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Abstract

RAP1, a component of the telomere-protective shelterin complex, has been shown to have

both telomeric and non-telomeric roles. In the liver, RAP1 is involved in the regulation of

metabolic transcriptional programs. RAP1-deficient mice develop obesity and hepatic stea-

tosis, these phenotypes being more severe in females than in males. As hepatic steatosis

and obesity have been related to increased liver cancer in mice and humans, we set out to

address whether RAP1 deficiency resulted in increased liver cancer upon chemical liver car-

cinogenesis. We found that Rap1-/- females were more susceptible to DEN-induced liver

damage and hepatocellular carcinoma (HCC). DEN-treated Rap1-/- female livers showed an

earlier onset of both premalignant and malignant liver lesions, which were characterized by

increased abundance of γH2AX-positive cells, increased proliferation and shorter telo-

meres. These findings highlight an important role for RAP1 in protection from liver damage

and liver cancer.

Introduction

Primary liver cancer is the fifth and seventh most common cancer in men and women, respec-

tively and the second leading cause of cancer-related death worldwide [1]. Hepatocellular car-

cinoma (HCC) represents approximately 90% of all cases of primary liver cancer [1]. The main

risk factors for HCC development include viral hepatitis, alcohol-induced hepatitis and non-

alcoholic steatohepatitis (NASH) [2]. The incidence of liver cancer is increasingly on the rise

and this is at least partly due to the growing epidemics of obesity and metabolic syndrome [3].

Mammalian telomeres are formed by TTAGGG repeats bound by a six-protein complex

known as shelterin, which ensures telomere protection. The shelterin complex is composed of

six core proteins, TRF1, TRF2, TIN2, POT1, TPP1 and RAP1 (for a review see [4–15]. Telo-

meres shorten with each cell division owing to the so-called “end-replication problem” [16,

17]. Telomerase activity can compensate for telomere shortening by the addition of de novo

TTAGGG repeats onto chromosome ends [18]. Telomerase is formed by a catalytic subunit

known as TERT and an associated RNA component or Terc that is used as template for the

addition of new telomeric repeats [18]. Telomerase is expressed in pluripotent stem cells;
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however, it is downregulated after birth in the majority of somatic tissues, contributing to telo-

mere shortening with aging [19]. Loss-of-function mutations in hTERT and hTERC are associ-

ated with familial liver diseases marked by fibrosis and inflammation [20, 21]. In addition,

telomere shortening has been shown to represent a causal factor impairing liver regeneration

and accelerating cirrhosis, a main risk factor for liver cancer development [22]. Indeed, telo-

mere shortening has been associated with cancer development in the liver [23–25]. Interest-

ingly, alterations in the expression of shelterin coding genes have also been identified in

cirrhosis and HCC, suggesting that the development of HCC involves the dysregulation of

telomere protective factors [26]. Mouse models deficient for shelterin genes have suggested a

role of shelterin proteins in HCC development [27, 28]. In particular, mice deficient for TRF1

in the liver, develop large liver cell changes (LLCC) frequently found in liver cirrhosis in

response to chronic replicative stress [28]. Similarly, transient depletion of the shelterin TRF2

in hepatocytes results in increased liver cancer [27]. These findings suggested that dysfunc-

tional telomeres can induce DNA damage and telomere aberrations in the liver, which in the

eventual loss of tumor suppressor genes such as p53, could lead to increased tumorigenesis

[29].

In addition, the telomerase gene has been also found mutated in human HCC. In particular,

whole-exome sequencing found a mutation hotspot in the telomerase (TERT) promoter, as

well as TERT focal amplification [30, 31]. Interestingly, TERT promoter mutations were found

at early HCC stages, pinpointing TERT as a key player in hepatocarcinogenesis by allowing the

immortalization of neoplastic clones [30]. Telomerase deficient mice are protected from HCC

development but present a significant increase of early stages neoplastic lesions as compared

to wild-type mice, indicating that telomere biology exerts a dual role in the initiation and pro-

gression of HCC [32–34].

RAP1 binds to telomeric repeats through its interaction with TRF2 [5, 35, 36]. Mouse RAP1

is not a key factor for telomere maintenance and protection in the presence of sufficient telo-

mere reserve but plays a crucial role in the context of telomerase deficiency [37–39]. RAP1 can

also bind throughout the chromosome arms where it regulates gene expression [37, 38, 40–

42]. Another non-telomeric function for RAP1 was revealed in the cytoplasm, where it acts as

a modulator of the NF-kB signaling pathway by interacting with IKK complex. The RAP1-IKK

interaction is required for the phosphorylation of the p65 subunit of NF-kB, enabling it to per-

form gene transcriptional activation [43]. RAP1-deficient mice do not have severe telomere

phenotypes and can live to adulthood; however, they develop hepatosteatosis and are prone to

obesity, being these phenotypes more severe in females than in males [40, 42]. Gene expression

profile analyses in liver of adult mice revealed that in the absence of RAP1 several metabolic

pathways including fatty acid metabolism, PPARα signalling and glucose metabolism are

remarkably affected [40]. PPARα (Peroxisome proliferator-activated receptor alpha) is a

ligand-activated transcription factor that belongs to the nuclear hormone receptor superfamily

and is a major regulator of hepatic energy control [44, 45]. Together with its cofactor PGC1α
(PPARγ Co-activator 1α), PPARα regulates the expression of genes involved in fatty acid beta-

oxidation, lipid metabolism, gluconeogenesis, inflammation, atherosclerosis and autophagy

[44–46]. In the absence of RAP1, PPARα and PGC1α levels are decreased leading to deregula-

tion of several of their target genes and the subsequent deregulation of metabolic pathways

involved in hepatic energy homeostasis. These molecular alterations are concomitant to

increased incidence of obesity, which similarly to that described for Pparα- and Pgc1α-defi-

cient mice [47–51], are more pronounced in RAP1-deficient females [40]. Of note, despite the

effect of RAP1-deficiency in obesity and on hepatosteatosis development, RAP1-deficient

mice do not spontaneously develop liver cancer. Indeed, no difference in tumor incidence has

been reported between Rap1+/+ and Rap1-/- mice, in both genders [40]. The role of the PPARα
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signalling in liver carcinogenesis is unclear. On one hand, PPARα-deficiency was shown to

enhance the susceptibility to DEN initiated HCC [52]. On the othe hand, loss of PGC1α was

shown to protect against DEN-induced liver cancer [53]. This role of RAP1 in regulating

important metabolic pathways in the liver [40, 42], may suggest a role for RAP1 in liver

cancer.

Here we analyze the role of RAP1 in DEN-induced carcinogenesis using both male and

female Rap1-/- mice. Similar to humans, a very pronounced gender disparity is observed in

mouse HCC models, males being more prone to develop HCC than females [54, 55]. We

found that Rap1-/- female mice were more susceptible to DEN-induced HCC than wild-type

controls as indicated by earlier onset and increased number of both pre-neoplastic lesions and

HCC, which was accompanied by a significantly decreased lifespan as the consequence of liver

cancer. Before humane end-point, DEN-induced female HCC lacking RAP1 showed increased

abundance of γH2AX, AC3 and Ki67 positive cells as well as shorter telomeres as compared to

wild-type control HCC, reflecting the higher proliferative history of RAP1-deficient tumors.

Results

DEN-induced liver damage hampers body weight gain as a consequence of

RAP1 deficiency

To investigate a potential role of RAP1 in protection from hepatocarcinogenesis, we induced

hepatocellular carcinoma (HCC) in both Rap1-/- and wild-type mice by intraperitoneal admin-

istration of diethylnitrosamine (DEN) [40, 56]. DEN is a DNA alkylating agent that, by induc-

ing DNA damage in the liver, eventually results in dysplastic foci (i.e. group of small dysplastic

hepatocytes with an increased nuclear/cytoplasmic ratio), which can progress to multifocal

HCC [57]. DEN was chosen at a concentration (25 mg /kg body weight) known to act as a

complete carcinogen if injected into 2-week-old mice when hepatocytes are still actively prolif-

erating [58, 59]. To address whether liver dysfunction associated to RAP1 deficiency synergizes

with DEN-induced liver lesions in HCC development, 2- week-old Rap1-/- and Rap1+/+ male

and female mice were injected with DEN (25 mg /kg body weight). The onset and progression

of liver lesions was monitored longitudinally by ultrasound analysis every fourth week from 28

weeks onwards after DEN treatment (Fig 1A). Groups of female mice from each genotype

were sacrificed at 40-, 45-, 55-, 60- and 65- weeks post-DEN treatment, for histopathological

analysis at shorter time-points. The rest of the mice were sacrificed when the presence of mas-

sive hepatic tumors was recognized as humane endpoint (Fig 1A).

To study the effects of DEN treatment on the previously described obesity phenotype of

RAP1-deficient mice, we followed body weight longitudinally in the different mouse cohorts

(Fig 1B and 1C). RAP1-deficient females treated with DEN showed a 10% increase in body

weight compared to the previously reported 30% increase in body weight in the case of

untreated Rap1-/- females (Fig 1B)[40, 42]. No differences in body weight were observed in the

case of the DEN-treated males (Fig 1C). In order to determine liver damage in the DEN treated

mice, we analyzed the plasma levels of alanine (ALT) and of aspartate (AST) aminotransferases

in males at 50 and 55 weeks post-DEN treatment and females at 50 and 60 weeks post-DEN

treatment (Fig 1D and 1E). We found that both male and female Rap1-deficient mice showed

significantly increased levels of ALT and AST compared to wild-type mice, indicating

increased liver damage in the absence of RAP1 (Fig 1D and 1E). Indeed, the ALT and AST lev-

els present in wild-type correspond to a grade 1 (51–125 U/L) while in RAP1-deficient males

and females to grade 2 (126–250 U/L) and 3 (251–500 U/L) of hepatotoxicity, respectively

[60].

Role of RAP1 in HCC development
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Fig 1. RAP1 deficiency leads to a higher susceptibility to DEN-induced liver damage and HCC development. (A) Two-

week-old Rap1+/+ and Rap1-/- female and male mice were intraperitoneally injected with DEN (25mg/kg body). Liver lesions

were longitudinally monitored by ultrasound analysis from 28 weeks onwards after DEN treatment every fourth week. A

group of Rap1+/+ and Rap1-/- females were sacrificed at 40-, 45-, 55-, 60- and 65 weeks post-DEN for histopathological

analysis. The rest of the mice were sacrificed at humane endpoint. (B-C) Body weight gain of Rap1+/+ and Rap1-/- females (B)
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Longitudinal ultrasound analysis of liver lesions showed a progressive increase in the total

volume of liver lesions per mouse in DEN-treated males and females (Fig 1F and 1G). Indeed,

RAP1-deficient females showed significantly larger liver lesions compared to wild-type females

(Fig 1F), while the differences between RAP1-deficient and wild-type males did not reach sta-

tistical significance (Fig 1G). Male mice presented an earlier onset and a more rapid tumor

growth than females, indicating a higher susceptibility of male mice for DEN-induced HCC as

already reported [54]. Interestingly, Rap1-/- females show a similar tumor volume as male mice

from week 52 onwards, in contrast to wild-type females that present significantly lower tumor

volume. These findings show an increased susceptibility of RAP1-deficient female mice to

DEN-induced liver carcinogenesis, in agreement with Rap1-/- females showing higher body

weight and higher hepatotoxicity in response to DEN than wild-type controls.

Finally, we followed the survival of the different mouse cohorts that died as a consequence

of liver tumors (Fig 2A and 2B). RAP1-deficient females presented a 15% decrease in median

survival compared with wild-type females (78 and 91.5 weeks post-DEN, respectively) (Fig

2A). In contrast, no differences in survival in the male cohorts were observed, being the

median survival of the Rap1+/+ and Rap1-/- male mice of 62 and 61 weeks post-DEN, respec-

tively (Fig 2B). The decreased survival of DEN-treated RAP1-deficient females as compared to

wild-type controls may be explained by their increased liver damage and more rapidly growing

liver lesions as detected by ultrasounds in response to the carcinogenic treatment.

RAP1 deficient females are more susceptible to DEN-induced HCC than

wild-type mice

To further analyze the tumor-prone phenotype of RAP1-deficient females in response to DEN,

we sacrificed a group of Rap1-/- and Rap1+/+ females at 40, 45–55 and 60–65 weeks post-DEN

treatment and performed full histopathological analysis of the livers. The lesions were catego-

rized as preneoplastic lesions and neoplastic lesions (Fig 3A). Preneoplastic lesions included α-

fetoprotein (AFP) positive foci, foci of altered hepatocytes (FAH), and hepatocellular adeno-

mas (HCA) [61, 62] (see Material and Methods). All the neoplastic lesions were HCC. We

found that 40-weeks post-DEN treatment, the number of preneoplastic lesions including AFP

& FAH as well as HCA was significantly higher in RAP1-deficient females compared to simi-

larly treated wild-type females (Fig 3B and 3C). Interestingly, we also found a significantly

increased number of HCC per cm2 of liver area in Rap1-/- females compared to Rap1+/+ con-

trols from 40 to 65 weeks post-DEN treatment (Fig 3D). Furthermore, the HCC burden (total

number of lesions of different size per mouse) in the entire liver was significantly higher in

Rap1-/- compared to Rap1+/+ females from 40 to 65 weeks post-DEN treatment (Fig 3E).

HCC can metastasize to the lungs [63]. We therefore set to quantify the number of lung

metastasis, by using an immunohistochemistry staining with the hepatocyte antigen (hep) in

and males (C) from the fifth week post-DEN onward. (D-E) Plasma levels analysis of alanine (ALT) and aspartate (AST)

aminotransferases in Rap1+/+ and Rap1-/- females at 50–60 weeks post-DEN (D) and males at 50–55 weeks post-DEN (E).

Females at 50- and 60- weeks post-DEN and males at 50- and 55- weeks post-DEN were grouped since no significant

differences were observed between these two ages. For ALT analysis, 5 Rap1+/+ and 6 Rap1-/- females at 50 weeks post-DEN

and 5 Rap1+/+ and 4 Rap1-/- females at 60 weeks post-DEN were analyzed. For AST analysis, 4 Rap1+/+ and 5 Rap1-/- females at

50 weeks post-DEN and 5 Rap1+/+ and 4 Rap1-/- females at 60 weeks post-DEN were analyzed. For ALT and AST analysis in

males, 4 Rap1+/+ and 2 Rap1-/- mice at 50 weeks post-DEN and 8 Rap1+/+ and 2 Rap1-/- mice at 55 weeks post-DEN were

analyzed. Hepatotoxicity grades are shown to the right. N, normal; G1, grade 1; G2, grade 2 and G3, grade 3. G1 hepatotoxicity

was defined as a serum ALT level of 51–125 U/L, G2 as a serum ALT level of 126–250 U/L and G3 as a serum ALT level of

251–500 U/L. (F-G) Quantification of total volume of hepatic lesion by ultrasound between 36- and 56-weeks post-DEN in

Rap1+/+ and Rap1-/- females (F) and males (G). Values and error bars represent the mean and SE, respectively. N, number of

mice. Statistical significance was determined by Student’s t test. �p<0.05, ��p<0.01, ���p<0.001; ns, not significant.

https://doi.org/10.1371/journal.pone.0204909.g001
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lung sections at 45–65 weeks post DEN treatment (Fig 3F). We found that 25% of RAP1-defi-

cient females present clusters of hep-positive cells in the lungs while none of the wild-type

females showed these lesions, indicating that RAP1 absence speeds up tumor spreading to the

lungs (Fig 3F).

Increased proliferation, DNA damage and apoptosis in HCC lacking RAP1

In order to address the molecular events underlying the increased neoplastic lesions in RAP1--

deficient females in response to DEN treatment, we set to analyze different molecular markers

in HCC at 50–55 weeks post-DEN treatment before humane end point. In particular, we mea-

sured proliferation (Ki67-positive cells), DNA damage (γH2AX-positive cells) and apoptosis

(AC3-positive cells) by immunohistochemistry in tumors from both wild-type and RAP1-defi-

cient females (Fig 4A–4F). We found that RAP1-deficient HCC showed a 2-fold increase in

Ki67-positive cells compared to wild-type HCC, in agreement with higher tumor growth rate

in Rap1-/- as compared to Rap1+/+ females (Figs 4A, 4B, 3D and 3E). RAP1-deficient HCC also

presented increased cells with DNA damage (γH2AX-positive cells) and increased apoptosis

compared to wild-type controls (Fig 4C–4F). The higher DNA damage burden in the RAP1--

deficient HCC may reflect either the higher susceptibility of Rap1-/- females to DEN-induced

hepatocarcinogenesis or the more advanced stages of RAP1-deficient tumors as compared to

wild-type controls at this time point.

Role of RAP1 in HCC telomere dynamics

Telomerase promoter mutations in human HCC highlight the importance of telomere length

maintenance for liver cancer [30, 31]. Here, we set to address whether RAP1-deficiency

impacted on telomere length in the context of DEN-induced liver carcinogenesis. To this end,

we analyzed telomere length in female liver sections at 40-weeks and in HCC at 60–65 weeks

post-DEN treatment before end-point, and in HCC at the humane endpoint from females at

70–100 weeks post-DEN (Fig 5A–5C). No significant differences were observed between

Rap1-/- and Rap1+/+ samples in either healthy liver tissue at 40 weeks or in HCC at the

Fig 2. RAP1 deficiency leads to a reduced lifespan of DEN-treated female mice. (A-B) Kaplan-Meier survival curves of Rap1+/+ and Rap1-/- female (A) and

male (B) mice. Statistical significance was determined by the log rank test. �, p� 0.05.); ns, not significant.

https://doi.org/10.1371/journal.pone.0204909.g002
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Fig 3. Earlier onset of premalignant and malignant hepatic lesions in DEN-treated Rap1-/- females. (A) Representative light microscopy images of α-

fetoprotein (AFP) and hematoxylin-eosin (H&E) liver sections showing the different types of lesions induced by DEN. Focus of AFP-positive hepatocytes, focus
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endpoint when tumors have reached maximal size between. In contrast, at 60–65 week post-

DEN treatment before humane end-point, we found that RAP1-deficient HCC showed both

decreased mean telomere intensity and decreased total nuclear telomere intensity (Fig 5A–

5C).

We also analyzed telomere length in male liver sections at 36-weeks and in HCC at the

humane endpoint from males that died at 55–65 or 65–75 weeks post-DEN (Fig 5D and 5E).

No significant differences were observed between Rap1-/- and Rap1+/+ samples in either

healthy liver tissue at 36 weeks or in HCC at the endpoint when tumors have reached maximal

size between (Fig 5D and 5E).

In accordance with previous work, these data confirm that RAP1 deficiency does not

impact on telomere length in healthy liver tissue, neither in females nor in males [40]. These

results also indicate that RAP1 deficiency does not have any effect in telomere length mainte-

nance in full blown HCC at the end-point, suggesting that telomere length is neither a driver

nor a limiting factor for tumor development and progression in these settings. In addition,

female and male HCCs present shorter telomeres as compared to cells in healthy liver tissue

indicating telomere shortening associated to malignant cell proliferation (Fig 5A–5E). The

observation that female HCCs at week 60–65 post-DEN before humane endpoint present

shorter telomeres as compared to wild type HCCs, probably reflects the proliferative history

and more advanced stages of Rap1-/- tumors as compared to Rap1+/+ controls (Fig 5A–5C).

Indeed, a RAP1-independent progressive telomere shortening is observed when comparing

HCCs before human endpoint to HCCs at human endpoint, both in Rap1+/+ and in Rap1-/-

female mice (Fig 5A–5C).

Discussion

RAP1 is part of the shelterin complex that protects telomeres [36]. Murine RAP1 does not

seem to be required for telomere capping and telomere length maintenance under normal

conditions [37, 39, 64]. However, we recently showed that RAP1 is important for telomere

length maintenance in the context of cellular stress conditions such as telomerase deficiency

[64]. In addition, we previously showed that RAP1 can associate to non-telomeric genomic

sites where it regulates gene expression [37, 38, 40–42]. RAP1-deficient mice are obese and

develop signs of metabolic syndrome, including liver steatosis, which are more acute in

females. [40, 42]. This is accompanied by altered gene expression profiles affecting several met-

abolic pathways [40]. As metabolic syndrome and obesity has been associated with increased

liver cancer [2, 3, 65, 66], here we set to address whether RAP1 deficiency resulted in increased

liver cancer in response to treatment with a widely used carcinogen, DEN. We found increased

liver damage and increased tumor susceptibility of RAP1- deficient as compared to wild type

female mice. Indeed, Rap1-/- females showed increased number of both premalignant and

malignant lesions and the tumors more rapidly reached larger sizes leading to significantly

decreased Rap1-deficient female mouse survival upon DEN treatment. In addition, Rap1-/-

female HCC metastasized to the lung at earlier time-points than wild-type HCC, also indicat-

ing that Rap1-/- females are more susceptible to DEN-induced hepatocyte malignization. These

of altered hepatocytes (FAH), hepatocellular adenoma (HCA) and hepatocellular carcinoma (HCC) are shown from left to right. For a detailed histological

description see Material and Methods. (B-C) Quantification of FAHs and AFP-positive foci (B) and HCAs (C) in Rap1+/+ and Rap1-/- livers of female mice at 40

weeks after DEN injection. (D) Quantification of total number of HCC in Rap1+/+ and Rap1-/- livers of female mice at 40, 45–55 and 60–65 weeks post-DEN. (E)

Quantification of the number of HCC of different size in the mice described in (D). (F) Incidence of lung metastasis in Rap1+/+ and Rap1-/- female mice between

45 and 65 weeks post-DEN. A representative light microscopy image of hepatocyte antigen-stained lung sections is shown to the right. Values and error bars

represent the mean and SE, respectively. N, number of mice. Statistical significance was determined by Student’s t test.

https://doi.org/10.1371/journal.pone.0204909.g003
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observations are in agreement with a more prominent effect of RAP1-deficiency in fat accu-

mulation in female mice [40, 42].

Non- alcoholic fatty liver disease (NAFLD) is a well-known risk factor for HCC develop-

ment [3, 65, 66]. NAFLD is characterized by increased hepatic lipid accumulation and dimin-

ished ability of the liver to metabolize several substrates. NAFLD progress to NASH, in which

hepatocyte metabolic stress induces cell death, production of damage-associated molecules

and chronic inflammation [65, 67]. Differentiated hepatocytes are able to re-enter the cell

cycle and replace damaged cells and therefore the liver has the ability to repair itself after acute

damage [68]. However, in chronic necro-inflammation, constant cell death, compensatory

regeneration and activation of non-parenchymal cells, together with an altered immune

response, promote liver fibrosis and tumorigenesis [65]. Necroinflammation also induces rep-

licative stress, DNA damage and genetic instability that is detectable in preneoplastic lesions

[69]. Our data indicate that the role of RAP1 in hepatocarcinogenesis is mediated by its func-

tion in metabolism regulation rather than to its telomeric function. Indeed, RAP1 has no effect

in male hepatocarcinogenesis while it does in females in which RAP1 role in fat accumulation

is predominant [40, 42]. Although a RAP1 telomeric function cannot be ruled out, our data

underlines that the effect of RAP1 deficiency in NAFLD development synergizes with DEN-

induced liver damage resulting in a faster HCC development in female mice lacking RAP1.

Material and methods

Mice generation and handling

All mice were generated and maintained at the Animal Facility of the Spanish National Cancer

Research Centre (CNIO) under specific pathogen-free conditions in accordance with the rec-

ommendation of the Federation of European Laboratory Animal Science Associations

(FELASA). Rap1+/+ and Rap1-/- mice were generated by mating heterozygous (Rap1+/-) males

and females [40]. Food (Harlan Laboratories) and water were provided ad libitum and mea-

surements of the body weight were performed monthly. All animal experiments were

approved by the Ethical Committee (CEIyBA) (IACUC.015-2014, CBA_21_2014) and per-

formed in accordance with the guidelines stated in the International Guiding Principles for

Biomedical Research Involving Animals, developed by the Council for International Organiza-

tions of Medical Sciences (CIOMS).

Mice included in the survival study were monitored two or three times per week. After the

detection of the first tumor by ultrasounds, mice were monitored daily. We applied humane

endpoint criteria and euthanized the animals when they showed signs of pain, sickness, suffer-

ing, or moribund conditions. In particular: loss of body weight, presence of big abdominal

masses, reduced mobility, and hunched body posture were used as main criteria to recognize

humane endpoint. When mice reached endpoint criteria, they were euthanized within a maxi-

mum of 24h. Euthanasia was performed in a CO2 gas chamber. Two of the twenty-six mice

included in the survival study died unexpectedly before showing criteria for euthanasia. In

both cases necropsy was performed and the presence of massive hepatic tumors was recog-

nized as the cause of death.

Fig 4. Increased proliferation, DNA damage and apoptosis in HCC lacking RAP1 in females. (A-F) Representative images and

quantification of Ki67 (A, B) γH2AX (C-D) and AC3-positive cells (E-F) in Rap1+/+ and Rap1-/- tumor sections of female mice at

50–55 weeks post-DEN treatment. Tumors from 6 Rap1+/+ and 6 Rap1-/- females were analyzed. Three females from each cohort

were at 50- and three at 55- weeks post-DEN. Mice of 50 and 55 weeks post-DEN were grouped since no significant differences were

observed between these two ages. The size of the analyzed tumors ranged from 5 to 20 mm2. Values and error bars represent the

mean and SE, respectively. N, number of tumors. Statistical significance was determined by Student’s t test. �p<0.05, ��p<0.01,
���p<0.001.

https://doi.org/10.1371/journal.pone.0204909.g004
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Tumor induction and serum analysis

Fourteen-day-old mice were injected intraperitoneally with 25 mg/kg of DEN (Sigma) [56].

Serum ALT and AST levels were determined using ABX Pentra (Horiba Medical).

Ultrasound imaging and tumor quantification

Animals were anesthetized with Isofluorane (Isovet, Braun Vetcare) (4% during anesthetic

induction and 2% as maintenance level) and livers were scanned (Vevo 770, 40 Mhz fre-

quency) for structural alterations, including echogenicity variations, by using the probe

RMV707b (Visualsonics, Canada). The frame rate used is in the range of 60 Hz and 11X11

mm FOV (field of view). The three diameters dimensions were measured (width, W, length,

L, and depth, D) and the tumor volume was calculated by using the formula V = π/6xWxLxD

[70].

Hepatotoxicity grading

Criteria based on the World Health Organization Adverse Reaction Terminology (WHO-

ART) were utilized to grade hepatotoxicity. Grade 1 hepatotoxicity was defined as a serum

ALT level of 51–125 IU/L, or 1.25–2.5 times normal; grade 2 as a serum ALT level of 126–250

IU/L, or 2.6–5.0 times normal; grade 3 as a serum ALT level of 251–500 IU/L [60]

Immunohistochemistry analysis

Tissue samples were fixed in 10% buffered formalin, dehydrated, embedded in paraffin wax

and sectioned at 2.5 mm. Slides were deparaffinized in xylene and re-hydrated through a series

of graded ethanol until water. Serial sections were stained with hematoxylin and eosin for

pathological examination and lesions quantification. Serial paraffin sections of liver and lung

samples were analyzed. The classification of the hepatic lesions was performed by a trained

pathologist in a blinded manner.

Immunohistochemistry was performed on de-paraffined liver or lung sections processed

with 10 mM sodium citrate (pH 6.5) cooked under pressure for 2 min. Slides were washed in

water, then in Buffer TBS Tween20 0.5%, blocked with peroxidase, washed with TBS Tween20

0.5% again and blocked with fetal bovine serum followed by another wash. The liver slides

were incubated with the primary antibodies: goat polyclonal to alpha-fetoprotein (R&D sys-

tems), mouse monoclonal to phospho-Histone H2AX (ser139) (JBW301, Millipore), rabbit

monoclonal to Ki-67 (D3B5, Cell Signaling) or rabbit polyclonal to C3 cleaved-caspase 3

(Asp175) (Cell Signaling); the lung slides were incubated with the primary antibody: mouse

monoclonal to human hepatocytes (OCH1E5, DAKO). Slides were then incubated with sec-

ondary antibodies conjugated with peroxidase from DAKO. Sections were lightly

Fig 5. RAP1 deficiency does not affect telomere length in full blown HCC. (A-B) Mean telomere fluorescence (A) and total nuclear telomere

fluorescence (B) in liver sections at 40 weeks post-DEN, 60–65 weeks post-DEN and at the endpoint at 70–100 weeks post-DEN. At 40 weeks the

telomere intensity was determined in healthy hepatic tissue. At 60–65 weeks post-DEN before humane endpoint and at the humane endpoint,

telomere intensity was determined in HCC. At 60–65 weeks post-DEN, the tumors analyzed presented an area between 10–30 mm2. At the endpoint,

the analysis was performed in tumors with an area between 50–500 mm2. (C) Representative Q-fish images showing the telomere FISH (red) in Rap1+/

+ and Rap1-/- liver and tumor sections of female mice at different time points. (D-E) Mean telomere fluorescence (D) and total nuclear telomere

fluorescence (E) in liver sections at 36 weeks post-DEN and at the humane endpoint of male mice that died of liver tumors at either 55–65 or 65–75

weeks post DEN. At 36 weeks the telomere intensity was determined in healthy hepatic tissue. At the humane endpoint, telomere intensity was

determined in HCC. In male mice at humane end points ranging from 55–65 or from 65–75 weeks post-DEN, the tumors analyzed presented an area

between 50–350 mm2 and 100–500 mm2, respectively. a.u.f., arbitrary units of fluorescence. Values and error bars represent the mean and SE,

respectively. N, number of tumors. Statistical significance was determined by Student’s t test. �p<0.05, ��p<0.01, ���p<0.001.

https://doi.org/10.1371/journal.pone.0204909.g005
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counterstained with hematoxylin and analyzed by light microscopy. Pictures were taken using

Olympus AX70 microscope. The percentage of positive cells was quantified by eye.

Liver lesions were classified as follows. α-fetoprotein (AFP) positive foci are composed of

hepatocytes positive for AFP with a cytosolic staining pattern. AFP is known to be expressed

in early liver development and during hepatocarcinogenesis, but is largely absent in normal

adult liver. AFP expression takes place during the early stages of hepatocarcinogenesis, before

the appearance of histologically evident transformation, although not all HCC developed in

mice are AFP positive [71]. Foci of altered hepatocytes (FAH) are composed of hepatocytes

with increased cytoplasmic basophilia due to polyribosomes or rough endoplasmic reticulum,

often smaller than normal, characterized by a high nuclear to cytoplasmic ratio that results in a

“crowded” appearance. Eosinophilic cytoplasmic inclusions are frequently found within the

hepatocytes in FAHs [61, 62]. Hepatocellular adenoma (HCA) are well-circumscribed lesions

often causing compression of the adjacent parenchyma. The liver lobular architecture is not

maintained, causing an irregular growth pattern that represents a primary distinction between

HCA and FAH. Hepatocytes in HCA are well differentiated and variable in size, occasionally

contain eosinophilic cytoplasmic inclusions. Degenerative changes such as lipidosis and cystic

degeneration are frequently observed [61, 62]. Hepatocellular carcinoma (HCC) consist of

demarcated masses with irregular borders due to the cellular invasion of the surrounding tis-

sue. The lobular architecture is not maintained and the typical trabecular, glandular or solid

growth patterns are observed. HCC are characterized by severe cellular polymorphism with

enlarged and hyperchromatic nuclei and contain abundant mitotic figures. The masses are

often characterized by presence of various size cysts, and hemorrhagic and/or necrotic areas

[61, 62].

Telomere length quantitative fluorescence (Q-Fish) analyses on liver

sections

For quantitative telomere fluorescence in situ hybridization (Q-FISH), paraffin-embedded sec-

tions were deparaffinized and fixed with 4% formaldehyde, followed by digestion with pep-

sine/HCl and a second fixation with 4% formaldehyde. Slides were dehydrated with increasing

concentrations of EtOH (70%, 90%, 100%) and incubated with the telomeric probe for 3 min

at 85˚C followed by 2h RT incubation in a wet chamber. In the final steps, the slides were

extensively washed with 50% formamide and 0.08% TBS-Tween [72]. Confocal microscopy

was performed at room temperature with a laser-scanning microscope (TSC SP5) using a Plan

Apo 63Å-1.40 NA oil immersion objective (HCX). Maximal projection of z-stack images gen-

erated using advanced fluorescence software (LAS) were analyzed with Definiens XD software

package. The DAPI images were used to detect telomeric signals inside each nucleus.

Statistical analysis

The Kaplan-Meier method was used to estimate survival curves and log rank was used to eval-

uate statistical differences in median survival of the different mouse cohorts. A Student t-test

was used to calculate the statistical significance (p) (p� 0.05 = � and p� 0.01 = ��) in body

weight, enzyme levels in serum, tumor burden, number of lesions, ki67, γH2AX and cleaved-

caspase-3 expression. A chi-square test was used to calculate statistical differences in lung

metastasis incidence.
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