 and 90 d after birth, respectively.

We observed that PAX5-ELN significantly induced a three- to
fourfold expansion of the pro-B population at 30 and 90 d,
whereas pre-pro-B and pre-B populations were not affected (Fig.
3 A and B). Interestingly, 30-d-old PEtg pro-B cells exhibited a
polyclonal profile for DHJH and VHDJH gene rearrangements that
was roughly comparable to their WT counterparts (Fig. 2A), in-
dicating that PAX5-ELN–induced pro-B cell expansion was not
associated with a clonal selection at the preleukemic stage. In
addition, this pro-B cell expansion was associated with a reduction
of the immature and circulating B-cell populations in the BM (Fig.
3 A and B), indicating that PAX5-ELN partially blocked B-cell
differentiation at the preleukemic stage. Accordingly, we observed
a moderate but significant reduction of spleen size in preleukemic
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and mature B cells from the BM of 30- and 90-d-old WT and PEtg mice were
calculated (B; n = 5 to 8 mice per condition). (C–E) Preleukemic and leukemic
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PEtg mice compared with age-matched WT mice (SI Appendix,
Fig. S4A), suggesting that PAX5-ELN retained B-cell loading in
peripheral lymphoid organs. Indeed, while the overall distribution
of B-cell populations was unaffected by PAX5-ELN in the spleen
(SI Appendix, Fig. S4B), the absolute number of immature and
mature splenic B cells was significantly reduced in preleukemic
PEtg mice (SI Appendix, Fig. S4C). The above results indicate that
PAX5-ELN oncoprotein expands preleukemic pro-B cells at the
expense of subsequent stages of maturation in vivo. Finally, we
confirmed that PAX5-ELN altered the intrinsic capacity of dif-
ferentiation of pro-B cells using in vitro functional approaches,
and had a restricted expression and effect on the B-cell lineage (SI
Appendix, Text and Figs. S5 and S6).

PAX5-ELN Oncoprotein Confers an Aberrant Expansion Potential to
Preleukemic Pro-B Cells. We first evaluated the effect of PAX5-
ELN on B-cell progenitor turnover using a total BM trans-
plantation assay. The data strongly suggested that PAX5-ELN in-
duced an aberrant expansion potential to preleukemic pro-B/pre-B
progenitors before B-ALL transformation (SI Appendix, Text and
Fig. S7 A–D). To strengthen this notion, we compared the re-
constitution potential of WT, preleukemic, and leukemic PEtg B
cells. Equal numbers of total B cells purified from the BM of WT,
preleukemic, and leukemic PEtg mice were transplanted into con-
genic mice (Fig. 3C). Five weeks after transplantation, engraftment
efficiencies of WT and preleukemic PEtg B cells were similarly low
(Fig. 3D), and recipient mice did not exhibit splenomegaly (Fig.
3E). Interestingly, the analysis of engrafted B-cell compartments in
the BM of recipient mice revealed an aberrant proportion of PEtg

donor-derived pro-B cells specifically (65 ± 15-fold expansion) (Fig.
3 F and G and SI Appendix, Fig. S7E). This striking expansion was
not associated with the acquisition of Ptpn11, Kras, Pax5, or Jak3
mutations (SI Appendix, Fig. S7F). In addition, consistent with our
results in steady-state conditions, we observed a moderate but sig-
nificant diminution of the engraftment efficiency of preleukemic
PEtg B cells in the spleen compared with WT controls (Fig. 3D).
This was due to a reduction of the number of donor-derived im-
mature and mature B cells (SI Appendix, Fig. S7 G and H).
Thus, our transplantation experiments with preleukemic B

cells provide additional evidence to support that PAX5-ELN
induces an aberrant self-renewal activity to normal pro-B cells
before clonal and malignant transformation. On the other hand,
recipient mice transplanted with clonal leukemic PEtg cells
exhibited a high level of engraftment in the BM (Fig. 3D) as-
sociated with an important blast invasion in the spleen (Fig. 3 D
and E), and with the presence of Ptpn11 mutations (SI Appendix,
Fig. S7F), characteristic of the spreading of a clonal population.
Combined, our functional approaches establish a sharp differ-

ence in the reconstitution potential between clonal and nonclonal
B-cell populations in our model. Furthermore, they indicate that
the pro-B cell compartment is abnormally expanded by PAX5-
ELN oncoprotein at the preleukemic stage, and therefore repre-
sents the likely cellular target of leukemia initiation.

Gene Regulation by PAX5-ELN in Pro-B Cells. Based on transient
transfection assays, PAX5 fusion proteins including PAX5-ELN,
PAX5-ETV6, and PAX5-FOXP1 were thought to act as
dominant-negatives by affecting the transcriptional activity of
WT PAX5 (11, 13, 16, 17). However, recent evidence in vivo
revealed that PAX5-ETV6 or PAX5-FOXP1 fusion proteins
marginally modified the expression of PAX5 target genes (15,
22). To address this hypothesis in our in vivo model, we first
compared the gene expression profiles of purified pro-B cells
from preleukemic PEtg mice and age-matched WT mice (SI
Appendix, Fig. S8A). Transcriptome analysis identified 145 up-
regulated and 49 down-regulated genes with an expression dif-
ference of more than 1.5-fold and an adjusted P value of <0.05 in
PAX5-ELN–expressing pro-B cells (Fig. 4A and Dataset S2). In

parallel, we established a list of ex vivo PAX5-modified genes by
comparing the gene expression profiles of Pax5−/− embryonic
liver (E17.5) pro-B cells retrovirally transduced with either MIE
or MIE-PAX5. This strategy led to the identification of 174
PAX5–up-regulated and 438 PAX5-repressed genes (Fig. 4A and
Dataset S3). Interestingly, the gene set enrichment analysis of a
well-established list of in vivo PAX5-regulated genes, arising
from in vivo gene expression profiles of murine Pax5+/+ and
Pax5−/− pro-B cells (22), with our new ex vivo PAX5 gene sig-
nature demonstrates a global similarity between the two ap-
proaches (SI Appendix, Fig. S8B). We determined the overlap of
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Fig. 4. (A) Scatter plot of gene expression differences between in vivo
purified WT and PEtg preleukemic pro-B cells (Left) and between ex vivo
E17.5 fetal liver Pax5−/− pro-B cells transduced with either MIE-PAX5 or MIE
retroviral vectors (Right) based on three independent microarray experi-
ments. The normalized expression data of individual coding genes (indicated
by dots) were plotted as the average log ratio (avg log). Up- and down-
regulated genes with an expression difference of >1.5- and >3-fold, and
an adjusted P value of <0.05, are colored in red or blue, respectively. (B)
Absence of a general dominant-negative effect of PAX5-ELN on ex vivo
PAX5-regulated genes in pro-B cells. Comparison of PAX5-activated and
PAX5-ELN–repressed genes (Left) and of PAX5-repressed and PAX5-ELN–ac-
tivated genes (Right) in preleukemic pro-B cells. Overlap indicates that one
gene was activated by PAX5 and repressed by PAX5-ELN and 14 genes of the
PAX5-repressed genes were activated by PAX5-ELN as represented by col-
ored bars. (C) Heat map displaying the differential expression of PAX5-ELN–
activated (red) and –repressed (blue) genes in WT (n = 3) and PEtg (n = 3) pro-
B cells. The 46 PAX5-ELN–modified genes were selected on the basis of an
expression difference of >2-fold (P < 0.05) and for encoding a protein im-
plicated in one of the indicated pathways. The expression value of each gene
is visualized according to the indicated scale. The pathway annotation is
shown (Left). (D) Venn diagram indicating the overlap between PAX5-ETV6–,
PAX5-FOXP1– (15), and PAX5-ELN–modified genes in preleukemic pro-B
cells, selected for an expression difference of >3-, 3-, and 2-fold, respec-
tively (Left). PAX5-ELN–modified genes that were included neither in PAX5-
ETV6 nor in PAX5-FOXP1 signatures are listed according to their biological
functions as transcriptional regulators, signal transducers, secreting proteins,
and surface receptors. PAX5-ELN–activated and –repressed genes are in-
dicated in red and blue, respectively.
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our ex vivo PAX5-activated genes with PAX5-ELN–repressed
genes. This analysis revealed that only one gene was activated by
PAX5 and repressed by PAX5-ELN. Conversely, only 14 of the
PAX5-repressed genes were activated by PAX5-ELN in pro-B
cells (Fig. 4B and Dataset S4A). Closely similar results were
observed when we used the well-established list of in vivo PAX5-
regulated genes (22) (SI Appendix, Fig. S8C and Dataset S4B),
further validating our approach. In addition, we observed by
qPCR that ectopic expression of PAX5-ELN in preleukemic pro-
B cells was not associated with the down-regulation of endoge-
nous Pax5 and its two common target genes CD19 and CD79a
(SI Appendix, Fig. S8D). Finally, we confirmed that the majority
of the genes modified by PAX5-ETV6 and PAX5-FOXP1 in pro-
B cells (15) did not overlap with our PAX5-regulated genes (SI
Appendix, Fig. S8 E and F and Dataset S4 C and D). Together,
similar to PAX5-ETV6 and PAX5-FOXP1 (15), our results in-
dicate that, in vivo, PAX5-ELN does not generally antagonize
the normal functions of PAX5 in preleukemic pro-B cells.
To gain insight into the molecular regulation of PAX5-ELN in

the early steps of B-ALL development, we focused on the genes
presenting a twofold change of expression when comparing pre-
leukemic PEtg with WT pro-B cells. Forty-one activated and five
repressed PAX5-ELN genes were identified in preleukemic PEtg

pro-B cells (Fig. 4C and Dataset S2). To identify shared molecular
programs induced by PAX5-ETV6, PAX5-FOXP1, and PAX5-
ELN, we overlapped the lists of their targets in preleukemic
pro-B cells (15) (Fig. 4D). Notably, we found only six common
genes, including genes encoding for a signal transducer (Gimap3),
a secreted protein (Sema3g), and surface receptors (Il2rα and
Trem1) (SI Appendix, Fig. S9A). In contrast, we identified 25
PAX5-ELN–modified genes, which were modified neither by
PAX5-ETV6 nor by PAX5-FOXP1 (Fig. 4D). Interestingly, these
genes encoded four signal transducers, four secreted proteins, and
seven surface receptors but also the four transcriptional regulators
Lpxn, Epas1, Hip1, and Cebpe (Fig. 4D).
The above results suggest that PAX5-ELN predominantly

regulates an independent molecular program in preleukemic
pro-B cells. To provide additional support to this notion, we
categorized PAX5-ELN–modified genes according to pathways
and identified activated (act) and repressed (rep) genes coding
for proteins involved in the following processes: adhesion and
migration (19 act), immune system (5 act, 4 rep), PI3K-mTOR
signaling (7 act, 1 rep), angiogenesis (6 act), metabolism (5 act),
and Wnt signaling (3 act) (Fig. 4C). Most of these pathways are
strongly deregulated in PAX5-ETV6–induced B-ALL cells
compared with their preleukemic counterparts (15), suggesting
that PAX5-ELN activates at the preleukemic stage a molecular
program required for B-ALL development in PAX5-ETV6tg

mice. Interestingly, we identified six genes (Epas1, Arhgef12,
Fetub, Rapgef3, Galnt14, and Cd248) activated by PAX5-ELN in
preleukemic pro-B cells that were shown to be specifically acti-
vated in B-ALL PAX5-ETV6 cells (SI Appendix, Fig. S9B).
In conclusion, we have identified regulated PAX5-ELN genes

in preleukemic pro-B cells with important functions in several
signaling pathways and gene candidates that establish the mo-
lecular bases to drive B-ALL development.

Discussion
Genome-wide profiling identified the PAX5 gene as the most
frequent target of somatic mutation in human B-ALL (11).
Nonetheless, while PAX5 acts as a main tumor suppressor gene in
B-ALL, B-cell development is normal in heterozygous Pax5+/−

mice (5, 23), unless primed by chemical or retroviral mutagenesis
(24), suggesting oncogenic cooperation for B-ALL trans-
formation. Indeed, the tumor suppressor functions of Pax5 in B
leukemogenesis were revealed under constitutive activation of
STAT5, JAK1, and JAK3 (24, 25). PAX5 is also involved in re-
ciprocal translocations leading to the fusion of its N-terminal

domain with the C-terminal sequence of a second transcription
factor such as ETV6 and FOXP1 (11, 26). In contrast with
heterozygous PAX5 deletions, which are considered to have a
secondary role during late stages of leukemogenesis, it is gen-
erally assumed that PAX5 fusion proteins act as primary onco-
genic events altering normal B-cell development in the early
steps of the disease (14). A wide diversity of fusion partners has
been described (9, 14). Remarkably, they all conserve the N-
terminal DNA-binding region of PAX5 and the NLS but lack
the potent C-terminal transcriptional regulatory domains, sug-
gesting that the PAX5 part of the chimeric protein is required for
leukemogenesis.
The loss of PAX5 transcriptional domains in the chimeric

proteins led to the notion that the fusion proteins might act as
constitutive repressors, as shown in various reporter assays (11,
13, 16, 27). Consequently, it was inferred that B-ALL might arise
as a result of an antagonizing effect of the fusion proteins on
PAX5 activity. The situation may be more complex, as illustrated
by the recent finding that PAX5-ETV6 and PAX5-FOXP1 do
not actually modify the expression of PAX5 target genes but
rather implicate pre-B cell receptor, migration, and adhesion
signaling pathways (15). PAX5-ELN rearrangement is unusual
because it does not involve a transcription factor but an extra-
cellular matrix protein (13). Furthermore, PAX5-ELN is one of
the chimeric proteins that conserves the largest part of PAX5.
Although PAX5-ELN blocked the transcription of PAX5 target
genes in transactivation assays (13), our results indicate that
PAX5-ELN was able to repress only one of the PAX5-activated
genes and to activate a small subset of the PAX5-repressed
genes, strongly suggesting that PAX5-ELN does not generally
antagonize the normal function of PAX5 in preleukemic pro-B
cells. Thus, in line with PAX5-ETV6 and PAX5-FOXP1 models
(15), our in vivo data do not support the generality of a
dominant-negative mechanism for PAX5 fusion proteins.
Several hypotheses could be put forward to account for this

discrepancy. One possible explanation could be merely quantita-
tive. In heterozygous mice, thus mimicking the situation in pa-
tients, the concentration of the fusion protein may be below the
threshold required to exert a dominant-negative effect, whereas
this threshold may be readily achieved in transient reporter assays.
As mentioned above, expression of a small subset of PAX5-
regulated genes was impacted by PAX5-ELN, suggesting that
there are instances in vivo where the dominant-negative effect is
exerted by the oncoprotein. Alternatively, though not mutually
exclusively, fusion proteins may be subjected to different regu-
latory mechanisms (half-life, posttranslational modifications,
interacting partners, etc.) in vivo from the time lapse of transient
expression. In this context, it should be noted that although the
expression of PAX5-ELN cDNA was driven by the powerful IgH
regulatory elements, PAX5-ELN levels were not higher than
endogenous PAX5 levels, excluding an inappropriate ectopic
expression of the fusion protein in our model. Importantly, al-
though the insertion of Pax5 into the IgH locus led to T lym-
phomas (28), the weak expression of PAX5-ELN in thymocytes
did not perturb T-cell development, underlying the restricted
effect of PAX5-ELN expression on the B-cell lineage.
Interestingly, while PAX5-ETV6 and PAX5-FOXP1 arrested

lymphopoiesis at the pro-B/pre-B cell transition, they did not
induce leukemia on their own in the corresponding mutant mice
(15), suggesting the requirement of cooperating mutations for B-
ALL transformation. Specifically, in contrast to the PAX5-ETV6
mouse model that required oncogenic cooperation (i.e., loss
of the Cdkn2a/b tumor suppressor locus) for leukemia develop-
ment (15), PAX5-ELN efficiently induced B-ALL in mice. In this
context, most deregulated pathways in preleukemic PAX5-ELN
pro-B cells were also strongly deregulated in PAX5-ETV6–
induced B-ALL cells. Further analysis revealed that PAX5-
ELN predominantly regulated an independent molecular
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program in preleukemic pro-B cells, in which activation of six
genes, also found activated in B-ALL PAX5-ETV6 cells (15),
may explain the stronger potential of PAX5-ELN to induce B-
ALL compared with PAX5-ETV6.
B cell-specific, constitutive expression of PAX5-ELN led to

clonal transformation associated with the acquisition of additional
mutations in key components of the JAK/STAT and RAS/MAPK
pathways. These pathways represent two common targets of so-
matic mutations in other oncogene-induced B-ALL mice (29, 30)
and in human B-ALL (11), including PAX5-ELN B-ALL cases
(31, 32). Our analysis of a B-ALL patient cohort revealed the
presence of PAX5, PTPN11, NRAS, KRAS, and JAK3 mutations
within different B-ALL oncogenic subtypes including PAX5-
rearranged leukemias and a PAX5-ELN B-ALL case.
This study clearly demonstrated the effect of PAX5-ELN on

leukemia initiation at the preleukemic stage, before malignant
transformation. The partial blockade of differentiation induced
by PAX5-ELN was associated with an aberrant expansion of pro-
B cells, which was also revealed by transplantation assays. Im-
portantly, this proliferative advantage was not associated with an
obvious clonal selection and therefore suggests that PAX5-ELN
confers self-renewal properties to pro-B cells, a situation that is
reminiscent of the E2A-PBX1 mouse model (30). This obser-
vation supports the view that aberrant self-renewal activity of
lymphoid progenitors induced by a primary oncogene can be an
initiating event in leukemia development. This establishes a
preleukemic stage setting genetic instability and accumulated
genetic alterations that cooperate to lead to fully transformed
B-ALL (33). Emerging evidence suggests that primary genetic
alteration can convert normal committed progenitors into pre-
leukemic stem cells by reprogramming aberrant self-renewal

properties both in lymphoid and myeloid lineages (33–35). Im-
portantly, recent findings proposed that long-lasting preleukemic
stem cells were hidden within the bulk of leukemic cells, and
served as a reservoir for disease relapse (36, 37). An important
challenge is to identify and target these leukemic initiating cells
that represent an extremely rare subpopulation in patients. In
this respect, the availability of the PAX5-ELN mouse model
should be valuable. Additionally, by recapitulating the different
steps of the human disease, the model represents a major op-
portunity to develop new therapeutic strategies on both B-ALL
initiation and transformation, and a robust and reproducible tool
for preclinical studies of drug screening and development.

Experimental Procedures
Generation of the PAX5-ELN knockin mouse model, FACS analysis, Ig rear-
rangement assay, whole-exome sequencing and specific resequencing,
transplantation assay, microarray experiment, retroviral transduction, co-
culture of pro-B cells, RT-PCR, Western blot, and statistical analysis are de-
scribed in SI Appendix.
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