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ABSTRACT

Telemedicine has been used to remotely diagnose and treat patients, yet previously applied telemonitoring

approaches have been fraught with adherence issues. The primary goal of this study was to evaluate the adher-

ence rates using a consumer-grade continuous-time heart rate and activity tracker in a mid-risk cardiovascular

patient population. As a secondary analysis, we show the ability to utilize the information provided by this device

to identify information about a patient’s state by correlating tracker information with patient-reported outcome

survey scores. We showed that using continuous-time activity trackers with heart rate monitors can be effective

in a telemonitoring application, as patients had a high level of adherence (90.0% median usage) and low attrition

(0.09% decrease per day) over a 90-day period. Furthermore, data collected correlated significantly with clinically

relevant patient surveys (r2¼0.15 for PROMIS global health scores, p< .00001), and therefore might provide an

effective signal for identifying patients in need of intervention.
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INTRODUCTION

There has been significant prior work in research and clinical set-

tings in the use of telemedicine to remotely diagnose and treat

patients. However, previously applied telemonitoring approaches

have been fraught with adherence issues and often exhibit non-

conclusive results.1–11 Additionally, studies have indicated that de-

vice fatigue limits adherence,12–14 a phenomenon known as the law

of attrition.15 Little work has been done to demonstrate how readily

available commercial devices may limit intervention burden by auto-

mating data collection, such as passive accelerometry. However,

previous studies have shown that activity trackers are capable of ac-

curately documenting health indicators such as physical activity, are

a popular low-cost option with older patients, and often have higher

adherence rates than other devices.16–19

Activity trackers in combination with smartphones are perceived

to be easy-to-use, accessible means for providing feedback and sup-

port directly to patients.20 This feedback loop has been shown to
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positively impact health interventions with the goal of lifestyle

changes.21–23 Although demonstrating potential as intervention

methods, these approaches have largely been used in studies with

small samples or in healthy subjects, which may not accurately rep-

resent true adherence in a telemedicine application.1,4,24,25 Further-

more, these studies have largely been based on data aggregated over

the course of days or weeks, which limits the precision with which

patients can be monitored and restricts the ability to detect problems

or intervene when beneficial to patients.1,26,27

The primary goal of this study was to evaluate the adherence

rates using a consumer-grade continuous-time heart rate (HR) and

activity tracker over 90 days in a group of patients with ischemic

heart disease (IHD), a sample representative of a chronic disease pa-

tient population. Patients with stable IHD can develop precursor

indicators that are not clinically detected, yet may progress to major

adverse cardiac events (MACE) if not recognized, a potentially cata-

strophic and expensive outcome. There is a pressing need to validate

and scale cost-effective techniques to monitor this large population

between healthcare visits, and adherence levels relate directly to the

feasibility of clinical use. We compare the ability to detect activity

and adherence using this device to methods used with standard

accelerometers. As a secondary analysis, we show the ability to uti-

lize the information provided by this device to identify information

about a patient’s state by correlating tracker information with sur-

vey scores.

METHODS

Data collection
A group of 200 patients with IHD was recruited from Cedars-Sinai

Medical Center as part of a larger study seeking to predict MACEs

using biometrics, biomarkers, wearable sensors, and patient-

reported surveys. Nine subjects withdrew from the study and five

were lost to follow-up. Wearable data were available for the remain-

ing 186 subjects (93%) for inclusion in this analysis. The study was

approved by the Cedars-Sinai Institutional Review Board (IRB).

Subjects were given Fitbit Charge 2 (Fitbit Inc., San Francisco, CA,

USA) HR trackers at enrollment and followed for 90 days.

Patient state surveys
Subjects were each administered the Patient-Reported Outcomes

Measurement Information System (PROMIS), Seattle Angina

(SAQ), and Kansas City Cardiomyopathy (KCCQ) questionnaires at

the conclusion of the 90-day study.28–30 PROMIS is a group of vali-

dated measures of global and domain-specific physical, mental, and

social health.28 PROMIS includes domain-specific measures for de-

pression, emotional distress, fatigue, physical function, sleep distur-

bance, and social isolation, as well as a global short form version

(PROMIS 10), which queries physical, mental, and social health.

The SAQ and KCCQ are short form surveys with Likert-type items

specific to cardiology patients, focusing on quality of life/functional-

ity, and symptoms.29,30

Adherence
Adherence to ambulatory measurement of physical activity was

measured using four methods: 1) HR hours (HR-hour); 2) HR

minutes (HR-minute); 3) standard Actigraph non-wear without sleep

imputation (NHANES-wake); and 4) standard Actigraph non-wear

with fixed sleep (NHANES-sleep). The Fitbit Charge 2 device provides

a continuous stream of HR data using photoplethysmography (PPG),

which allows us to disentangle moments of sedentary time and

non-wear. Further, PPG can be used, in tandem with accelerometer

data, to accurately estimate sleep time. For HR-minute, we exam-

ined data at 60-second epochs, where bouts with missing HR data

were considered non-wear. HR-hour was calculated by aggregat-

ing data to the hour and defining non-wear as hours with no

available HR data.

In order to provide a standard comparison to prior work in ac-

celerometer studies, we used two protocols based on criteria used in

the Actigraph module of the National Health and Nutrition Exami-

nation Survey (NHANES). Non-wear was estimated using continu-

ous bouts of zero activity counts lasting longer than 60 minutes,

allowing for up to two minutes of activity.31 To calculate adherence

for NHANES-wake, we made no assumptions about sleep time and

examined all available data in a single stream. For NHANES-sleep,

we assumed 16 waking hours per day and exactly eight hours of

sleep.32 Because the NHANES study combines non-use and sleep,

we subtracted the eight hours of sleep directly from the non-use

period.

Summary statistics
Summary statistics for telemonitoring devices were reported as aver-

ages per day across valid days. Valid days were defined as those hav-

ing at least 10 hours of wear time per day, irrespective of

algorithm.31 Consistency within patients’ recording was evaluated

by calculating intraclass correlation (ICC) using a two-way random

effects model. Correlation metrics between the average number of

steps per day for each patient and the questionnaire scores were cal-

culated. The statistical significance of the correlations was tested us-

ing a t-test with Bonferroni correction for multiple comparisons.

RESULTS

Adherence
Time spent using the device can be separated into hours spent seden-

tary, engaged in moderate-vigorous physical activity (MVPA), light

physical activity (LPA), or asleep. Table 1 presents medians and

interquartile ranges of active living components, including non-wear

time. The HR-based criteria generally had lower non-wear times

and higher sedentary times than the NHANES criteria. Figure 1

illustrates the proportion of usage across all subjects based on each

of the criteria. The median usage percentages were 90.0%, 83.7%,

43.8%, and 77.1%, when calculated by the HR-hour HR-minute,

NHANES-wake, and NHANES-sleep criteria, respectively.

Summary statistics
HR-hour was selected for analysis of summary statistics and correla-

tions. As shown in Figure 2, there was a 0.09% decrease per day in

usage specified by HR-hour (t¼4.50, p¼ .00001). Summary statis-

tics, including means, standard deviations, and ICCs are presented

in Table 2 and Figure 3. A patient’s average number of steps per day

had significant positive correlation with his/her KCCQ (r2¼0.09,

p¼ .0001) and SAQ (r2¼0.08, p¼ .0008) overall scores. The aver-

age number of steps also positively correlated with the PROMIS

global physical health (r2¼0.15, p< .00001) and physical function

short form (r2¼0.18, p< .00001) scores, and negatively correlated

with the fatigue short form score (r2¼0.13, p¼ .0001). There was

no significant correlation between the average number of steps and

the PROMIS emotional distress short form (r2¼0.01, p¼ .12), social

isolation short form (r2¼0.02, p¼ .07), or sleep disturbance short
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form (r2¼0.03, p¼ .03) scores. There were slight correlations with

other variables with the PROMIS global physical health score, such

as resting HR (r2¼0.04, p¼ .02), but none was statistically

significant.

DISCUSSION

In this study, we observed adherence rates up to 90.0% (Figure 1),

substantially higher than those previously reported in telemonitoring

studies using similar study periods. Shaw et al. reported patients

with chronic illness using a variety of telemonitoring devices were

adherent only 16% of days in their four-week study.13 In the Shaw

study, patients reported feeling overwhelmed with having multiple

devices and eventually used only those that interested them, which

included a Fitbit. Our study used a single device with high utility,

which simplifies the task of remote monitoring for both researchers

and patients. The ability of the device to simultaneously record mul-

tiple variables such as HR and accelerometer data also allowed us to

more accurately determine the patient’s state, whether he/she is ac-

tive, sedentary, asleep, or not currently using the device. Over the

course of the study, average adherence dropped from an initial

87.7% to 72.0% on the final day (90). The reduction in adherence

is consistent with the law of attrition in eHealth studies,15 as

patients will generally have high interest at the point of recruitment,

but may gradually lose interest in, start to forget about, or become

burdened by the study. Because the Fitbit provides data access in

real time, gaps of adherence can be detected quickly, and reminders

could be sent as a result, possibly improving adherence.

Table 1. Median and IQR for the hours per day that subjects were sedentary, engaged in light (LPA) or moderate-vigorous (MVPA) physical

activity, asleep, or not wearing the device. These values were calculated with non-wear time determined four ways: by heart rate at the

hour (HR-hour) or minute (HR-minute) level, and by activity level without considering sleep (NHANES-wake) and with an assumed sleep

period (NHANES-sleep)

Sedentary LPA MVPA Sleep Non-wear

HR-hour 11.34 2.50 0.24 5.66 2.43

(9.92–12.67) (1.50–3.59) (0.07 - 0.51) (3.60–7.22) (0.92–7.31)

HR-minute 10.02 2.50 0.24 5.66 3.92

(8.47–11.40) (1.50–3.59) (0.07 - 0.51) (3.60–7.22) (2.30–8.43)

NHANES-wake 7.88 2.50 0.24 NA 13.48

(5.19–9.37) (1.50–3.59) (0.07 - 0.51) (10.70–16.94)

NHANES-sleep 7.88 2.50 0.24 8 5.48

(5.19–9.37) (1.50–3.59) (0.07 - 0.51) (2.70–8.94)

Figure 1. Histograms of the adherence percentage using the tracker for the

four methods of calculation. Using activity to determine use of an activity

tracker gives consistently lower adherence values because it can treat use

during sleep and extended sedentary time as non-use. Using heart rate gives

values that are more accurate because it can track use during sedentary times

as well as sleep.

Figure 2. Average usage rate over the course of the study (Blue). Linear re-

gression was used to find a slight downward trend of 0.09% per day over the

course of the study.

Table 2. Mean, standard deviation, and intraclass correlation coeffi-

cient (ICC) for active and resting heart rates, number of steps per

day, and average number of hours spent sedentary, engaged in

light (LPA) or moderate-vigorous (MVPA) physical activity, asleep,

or not wearing the device

Mean SD ICC

Steps/day 4882 3070 0.47

Active HR 81.8 9.5 0.41

Resting HR 66.2 7.7 0.35

Sleep hours/day 5.2 2.4 0.38

Sedentary hours/day 9.9 2.7 0.21

LPA hours/day 2.6 1.4 0.46

MVPA hours/day 0.4 0.4 0.39

Non-wear hours/day 6.0 5.1 0.37
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The average number of steps recorded per day by subjects in this

study correlated significantly with several attributes of the patients’

self-reported states at the conclusion of the study, including their

overall health, physical function, fatigue, and KCCQ and SAQ

scores. These findings are consistent with previous studies that have

found relationships between physical activity and health,33,34 as

well as physical function.35,36 Similarly, other studies have shown

telemonitoring participation correlated with improvements in clini-

cal outcomes in specific groups; however, not all were statistically

significant.37–40 Given these results, telemonitoring data could possi-

bly be used as a surrogate for these questionnaires, allowing clini-

cians to automatically evaluate a patient’s state and possibly

intervene without needing to wait until the patient’s next appoint-

ment or patient self-report. However, some survey scores such as

emotional distress did not correlate strongly with raw telemonitor-

ing data. Also, many of the telemonitoring variables did not corre-

late significantly with survey scores in the univariate analyses

performed here. These survey scores may still be predictable from

telemonitoring data using multivariate analyses and machine learn-

ing methods, which can exploit complicated interactions between

variables and outcomes.

The sleep estimate provided by the Fitbit may underestimate the

amount of sleep for some subjects, as it found that 30.1% of the

subjects in this study averaged under four hours of sleep per night.

Patients may remove their Fitbits overnight, resulting in non-wear

time during sleep. Additionally, prior literature has found that Fitbit

devices tend to underestimate sleep in comparison to gold-standard

trackers (eg., ActiWatch), although less is known about Fitbit devi-

ces that use PPG.41 Taking into account a patient’s normal schedule,

statistical models might be able to infer the activity during these

non-wear periods. We plan to investigate whether we might be able

to leverage the continuous nature of the Fitbit data to overcome

these censored periods when the subject is not using the device.

The ability to use activity tracker information to make clinical

predictions is reliant upon the accuracy of the data provided by the

tracker. Benedetto et al., demonstrated that individual HR record-

ings from the device used in this study could underestimate a sub-

ject’s actual HR by up to 30 bpm.42 However, most clinical

decisions are not made on the time resolution of a single recording,

but rather an average over a period of time, which Benedetto

showed had a more modest 5.9 bpm bias. Here, the correlation be-

tween consumer grade activity tracker data and clinically used pa-

tient surveys demonstrates that these devices provide information

about a patient’s state, despite the imperfections in the data. While

the correlated with clinically administered outcome surveys was sta-

tistically significant, that does not guarantee a significant effect in

clinical practice. Patient-reported outcomes are increasingly being

used in healthcare,43 which indicates that this correlation could

have a clinical impact. However, the best way to evaluate clinical

utility would be to conduct a prospective trial in which patient treat-

ment is based in part on the telehealth data recorded from an activ-

ity tracker. A study could use this data to provide interventions for

patients whose data correlate with low or decreasing outcome

scores.

CONCLUSION

This study demonstrates that consumer-grade continuous-time activ-

ity trackers with HR monitors may be an effective tool for telemoni-

toring applications, as patients have demonstrated a high level of

adherence and relatively low attrition over 90 days. These devices

Figure 3. Histograms of active and resting heart rates, number of steps per day, and average number of hours spent sedentary, engaged in MVPA or LPA, or

asleep.
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can record useful patient statistics including activity level, resting

and active HR, and sleep time. These data correlate with clinically

used patient surveys, and therefore might be an effective way of

identifying patients who require intervention. Future studies should

investigate the utility of this real-time tracking as a basis for patient

health surveillance and as a means for using feedback to overcome

the attrition seen in eHealth studies.
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