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ABSTRACT: A novel series of of 4-[(3-phenyl-4-aryl-2,3-dihydro-1,3-thiazol-2-ylidene)amino]benzene-1-sulfonamides
(EMAC10111a−g) was synthesized and assayed toward both human carbonic anhydrase isozymes I, II, IX, and XII and
cyclooxygenase isoforms. The majority of these derivatives preferentially inhibit hCA isoforms II and XII and hCOX-2 isozyme,
indicating that 2,3,4-trisubstituted 2,3-dihydrothiazoles are a promising scaffold for the inhibition of hCA isozymes and of
hCOX-2 enzyme. The nature of the substituent at the dihydrothiazole ring position 4 influenced the activity and selectivity
toward both enzyme families. EMAC10111g resulted as the best performing compound toward both enzyme families and
exhibited preferential activity toward hCA XII and hCOX-2 isozymes.
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The potential of human carbonic anhydrases (hCAs) and
human cyclooxygenase (hCOX) dual inhibitors for the

treatment of cancer is an attractive yet challenging goal in the
field of medicinal chemistry. CAs are a class of well-studied
metalloenzymes that are widely distributed in all living
organisms.1−4 These enzymes are encoded by seven different
gene families, αCA, βCA, γCA, δCA, ζCA, ηCA, and θCA.5−8

Sixteen αCA isozymes have been identified in humans so far,
each differing for cellular localization and tissue distribution.9

Thus, cytosolic forms (hCA I−III, VII), membrane-bound

(hCA IV, IX, XII, and XIV), mitochondrial form (hCA V), and
secreted (hCA VI) isozymes can be distinguished.9 The role of
hCAs in the regulation of hypoxic-tumors pH has been
extensively reported,4,10−19 and isoforms II, IX, and XII are
validated targets for cancer therapy.20−22 On the other hand,
the relevant role of hCOX 1 and 2 in different tumors has been
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outlined.23−26 Celecoxib, a selective hCOX-2 inhibitor, has
been approved by the FDA for adjuvant treatment of patients
with familial adenomatous polyposis.27 Furthermore, the role
of Aspirin as an adjuvant agent in the prevention and treatment
of several solid tumors has been reported.28−30 Furthermore, a
COX-dependent evasion of immunity has been observed in
tumors.31 Therefore, hCOX inhibitors could be considered as
adjuvant agents for the therapy of different cancers. On the
basis of the above, the identification of dual inhibitors of
hCOX and hCA might lead to highly efficient anticancer
agents, capable of simultaneously interacting with two different
tumor metabolic pathways. Such compounds are intrinsically
advantageous, as they are less prone to induce drug resistance
and drug−drug interactions and, not last, they might increase
drug-compliance. A key step for the design of dual inhibitors is
represented by the identification of the common pharmaco-
phoric features between hCAs inhibitors (hCAIs) and hCOX
inhibitors (hCOXIs), particularly hCOX-2Is.
In this respect, it could be evident that the sulfonamide

moiety, although with different specific roles,32−34 is a
common chemical feature of several inhibitors of hCAs and
hCOX-2 (Figure 1).

The sulfonamide moiety is widely represented within the
hCAIs.33,35,36 Moreover it is a synthetically accessible and
versatile scaffold that can be appropriately decorated to achieve
isozyme selectivity.21,35,37−41 In the case of hCOX-2Is a
benzene-sulfonamide or a benzene-sulfonyl methyl moiety is
present in most of the active compounds in order to occupy a
hydrophilic pocket that is made accessible mainly by the
substitution of the hCOX-1 Ile523 residue by a smaller valine
in hCOX-2. The substitution of the residues Ile434 and His513
of COX-1 with valine and arginine in hCOX-2, respectively,
further contributes to enlarge the hydrophilic pocket and to
differentiate the two isozyme inhibitors sensitivity.32 Prompted
by these considerations and pursuing our studies on
hCAIs,35,42−44 we have designed and synthesized a small
library of 4-[(3-phenyl-4-aryl-2,3-dihydro-1,3-thiazol-2-
ylidene)amino]benzene-1-sulfonamides (EMAC10111a−g)
and evaluated their activity against the hCA I, II, IX, and XII
isozymes as well as their inhibition activity toward hCOX 1
and 2 isoforms. These compounds represent a new example of
hybrid structures with CA inhibitory activity.45,46The synthetic
pathway toward compounds EMAC10111a−g consists of the
reaction of equimolar amounts of 4-amidobenzensulfonamide
with phenyl-isothiocyanate in refluxing 2-propanol (Scheme

1). The obtained 1-phenyl-3-(4-sulphamoylphenyl)thiourea
was further reacted with the appropriate α-haloketone to give
the desired compounds in good yields.

Compounds EMAC10111a−g were characterized by means
of analytical and spectroscopic methods (Figures S2−22 and
Table S1−2) and then submitted for biological evaluation
toward hCA isoforms I, II, IX, and XII and hCOX isozymes 1
and 2 (Table 1). Acetazolamide (AAZ) was chosen as
reference compound for hCA activity while indomethacin,
diclofenac, FR122047, nimesulide, and DuP 697 were selected
as reference compounds for hCOX activity.
With respect to the hCA inhibition, the majority of EMAC

derivatives exhibited a preferential activity toward the isoforms
hCA II and hCA XII. Interestingly compound EMAC10111b,
bearing a 2,4-dichlorophenyl moiety in the position 4 of the
dihydrothiazole ring, exhibited the highest activity toward hCA
II with a Ki value equal to 0.053 μM. All the other compounds,
with the exception of EMAC10111f, resulted as almost
equipotent in the inhibition of hCA II with Ki values ranging
from 0.28 to 0.86 μM.
Compounds EMAC10111a, b, and d were the most potent

for the inhibition of hCA I isoform. EMAC10111a was the
most active toward hCA IX, but, on the other hand, it was
demonstrated to be one of the less selective derivatives toward
a specific hCA isoform, within the studied compounds. With
respect to the hCA XII isoform, compound EMAC10111g,
bearing a thiophene substituent in the position 4 of the
dihydrothiazole ring, was identified as the most potent and
selective inhibitor, with a Ki value of 0.06 μM and with a
selective index (Ki hCA II/Ki hCA XII) higher than 10 fold.
When tested toward the two isoforms of hCOX, none of the

new compounds exhibited activity on the hCOX-1 isozyme up
to the concentration of 25 μM. Unfortunately, at higher
concentrations the compounds precipitated from the test
solution. On the contrary, all compounds, except for
EMAC10111d and EMAC10111f, were active toward the
COX-2 at concentrations comparable with those of the
reference inhibitors indomethacin, diclofenac, and nimesulide.
Among the new derivatives, EMAC10111g resulted as the

most potent COX-2 inhibitor, with an IC50 equal to 12.61 μM.
Interestingly, EMAC10111g was the most selective inhibitor of
hCA XII indicating that the presence of the thiophene group in
the position 4 of the dihydrothiazole could be optimal for the
interaction with both COX-2 and hCA XII. To achieve a better
understanding on the recognition of EMAC10111g by both
targets and to obtain useful information to further develop

Figure 1. Structurally representative sulfonamide-based (a) COX-2
selective and (b) hCA inhibitors.

Scheme 1. Synthetic Pathway to Compounds
EMAC10111a−ga

aReagents and conditions: (i) phenyl-isothiocyanate, 2-propanol,
reflux; (ii), α-haloketone, RT/50 °C, 1−2 h.
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such compounds as tumor hCAs and COX-2 dual inhibitors,
molecular modeling studies were performed. Due to the
presence of the double bond between the amino benzene
sulfonamide and the dihydrothiazole moieties, merging known
theoretical approaches,47,48 the population of “E” and “Z”
isomers was preliminarily investigated. Conformational search
(Supporting Information) was carried out on both
EMAC10111g isomers. The internal energy of each generated
conformer was considered in a Boltzmann analysis computed
at 300 K. Interestingly theoretical results indicated the “Z”
isomer population of about 100%, basically discarding the
presence of “E” isomer. As a consequence, further molecular
modeling was carried out taking into account the (Z)-
EMAC10111g configuration only.
Docking protocols were first validated with self- and cross-

docking experiments. In particular, the validation highlighted
the ability of all settings protocols to reproduce, with
acceptable RMSD, the experimental binding mode of most
ligands.
Furthermore, all methods clearly confirmed that highly

selective hCOX-2Is cannot be docked inside hCOX-1.
Therefore, not surprisingly, we observed that (Z)-

EMAC10111g was not able to recognize the hCOX-1 active
site, thus corroborating biological results. On the contrary, the
putative binding mode depicted in Figure 2 shows that the
compound can be accommodated into the hCOX-2 pocket.
The theoretical complex was stabilized by hydrophobic
interactions with several residues such as Val89, Pro86,
Leu123, Tyr115, Ala527, Val116, Tyr355, Leu531, Leu83,
and Pro84. Furthermore, the sulfonamide moiety was involved
in a hydrogen bond with Leu82. Finally, the aromatic moieties
interacted with Lys83 and Arg120, which act as a channel gate
that opens the hCOX active site.49

The hCA isoforms docking simulations were performed with
a previously applied protocol.43,44 We improved cross docking

validation and compared the previously utilized crystal
structures with the newest and with better resolution pdb
entries. While in the case of hCA XII and hCA IX we did not
change the receptor, when hCA II was investigated, we
considered both the previously applied 3F8E50 and the 3K34
crystal (resolution 0.9 Å),51 where the His64 shows an
alternate conformation compared to the previously considered
3F8E. The new receptor model improved cross-docking
RMSD results. Concerning the validation, it was observed
that the docking program was able to reproduce the binding
mode of the Zn2+ interacting portion, with both the ion and
the other catalytic site residues. On the contrary, different
binding conformations, due to the absence of anchoring
residues, were observed when the solvent accessible ligand
portion was docked. Furthermore, in our theoretical protocol,
we considered the receptor without waters and other agents,
such as glycerol and ethylene glycol, used for crystallization.
Considering that these latter compounds often occupy the
entrance cavity in the crystals, more space was available to
accommodate the cap of docked hCAIs. The binding mode of
the most promising compound (Z)-EMAC10111g in all

Table 1. Inhibition Data toward hCA I, II, IX, XII, and hCOX 1 and 2 Isozymes of Compounds EMAC10111a−g

Ki(μM) IC50 (μM)

Compound EMAC R hCA I hCA II hCA IX hCA XII hCOX-1 hCOX-2

10111a 4-Cl 0.49 0.28 1.25 0.65 * 16.21
10111b 2,4-Cl 0.75 0.053 2.78 0.34 * 18.32
10111c 4-Br 3.46 0.32 2.44 0.80 * 19.73
10111d 4-CH3 0.96 0.26 2.26 0.78 * *
10111le 4-OCH3 3.37 0.28 2.25 0.84 * 21.78
10111f H 8.02 3.10 3.54 0.30 * *
10111g // 9.07 0.86 3.43 0.06 * 12.61
Reference compounds
AAZ / 0.25 0.01 0.02 0.006 / /
Indomethacin / / / / / 12.16 35.20
Diclofenac / / / / / 18.23 23.62
FR122047 / / / / / 0.09 **

Nimesulide / / / / / *** 23.14
DuP 697 / / / / / 22.61 0.12

*Inactive at 25 μM (highest concentration tested). At higher concentrations, the compounds precipitate. **Inactive at 100 μM (highest
concentration tested). At higher concentrations, the compound precipitates. ***Inactive at 500 μM (highest concentration tested). At higher
concentrations, the compound precipitates.

Figure 2. 3D representation of the putative binding mode obtained by
docking experiment of (Z)-EMAC10111g into hCOX-2 and 2D
representation of the complex stabilizing interactions with the binding
site residues.
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isoforms showed how the compound was able to reach the
catalytic site with the benzene sulfonamide group. Further-
more, despite the bulky cap exposed to solvent, the “Z”
configuration allowed for a Y shaped geometry of the three
aromatic groups that can, therefore, be accommodated in hCA
II, IX, and XII. However, when docked in hCA II, the cap
aromatic rings are both pushed toward one side (Figure 3c).
The reason was mainly addressed to the presence of Phe131,
which is replaced by an Ala by a Val in hCAXII and hCAIX
respectively.
Our data indicated that 4-[(3-phenyl-4-aryl-2,3-dihydro-1,3-

thiazol-2-ylidene)amino]benzene-1-sulfonamide derivatives
could be considered as a promising scaffold for the dual
inhibition of hCA and hCOX-2 enzymes. The information on
the putative binding modes in both targets and relative
isoforms of the newly synthesized inhibitors encourage us to
further investigate and optimize these derivatives in order to
improve their activity and selectivity.
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