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Functional magnetic resonance imaging is capable of esti-
mating functional activation and connectivity in the human 
brain, and lately there has been increased interest in the 
use of these functional modalities combined with machine 
learning for identification of psychiatric traits. While these 
methods bear great potential for early diagnosis and better 
understanding of disease processes, there are wide ranges of 
processing choices and pitfalls that may severely hamper in-
terpretation and generalization performance unless carefully 
considered. In this perspective article, we aim to motivate the 
use of machine learning schizotypy research. To this end, we 
describe common data processing steps while commenting on 
best practices and procedures. First, we introduce the impor-
tant role of schizotypy to motivate the importance of reliable 
classification, and summarize existing machine learning lit-
erature on schizotypy. Then, we describe procedures for ex-
traction of features based on fMRI data, including statistical 
parametric mapping, parcellation, complex network analysis, 
and decomposition methods, as well as classification with a 
special focus on support vector classification and deep learn-
ing. We provide more detailed descriptions and software as 
supplementary material. Finally, we present current chal-
lenges in machine learning for classification of schizotypy 
and comment on future trends and perspectives.
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Introduction

The study of  schizotypy has received substantial interest 
in the field of  psychiatry and psychology and recently 

developments and increased interest in machine learn-
ing for neuroimaging is showing promising applications 
in computational psychiatry. Theoretically, schizotypy 
has been conceptualized as an important phenotype for 
schizophrenia spectrum disorders.1–3 Two competitive 
theories, the quasi-dimensional and the fully dimensional 
approach have been proposed to model the construct of 
schizotypy. The quasi-dimensional approach posits the 
view that schizotypy is a discontinuity in the general 
population.2,4 However, recent studies have suggested 
that this phenotype is distributed along a continuum, 
ranging from psychological well-being to full-blown psy-
chosis,5–7 supporting the fully dimensional approach that 
emphasizes the continuity of  schizotypy.8 Furthermore, 
empirical findings demonstrate that individuals with 
schizotypal traits exhibit similar but attenuated impair-
ments in cognition,9,10 emotion,7,11 and neurological func-
tions10,12 compared with patients with schizophrenia. 
Likewise, manifestations of  these schizotypal pheno-
types are found to be robust and stable across time and 
environment.5,13–15

With implications from the neurodevelopmental 
model of psychosis in schizophrenia,16,17 Insel18 further 
delineated 4 stages, ranging from risk to chronic disa-
bility. This 4-stage hypothesis highlights the importance 
of early risk stages for the understanding of the psycho-
pathology to facilitate early detection and intervention 
strategies for psychosis and mental disorders. Although 
schizotypy is not explicitly included in Insel’s model, 
there are important similarities within the cognitive, emo-
tional, and social impairments. This point toward under-
standing the psychopathology of schizophrenia spectrum 
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disorders through personality traits presented in the ge-
neral population.

Recently, schizotypy has recently been conceptualized as 
a construct well beyond the borders of schizophrenia spec-
trum disorders (e.g., Cohen et al19). These authors argue 
that the researchers interested in psychosis have mainly 
followed narrow research avenues, focusing on molecular, 
neurophysiological, environmental, and cultural correlates 
of psychotic expression or investigating potential endophe-
notypes relating to the extreme manifestation of schizo-
typy to schizophrenia. However, the unique emotional and 
social manifestations observed in individuals with schizo-
typy can actually provide insight into the nature of affective 
and social systems integral to general human functioning. 
For example, findings from functional neuroimaging have 
shown that individuals with social anhedonia exhibit sig-
nificant hypoactivation of the left pulvinar, claustrum, 
and insula to positive cues in the anticipatory phase of the 
affective incentive delay task compared with those without 
social anhedonia.14 Longitudinal studies also suggest that 
individuals with schizotypal traits have their unique trajec-
tories that may not necessarily develop into full-blown psy-
chosis.20–23 Recently, Wang et al24 identified 4 trajectories of 
schizotypy; including 2 stable and 2 reactive groups. The 
“stable low and high schizotypy” groups displayed the best 
and worst clinical and functional outcomes, respectively. 
The “high reactive schizotypy” group was characterized by 
a relatively rapid decline in function, while the “low reac-
tive schizotypy” group was characterized by low scores at 
baseline of the assessment but with gradual deterioration. 
These findings suggest that even within the nonclinical 
sample of schizotypal phenotypes, similar subtypes, and 
trajectories comparable to the clinical patients with schizo-
phrenia are observed. This highlights the importance of 
tracking schizotypy longitudinally because of their unique 
trajectories and outcomes.

Several studies have already applied neuroimaging data 
to investigate the neurobiological changes related to schiz-
otypy, reporting both structural and functional changes. 
For example, structural studies have found grey matter vol-
ume changes in many of the areas known to be altered in 
schizophrenia, such as prefrontal, temporal, and cingulate 
cortex, as well as insula and subcortical regions.25–28 These 
studies suggest that cortical changes exist on a dimensional 
continuum across the schizophrenia spectrum, likely to 
occur pre-onset of psychopathology. Furthermore, studies 
using functional magnetic resonance imaging (fMRI) to 
investigate social cognition, have reported similar regional 
brain activation changes, when comparing participants 
with different degree of schizotypy, or individuals with high 
schizotypy compared with controls.29–31 Finally, functional 
connectivity studies reported similar network changes to 
that of patients with schizophrenia,32–34 such as altered 
connectivity between striatum, medial prefrontal cortex 
(PFC), anterior cingulate (ACC), and insula. Importantly, 
almost all the above studies, reported different results for 

the positive and negative dimension of schizotypy, demon-
strating the heterogeneity of schizotypy.

The above findings emphasize the important role of 
schizotypy in psychiatry and psychology. On one hand, 
schizotypy is considered to be a trait marker for schiz-
ophrenia and the study of behavioral and neurobio-
logical bases of schizotypy may help us understand the 
underlying psychopathology of schizophrenia. This sug-
gests that schizotypy may be an important phenotype 
for studying schizophrenia spectrum disorders. On the 
other hand, schizotypy may serve as a unique entity to 
examine the underlying emotional and social systems in 
humans. Therefore, a better way to classify this pheno-
type will be meaningful to schizotypy scholars. However, 
to our knowledge, there are only few studies which have 
been identifying schizotypy based on neuroimaging data. 
Here, machine learning methods can serve to bridge this 
knowledge gap, and help elucidate the neurobiological 
abnormalities of at-risk individuals at an early stage of 
schizophrenia.

Machine Learning in the Field of Schizotypy and 
Schizophrenia

The overall aim of machine learning is to make comput-
ers classify data without being explicitly programmed. 
Typically, a distinction is made between supervised and 
unsupervised learning. The former refers to learning 
using labelled data, with the aim to generalize classifica-
tion to data with unknown labels. In contrast, unsuper-
vised learning methods explore statistical dependencies in 
unlabelled data, with the goal of learning structure in the 
data and possibly cluster data into distinct classes.

Recently, machine learning methods have been used as 
a neuroimaging-based tool to automatically discriminate 
individuals in schizophrenia spectrum disorders from 
healthy people.35–37 Empirical findings suggest that these 
methods are able to classify schizophrenia patients from 
healthy controls with an accuracy rate ranging from 75% 
to 98%.37–40 Furthermore, recent studies have had success 
with using support vector classification (SVC) to predict 
the transition of ultra-high risk individuals converting to 
full-blown psychosis,41–43 and discriminate converters and 
nonconverters.44,45 However, limited studies have investi-
gated individuals in the stages before onset of the illness.

As for studying schizotypy using machine learning 
methods, a range of studies have been exploring the neu-
ral mechanism related to schizotypy and classified indi-
viduals according to different groups. In 2006, Shinkareva 
et al46 used spatio-temporal dissimilarity maps to classify 
individuals with high levels of positive schizotypy and 
controls based on fMRI data from an emotional Stroop 
task. With the same aim, Modinos et al47 performed SVC 
on brain activation maps from an emotional task and 
found the alterations for the emotional circuitry, includ-
ing amygdala, ACC, and medial PFC, in individuals with 
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high positive schizotypy. For comparison, they also per-
formed statistical parametric mapping (SPM), which did 
not detect any class differences, indicating the increased 
sensitivity to subtle changes in risk populations, by using 
multivariate approaches. From the view of the “full 
dimensional” model of schizotypy, Wiebels et  al48 used 
partial least square method, to demonstrate the relation-
ship between different facets of schizotypy with gray mat-
ter volume changes.

Furthermore, 2 studies have explored schizotypal scores 
in individuals with subclinical depression and an ultra-
high-risk group, respectively. First, Modinos et al49 found 
significant correlation between the positive dimension 
of schizotypy and the SVC weights which were obtained 
when classifying individuals with subclinical depressive 
symptoms and healthy controls. Secondly, in a longi-
tudinal study, Zarogianni et al45 applied SVC to classify 
ultra-high-risk individuals into converters and noncon-
verters. Whereas this study mainly used structural MRI 
data, it was shown that the classification performance was 
increased when adding schizotypy scores to the analy-
sis. Finally, other neuroimaging modalities than (f)MRI 
have been used to investigate schizotypy using machine 
learning methods. For example, in a study by Jeong et al50 
event-related potentials, measured by EEG during an 
audiovisual emotion perception task, were used for classi-
fication of individuals with schizotypy and controls.

To conclude, the research in schizotypy utilizing ma-
chine learning shows great promise in terms of improv-
ing our understanding of schizotypy, and is of particular 
relevance for early detection and potential interventions. 
The main advantage of machine learning methods is that 

they can offer higher sensitivity than their counterparts 
based on standard univariate statistics, due to being able 
to learn the likely complex manifestations of schizotypy in 
multimodal neuroimaging data. Currently, existing stud-
ies are still limited by quite small sample sizes (n = 7–18 
in each group45–47,49,50), and there is a risk that the reported 
classification rates are overfitted to the observed samples. 
This highlights the importance of having sufficient large 
sample sizes, and well-balanced groups to enable ade-
quate learning and ensure that the training data is repre-
sentative. Furthermore, it is important that future studies 
focus on independent validation of existing results to en-
sure that findings are generalizable to the population.

Classification and Feature Extraction Methods

In neuroimaging studies, fMRI data are mostly used to 
measure either activation changes in isolated brain areas, 
or to estimate functional connectivity (networks coupling) 
across regions.51 Because fMRI data are recorded in rela-
tively high spatial resolution with a limited number of time 
points, estimation of activation patterns and in particu-
lar connectivity, is in practice quite unstable.52 Therefore, 
approaches to reduce dimensionality are often considered 
to improve the stability of the estimated functional activa-
tion.53–55 In the current article, we focus on features derived 
from fMRI, but classification procedures readily general-
ize to other modalities and multi-modal settings.

When using supervised learning in the field of neuro-
imaging, the aim is generally to determine an unknown 
class  label of a subject based solely on the measured 
imaging data (eg, recorded fMRI data) as illustrated in 

Fig. 1. Classification. The top row in panel A shows how a classification model can be trained on neuroimaging data. First feature 
extraction methods are used to identify features that can be used to train a classification model on samples with known labels. Once the 
classification model is trained, it can be applied to features extracted (using the same procedure) from subjects with unknown labels as 
indicated in the bottom row. *In principle the feature extraction step can be omitted. However, in practice for many imaging modalities 
(including fMRI), overfitting due to the high dimensionality of the input data will be detrimental to the classification performance. 
Panel B provides an illustration of the linear soft margin SVC algorithm in a 2-dimensional feature space. The SVC identifies the 
separating hyperplane that maximizes the margin, this hyperplane is only defined by the support vectors which are samples that are on 
the margin (marked by a circle). The soft margin SVC allows misclassification to avoid overfitting by introducing slack variables for each 
misclassified sample (marked with a dotted line). When the SVC is trained the labels of new samples (marked in gray) can be estimated 
according to the side of the hyperplane on which they reside.
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figure  1, this procedure is also termed classification. In 
supervised classification, a model discriminating between 
the known labels in the training data is learned, subse-
quently enabling application of this model to unlabelled 
data to predict unknown labels.

Given a labelled dataset, one can determine the classifi-
cation performance using cross-validation (CV). The accu-
racy (rate of correctly identified class labels) is often used 
as a measure of performance. However, is important to 
note that this does not provide a full description of the per-
formance, but also sensitivity (also referred to as the true 
positive rate or recall) and the specificity (the true negative 
rate) are important quantities. To test if the obtained classi-
fication rate is significant, the performance is usually tested 
against a parametric or empirical null-distribution.56 If the 
classification step considers several separate classification 
procedures, corrections for multiple comparisons should 
be performed when assessing significance. The CV proce-
dure can be considered a simulation of the clinical setting, 
in which the labels of a set of subjects (test set) are assumed 
unknown and to be estimated through the training of a 
classification algorithm on the remaining subjects (train-
ing set). A frequently used method is the leave-one-out CV, 
where only one subject constitutes the test set, and the pro-
cedure is repeated for each subject as illustrated in figure 3. 
The leave-one-out scheme is often preferred because it min-
imizes the model bias by reserving the maximal amount of 
data for model training, but is has the disadvantage that 
there is a higher risk of overfitting to the training data. 
Therefore, other schemes such as K-fold (dividing the data 

into K nonoverlapping splits) CV are sometimes preferred. 
These enable testing of model stability by examining the 
variability of the identified model across splits. An example 
is the split half resampling procedure, where the difference 
between the models in the 2 independent splits can serve as 
an estimate of the model reproducibility.57

In principle, it is possible to train classification algo-
rithms directly on the raw neuroimaging data. However, 
due to the high dimensionality of the data compared with 
the small sample size the input data will appear sparse in 
the high dimensional space, often referred to as the curse-
of-dimensionality. This in turn causes the classification 
procedure to be too specialized and generalize poorly to 
the test data, a phenomenon known as overfitting.

Therefore, classification is typically approached using 
a 2-step procedure in which features relevant to classifi-
cation are first identified (see feature extraction steps, as 
illustrated in figure 2) and subsequently used to train the 
classification algorithm. The feature extraction step might 
include feature selection, where features are selected for 
further training. It is important that feature selection 
should only use labels from the training dataset, as the 
evaluation of performance would otherwise be biased 
and potentially lead to overfitting. Therefore, nested CV 
schemes, where an additional independent test set is used 
to estimate optimal features or other free parameters can 
be advantageous. Overfitting may be mitigated by auto-
mated feature selection methods and ensemble learning 
methods58 such as forward selection, backward elimina-
tion, recursive feature elimination,59 decision trees, and 

Fig. 2. Sketch of 4 feature extraction methods for fMRI. Panel A illustrates statistical parametric mapping, where information about the 
experimental design is used to test for significant activation in each voxel using a general linear model. Panel B sketches complex network 
analysis. Here, a network is derived by determining functional connectivity between parcellated brain regions, followed by analysis using 
graph theoretical measures. In panel C, the seed based correlation approach is illustrated, here the time series from a predetermined 
brain region is extracted and correlated to the rest of the brain. In panel D, decomposition methods are illustrated where fMRI data are 
decomposed into spatially independent components with corresponding time series.



S484

K. H. Madsen et al

random decision forests.60 Also, several toolboxes in-
cluding scikit-learn,61 Nilearn,62 PRoNTo,63 pyMVPA,64 
and the NeuroMiner toolbox used by Koutsouleris et al41 
are tailored toward machine learning for neuroimaging 
and provide tools for automated feature selection.

Appropriate preprocessing steps are very important 
before feature extraction, since data which are contami-
nated by artefacts might not only lead to poor classification 
performance, but may also cause difficulties in the interpre-
tation of the results. For example, if movement artefacts 
are more dominant in one of the groups, the classifier might 
focus on movement artefacts and obtain good classification 
performance. For further information on common prepro-
cessing steps and software, see supplementary section A.

In the following subsections, we describe a selection of 
often used feature extraction procedures, and although 
not covered by this article, additional methods exist, 
including fALFF,65,66 and methods for estimating regional 
signal homogeniety.67

Statistical Parametric Mapping

SPM is currently one of the most frequent used methods 
for analyzing task-based fMRI data. The overall goal of 
SPM is to localize brain activation that differs significantly 

between tasks68 as illustrated in figure 2A. The technique 
is mass univariate, which means that an independent par-
ametric statistical test (t- or f-test) is performed for each 
voxel separately, typically using the general linear model. 
The 3 most common software packages for performing 
parametric mapping are SPM,69 FSL,70 and AFNI.71

When used for classification, the parameter estimates 
or statistical values (extracted across the entire brain or 
in regions of interest) are used as classification features, 
either directly or with an additional feature selection step. 
An advantage of using SPMs is that the localization of 
effects is already implied in the features, typically lead-
ing to more straightforward interpretation of models. 
However, because the procedure is essentially univariate 
it can miss important information shared across a range 
of variables, and therefore may be less sensitive than fea-
ture extraction methods that consider the multivariate 
structure of the data directly.

Parcellation, Complex Networks, and Seed-Based 
Analysis

To overcome instability problems due to the low temporal 
resolution as described above, approaches that parcellate 
the brain into fewer regions; either defined via atlases72,73 
or from data driven clustering methods53,74,75 are often 
preferred. Functional connectivity features can then be 
determined between the parcels using a statistical meas-
ure such as (partial) correlation or mutual information. 
The resulting features (typically represented in a symmet-
ric adjacency matrix representing the network coupling 
between each parcel) can either serve directly as feature 
for subsequent classification or be used for further extrac-
tion of features, eg, in a graph theoretical framework (fig-
ure  2B). Often the graphs are binarized by applying a 
threshold, and global measures such as the node degree 
distribution (number of connections between parcels/
nodes) graph structure via modularity76 or relational 
modeling77,78 are used to characterize networks. For a 
more complete description of graph theoretical measures 
see Bullmore and Sporns.79

A related technique is the simple and intuitive seed-
based correlation analysis (SCA),51 which determines the 
coupling between a number of predefined seeds (based on 
some a priori hypothesis, from either a localization exper-
iment or the literature). The time series data from each 
seed is then correlated with all other voxels of the brain, 
resulting in a whole-brain, voxel-wise functional connec-
tivity map for each seed as shown in figure 2C. For a more 
detailed description of SCA and how it has been used in 
resting state fMRI in comparison with data driven meth-
ods, please see Cole et al.80 In general, parcellation-based 
methods are attractive because they generate a more 
simplistic overview of the data, and often lead to more 
straightforward interpretation of features. However, the 
limited flexibility that is implied by fixed parcellation 

Fig. 3. Leave-one-out cross-validation. The figure illustrates 
the leave-one-out LOO CV procedure. For each participant 
a classification model excluding that particular participant is 
trained. The model is then used to estimate the class label of the 
participant. This procedure is repeated for each participant to 
provide an unbiased estimate of the classification performance. 
Note that other CV schemes, including more complex nested CV 
are also possible.

http://schizophreniabulletin.oxfordjournals.org/lookup/suppl/doi:10.1093/schbul/sby026/-/DC1
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schemes can lead to selection of inappropriate features 
and result in decreased sensitivity.

Decomposition

Decomposition are unsupervised machine learning meth-
ods (sometimes also referred to as data driven methods) 
that seek to identify latent sources in the data from multiple 
measurements (ie, fMRI time series). In fMRI, this typically 
amounts to identifying a relatively low number of underly-
ing spatial sources (typically between 10 and 100) that are 
associated with time series as illustrated in figure 2D. The 
procedure can be viewed as a (lossy) compression of the 
information in the data. The sources are often considered 
representations of functional networks, because they rep-
resent consistent time courses across the brain. A  widely 
accepted method is spatial group independent component 
analysis (ICA), which results in individual component 
expressions (sources) across subjects with correspond-
ing time series. Most frequently ICA is performed using 
one of the open source toolboxes, such as GIFT81 or FSL 
Melodic.82 Decomposition is advantageous because consist-
ent activation patterns can be captured efficiently and auto-
matically. A potential disadvantage is that interpretation can 
be challenging because decomposition is prone to also cap-
ture prominent nuisance effects in the data including motion 
and physiological signals such as the cardiac and respiratory 
cycles. Also, there are typically a wide range of adjustable 
parameters (such as the number of sources) that are difficult 
to set manually and can lead to overfitting if considered part 
of the learning algorithm. More information on decomposi-
tion is provided in supplementary section B.

Support Vector Classification

Supervised classification methods seek to identify some 
function that would enable discrimination between the 
labels in the training dataset. Importantly, when the input 
dimensionality is high compared to the number of sam-
ples (typically the case in fMRI unless elaborate feature 
extraction and selection has taken place), it is actually 
trivial to obtain perfect classification in the training set 
(overfitting), but the performance may generalize poorly 
to the test set. Therefore, the real challenge in classifica-
tion is to ensure that the classification generalizes well to 
unseen samples.

There are many classification algorithms available. 
Here, we will focus on the SVC methods,83,84 because they 
have often been used in previous literature and are readily 
available in several easy to use software packages.61,85 For 
further reference and information on other classification 
methods, see, eg, Schmah et al.86 and Bishop.87

The simplest classification problem is a binary (2 classes) 
linear classification, where the SVC algorithm attempts 
to identify a discrimination function expressed as a lin-
ear projection across features, where the sign indicates 
the label. This is most straightforwardly illustrated in the 

2-dimensional case, where the so-called separating hyper-
plane is a straight line (figure 1B), here it is also evident 
that there are many lines that would lead to identical clas-
sification performance. The SVC chooses the hyperplane 
that maximizes the margin, ie, the perpendicular distance 
between the plane the closest data points. The SVC there-
fore focuses on the points on the margin (samples that are 
the hardest to classify, also called support vectors), and 
the classification of new samples only require information 
about the distances with respect to these so-called support 
vectors, allowing efficient evaluation. This is often referred 
to as a solution with sparse support in the training set, 
where sparsity here refers to samples rather than features. 
In practice, the soft margin SVC83 is mostly preferred as 
it allows misclassified samples, to obtain a larger margin, 
which will increase the stability of the classifier. In this 
case, the maximization of the margin is traded off against 
a penalty for misclassified samples which is proportional 
to the distance to the separating hyperplane. The trade-
off is controlled by a parameter (typically referred to as 
the C-parameter), which has to be selected or determined 
through an additional nested CV procedure.85 For unbal-
anced dataset (cases in which the no. samples in each group 
differs) the class imbalance can be taken into account by 
weighting the hyperplane such that the imbalance is coun-
teracted (by assigning more weight to the under-repre-
sented class). Also, for such datasets the accuracy alone 
may not be a good performance measure, as even a trivial 
classifier that always selects the most frequent label would 
appear to perform well. In these cases, using other metrics 
such as prediction-recall curves or Matthew’s correlation 
coefficient are usually more informative.88

Generalization to nonlinear discrimination is typically 
approached by projecting the data into another space 
(higher dimensional or even infinitely dimensional) which 
would enable linear separation. For the SVC, and a range 
of other classification methods, this can be efficiently 
implemented using kernels through the so-called kernel-
trick. Here, it is sufficient to calculate distances between 
the samples measured in the projected space (represented 
in a Gram matrix) which circumvents operating with 
the potentially high dimensional projection explicitly. 
Examples of frequently used kernels are the linear kernel 
(for linear classification), radial basis function kernel and 
the polynomial kernel. It is important to note that kernels 
typically introduce at additional parameters that need to 
be selected or optimized via CV,85 which can exacerbate 
problems of overfitting.

The classification performance is rarely the only 
quantity of interest. Often researchers are interested in 
determining which brain regions are important for clas-
sification. For the linear SVC weight maps, or sensitivity 
maps89 for nonlinear classifiers, are often visualized, as 
they indicate the importance of each feature for the clas-
sification performance. The interpretation of these weight 
maps is not straightforward as features can actually be 

http://schizophreniabulletin.oxfordjournals.org/lookup/suppl/doi:10.1093/schbul/sby026/-/DC1
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important for classification, not because they are di-
rectly related to the effect of interest, but rather because 
they serve to filter out nuisance effects. This issue was 
highlighted by Haufe et  al90 suggesting a procedure for 
transforming weight maps into more interpretable visual-
izations for linear classification.

In practice, data labels (eg, schizotypy score) are often 
determined using questionnaires, which utilizes either 
continuous or ordinal scales, where it might be difficult to 
define a clear division between classes. In such cases, it can 
be attractive to train the algorithms to predict this contin-
uous variable directly. This effectively turns the procedure 
into a multivariate regression problem. Here, support 
vector regression91 is analogous with SVC, where the mar-
gin is formed by considering how far the predicted value 
(in the training set) is from the measured value. When 
considering regression models in place of classification, it 
should be noted that other performance measures such as 
the mean absolute error have to be used. Unfortunately, 
the interpretation of such measures is in general less intu-
itive than classification rates. Furthermore, evaluation of 
statistical significance is more involved and researcher 
most often rely on random permutation tests to form 
empirical null-distributions.56

To illustrate the classification procedures described 
above, we have added an illustrative example to the sup-
plementary material, where we used SVC to classify 
participants into either a low of high social anhedonia 
group, using features from both SPM and ICA. For more 
details, please refer to supplementary material section A.

Deep Learning

Deep learning based on neural networks have recently 
received much attention in the machine learning com-
munity, and have also been used to classify neuroim-
aging data in several general92,93 and clinical settings.94–96 
The general philosophy behind deep learning is to train 
large neural networks with many layers and parameters 
that take the raw (or in most cases preprocessed) data as 
input and where the last layer in the network produces 
an outcome such as classification of subjects. If  properly 
trained the first layers of the network should then repre-
sent basic features of the data, that are then refined and 
specialized in the subsequent layers. As these networks in-
herently contain many parameters overfitting due to the 
limited amount of data is a major concern when attempt-
ing to train networks. Here, mitigation strategies include 
regularization, dropout sampling, and weight sharing.97 
Another option, is to use transfer learning approaches, 
which use networks that are pretrained on other datas-
ets (which may even be of a different modality) and only 
refine weights in the last layers of the network.98 We be-
lieve that such strategies, potentially combined with data 
argumentation99 (where more samples are created using 
transformations/perturbations of the original data), will 

be extremely important in the future to ensure the success 
of deep learning in schizotypy research.

Discussion and Future Perspectives

In the preceding paragraphs, we have motivated the impor-
tance for classification of schizotypy, presented previous 
literature that has used machine learning methods for 
classification, and described methods for feature extrac-
tion and classification. Machine learning approaches have 
a range of advantages, which make them very attractive 
for studying early risk stages and subtle differences, as it 
is the case for schizotypy. A clear example of how these 
methods can increase the sensitivity to subtle changes, was 
shown in Modinos et  al,47 who found significant altera-
tions in an emotional circuitry in individuals with schiz-
otypy when using SVC, whereas no class difference was 
detected when using a standard SPM analysis.

However, even though machine learning methods have 
shown very promising results so far, there are a wide range 
of pitfalls and challenges that needs to be considered. In 
the following, we will highlight some of the most impor-
tant aspects, which should be kept in mind when using 
machine learning methods for classification of schizo-
typy or similar early risk groups.

The high dimensionality and typical low sample sizes 
available in studies represent a challenging problem for 
machine learning algorithms. Thus, procedures to reduce 
dimensionality of the input data (feature extraction) and 
regularization are necessary to ensure good generaliza-
tion performance. While repeated nested CV procedures 
are useful for tentatively alleviating data availability 
issues, initiatives to encourage data sharing across sites 
are very important to overcome the problems of sparse 
sample availability.100,101

Appropriate pre-processing can have a profound impact 
on results and a wide range of choices are available both in 
terms of methods and parameters.102 This is also true for 
feature extraction, feature selection and classification steps, 
and it is important to note that if these choices are con-
sidered free parameters of the classification, the problem 
of overfitting is exacerbated and appropriate procedures to 
improve generalization such as CV should be considered. 
The feature extraction method of choice will depend on the 
research question. If the study is driven by specific hypoth-
eses, it can be an advantage to use feature extraction meth-
ods that specifically extract the relevant dimensions of the 
data. Whereas, if the study is more explorative, decompo-
sition methods may be preferred, as it avoids restriction of 
the analysis to a set of predefined hypotheses.

In general, the high degree of flexibility in choices of 
classification pipelines represents a challenge. It is very 
difficult for researcher to prove that none of the choices 
biased the reported classification performance (be-
cause the pipeline was optimized for classification per-
formance), which might happen even inadvertently. To 

http://schizophreniabulletin.oxfordjournals.org/lookup/suppl/doi:10.1093/schbul/sby026/-/DC1
http://schizophreniabulletin.oxfordjournals.org/lookup/suppl/doi:10.1093/schbul/sby026/-/DC1
http://schizophreniabulletin.oxfordjournals.org/lookup/suppl/doi:10.1093/schbul/sby026/-/DC1
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circumvent these issues, it is highly recommendable that 
specific hypotheses and detailed analysis procedures are 
preregistered before studies are commenced. This can 
be done easily using, eg, the Open Science Framework 
(https://osf.io/). Note that such preregistration is valuable 
even for studies with explorative hypotheses. In addition, 
it is obviously important that studies with negative out-
comes are also published, and that specific studies that 
seek to reproduce previous findings are commenced.

Schizophrenia spectrum disorders are complex and con-
sist of a wide range of symptoms with heterogeneous dis-
ease progression across individuals. In practice, this poses 
challenges in clearly defining disease phenotypes and 
renders interpretation of potential results difficult. The 
view of schizotypy as a continuous range of symptoms 
and traits expressed by individuals, motivate the use of 
machine learning to predict multiple continuous measures 
of disease progression. Here, it is natural to consider mul-
tivariate regression models, such as support vector regres-
sion,91 to directly predict schizotypy traits. Also, to take 
advantage of the fact that multiple dimensions of schiz-
otypy are often assessed using a variety of rating scales, 
methods such as partial least squares regression103 can be 
used to establish compact relations between multivariate 
neuroimaging data and multiple schizotypy measures.

The use of these tools and more generally applicable 
methods based on deep learning, represent promising 
research avenues, which can help us gain a more complete 
understanding of schizotypy, lead to improved identifica-
tion of individuals with schizotypy and facilitate appro-
priate management and intervention for these individuals. 
Machine learning constitutes a paradigm shift toward 
quantitative evaluation, where we no longer need to rely on 
subjective rating and structured interviews. Consequently, 
the time spend on identification of subtypes of schizo-
phrenia spectrum disorders can be reduced while poten-
tially improving the accuracy in clinical practice.

In summary, classification of  schizotypy represents a 
promising application for the combination of  machine 
learning and neuroimaging, but there are still a range 
of  challenges, in particular, related to how robustness 
to overfitting, and thereby better generalization perfor-
mance can be archived. However, if  these challenges are 
appropriately addressed, machine learning can signif-
icantly improve our understanding of  schizotypy and 
schizophrenia spectrum disorders. Finally, the emerging 
field of  computational psychiatry had important appli-
cations in disease prevention, early diagnosis, identifi-
cation of  drug targets, and individual treatment plans 
for psychiatric diseases and may revolutionize modern 
neurology.
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