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Abstract

Objects that are highly distinct from their surroundings appear to visually “pop-out.” This effect is present for displays in
which: (1) a single cue object is shown on a blank background, and (2) a single cue object is highly distinct from surrounding
objects; it is generally assumed that these 2 display types are processed in the same way. To directly examine this, we
applied a decoding analysis to neural activity recorded from the lateral intraparietal (LIP) area and the dorsolateral
prefrontal cortex (dIPFC). Our analyses showed that for the single-object displays, cue location information appeared earlier
in LIP than in dIPFC. However, for the display with distractors, location information was substantially delayed in both brain
regions, and information first appeared in dIPFC. Additionally, we see that pattern of neural activity is similar for both types
of displays and across different color transformations of the stimuli, indicating that location information is being coded in

the same way regardless of display type. These results lead us to hypothesize that 2 different pathways are involved

processing these 2 types of pop-out displays.
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Introduction

The ability to locate behaviorally relevant stimuli is one of the
most fundamental tasks for organisms that are capable of self-
directed movement, and represents a major evolutionary driving
force (Karlen and Krubitzer 2007; Kaas 2012). Many species of pri-
mates have sophisticated brain systems that are used for visual
search, and their abilities to locate objects visually have been
extensively studied (Katsuki and Constantinidis 2014). These
studies have revealed that there are 2 distinct modes of visual
search (Itti and Koch 2001; Corbetta and Shulman 2002; Connor
et al. 2004). One mode, called “parallel search,” occurs in displays
where an object of interest is very distinct from its surroundings
and it is said to “pop-out,” and leads to very fast reaction times
(Treisman and Gelade 1980; Duncan and Humphreys 1989).

A second form of search, “serial search” operates on complex
displays where no object stands out against its surroundings,
and leads to much slower reaction times that increase with
additional distracting stimuli (Wolfe and Horowitz 2004).

In parallel search, it is generally thought that pop-out ele-
ments are detected by bottom-up processes through a winner-
take-all mechanism that orients attention to the most salient
visual element (Koch and Ullman 1985; Itti and Koch 2001).
Cortical areas representing the location of salient objects include
the dorsolateral prefrontal cortex (dIPFC) and the lateral intra-
parietal area (LIP) (Schall and Hanes 1993; Goldberg et al. 1998;
Constantinidis and Steinmetz 2001; Katsuki and Constantinidis
2012). Previous work has shown that visual firing rate responses
during search propagate in a feed-forward manner from early
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visual cortex to LIP and from there to dIPFC, therefore, it is
thought that pop-out stimuli are first represented in parietal and
then in prefrontal cortex (Buschman and Miller 2007; Siegel et al.
2015). The reverse pattern of activation is observed during serial
search (Buschman and Miller 2007; Cohen et al. 2009).

There are, however, a few shortcomings of a simple dorsal
stream feed-forward account of parallel search. In particular,
behavioral results have shown that reaction times in parallel
searches can be affected by the recent history of the search task
and by stimulus expectations (Wolfe et al. 2003; Leonard and
Egeth 2008), which indicates that a simple bottom-up account of
pop-out attention is not adequate (Awh et al. 2012). Similarly,
recent computational modeling work has suggested that the
neural processing underlying parallel search might involve more
than feed-forward processing (Khorsand et al. 2015).

To examine the neural basis of parallel search, we analyzed
data from an experiment in which monkeys needed to remem-
ber the location of a salient object in trials that consisted of 2
types of pop-out displays; the first type of displays, which we
call “isolated cue displays,” consist of single object, while the
second type of displays, which we call “multi-item displays”
consist of an object of one color in the midst of several distrac-
tor objects of a different color (Katsuki and Constantinidis
2012). By precisely characterizing the time course of firing rate
increases and the time course of spatial information increases
we were able to detect significant differences between how LIP
and dIPFC process these 2 types of displays. Based on these
results we hypothesize that there are 2 pathways involved in
parallel search which helps to account for several other find-
ings in the literature.

Materials and Methods

All animal procedures in this study followed guidelines by the
U.S. Public Health Service Policy on Humane Care and Use of
Laboratory Animals and the National Research Council’s Guide
for the Care and Use of Laboratory Animals, as reviewed and
approved by the Wake Forest University Institutional Animal
Care and Use Committee.

Experimental Design and Neural Recordings

Two male rhesus monkeys (Macaca mulatta) engaged in a
delayed match-to-sample task where the monkeys needed to
remember the spatial location of a cue stimulus (Fig. 1). Trials
began when the monkeys fixed on a 0.2° white square in the
center of the monitor and pulled a behavioral lever. After a trial
was initiated, the cue stimulus was presented at 1 of 9 possible
locations on a 3 x 3 square grid. The cue was 1.5° in size and
could be either red or green. The 3 x 3 grid was set up such that
adjacent locations on the grid were separated by 15° of visual
angle. On isolated cue trials, the cue was shown on a blank
background. On multi-item display trials, the cue was shown
surrounded by 8 distractors of the opposite color that filled out
all of the other locations in the 3 x 3 grid. In the majority of
experimental sessions, the cue appeared in 1 of only 4 of these
locations. The location and color of the cue were randomized
from trial-to-trial. Isolated cue and multi-item display trials
were also randomly interleaved. The luminance of cue and dis-
tractor stimuli of either color was 24 cd/m?; the luminance of
the background was <0.1 cd/m?

After being presented for 500 ms, the cue was removed and
a delay period that consisted of a blank screen was presented
for 1000ms. A sequence of 0-2 nonmatch stimuli was then

presented with each stimulus lasting for 500 ms followed by a
500ms blank screen delay. The monkeys received a juice
reward for releasing the lever within 500 ms of a stimulus that
matched the same location as the cue. Releasing the lever at
any other point in the trial, failing to release the level within
the 500 ms window, or making an eye movement outside the
central 2° of the monitor, were considered errors and resulted
in an aborted trial.

Single-unit recordings were made from the monkeys from
the dIPFC (areas 8a and 46) and from area LIP in the lateral
bank of the intraparietal sulcus while the monkeys engaged in
the task. A total of 408 neurons were recorded in LIP (316 from
M1, and 92 from M2) and 799 neurons were recorded from PFC
(643 from M1, and 156 from M2); between 1 and 20 neurons
were recorded simultaneously (median = 6 neurons). Record-
ings were performed from the right hemisphere, in both areas
and for both monkeys. In monkey M1, 148 PFC neurons were
recorded initially. In monkey M2, recordings from 14 LIP neu-
rons were performed initially. Recordings from LIP and PFC
were interleaved from that point on, including in sessions with
recordings from both areas simultaneously. The data used in
these analyses were previously presented (Katsuki and Con-
stantinidis 2012) and more details about the experimental
design and neural recordings can be found there. A reaction
time version of this task was also conducted in the original
study by Katsuki and Constantinidis (2012) which demon-
strated that these types of displays show the typical behavioral
pattern for parallel search in monkeys, where reaction times
are not influenced by the number of distractors present.

Data Analysis: Decoding Analysis

A population decoding approach was used to analyze the data
in this article (Meyers et al. 2008, 2012). Briefly, a maximum
correlation coefficient classifier was trained on firing rates of
a population neurons to discriminate between the location
(Figs 2-6) or the color (Figs 7 and 8) of the cue stimulus. The
classification accuracy was then calculated as the percentage of
predictions that were correctly made on trials from a separate
test set of data. All analyses were done in MATLAB using ver-
sions 1.2 and 1.4 of the Neural Decoding Toolbox (Meyers 2013),
and the code for the toolbox can be downloaded from www.
readout.info. In this article, we use the term “decoding accu-
racy” and “information” interchangeably since decoding accu-
racy gives a lower bound on the amount of mutual information
in a system (Quian Quiroga and Panzeri 2009) (both terms refer
to the ability of neural activity to differentiate between differ-
ent experimental conditions, in contrast to firing rate increases,
which could increase same way for all experimental condi-
tions). For more in depth discussion of the decoding analyses
see Meyers and Kreiman (2012) and Quian Quiroga and Panzeri
(2009).

Only data from trials in which the monkey performed the
task correctly were used in these analyses. When decoding the
location of the cue (Figs 2-6) we constrained our analyses to
decoding only 4 locations of the cue (upper center, middle left,
middle right, and lower center) since many experimental ses-
sions only had the cue presented at these locations. All neu-
rons that had recordings from at least 5 correct trial repetitions
with the cue appearing at these 4 locations for the red and
green isolated and multi-item trials were included in all our
decoding analyses. This led to a population of 651 PFC and 393
LIP neurons. From these larger populations, pseudopopulations
of 350 randomly selected neurons were created. Trials from
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these pseudopopulations were randomly split into training and
test sets using 5-fold cross-validation, where the classifier was
trained on data from 4 splits and tested on the fifth split, and
the procedure was repeated 5 times using a different test split
each time. For each cross-validation split, the mean and stan-
dard deviation of the firing rates of each neuron were calcu-
lated using data from the training set, and all neuron’s firing
rates were z-score normalized based on these means and stan-
dard deviations, before the data was passed to the classifier.
This procedure was repeated over 50 resample runs, where dif-
ferent random pseudopopulations and training and test splits
were created on each run. The final results reported are the
average classification accuracy over these 50 runs and over the
5 cross-validations splits (because the temporal-cross decoding
plots in Figure 5 were computationally expensive to create,
only 10 resample runs were used in these figures).

When decoding location of the cue (Figs 2-5) each cross-
validation (CV) split contained one example from red and green
cue trials at each of the 4 locations (8 points per CV split: 8 x
4 = 32 training points and 8 test points). Because we were
interested in comparing the latency of location information
in LIP and PFC (and because the decoding accuracy was
high), we used 30 ms bins sampled at 1 ms resolution for the
cue location decoding analyses in order to get a more precise
temporal estimate for when information was in a brain
region. When assessing the dynamics of the population code
(Fig. 5), we applied a temporal-cross decoding analysis (also
called the temporal generalization method) where we
trained the classifier on 4 trials from each condition at one
time bin and then tested the classifier with data from a dif-
ferent trial from either the same time bin or from a different
time bin (Meyers et al. 2008; King and Dehaene 2014).

When decoding whether the spatial information was repre-
sented in a color invariant manner (Fig. 6), we applied a gener-
alization analysis (Meyers 2013) where we trained a classifier
on 4 trials from 1 of our 4 conditions (red/green cue, single/
multi-item displays) and then tested the classifier with either a
fifth trial of the same condition or a from a trial from a different
condition (this led to 4 points per CV split: 4 locations x 4 repe-
titions = 16 training points, and 4 test points). When decoding
color information (Figs 7 and 8), each cross-validation split con-
tained a red and green trial from each of the 4 locations
(8 points per CV split: 32 training points and 8 test points). For
the color invariant and color decoding analyses (Figs 6 and 7)
we used a larger 100 ms bins because decoding accuracy is high-
er and less noisy with larger bin sizes, which makes it easier to
detect when information is present (albeit at the cost of tempo-
ral precision). This was useful for the color invariant decoding
because there was less training data in this analysis, and was
particularly useful for the color decoding analyses since the
decoding accuracies were overall very low/noisy when decoding
color information, although for the color decoding in Figure 8,
we again used a 30 ms bin to more precisely compare the timing
of location and color information (in the past we have used bin
sizes in the range of 100-500 ms; Meyers et al. 2008, 2012, 2015;
Zhang et al. 2011). For all analyses, the decoding results were
always plotted relative to the time at the center of the bin.

When comparing the color decoding accuracies to the spatial
information decoding accuracies (Fig. 8b), we used a normalized
rank decoding measure (Mitchell et al. 2004) in order to put the
results on the same scale since chance for decoding spatial
information was 25% while chance for decoding color was 50%.
Normalized rank results calculate where the correct prediction is
on an ordered list of predictions for all stimuli—where 100%

indicates perfect decoding accuracy, 50% is chance, and 0%
means one always predicted the correct stimulus as being the
least likely stimulus.

To assess when the decoding accuracy was above what is
expected by chance, we used a permutation test. This test was
run by randomly shuffling the labels of which stimulus was
shown in each trial separately for each neuron, and then run-
ning the full decoding procedure on these shuffled labels to
generate one point in a “shuffled decoding” null distribution.
This procedure was then repeated 1000 times to generate a full
shuffled decoding null distribution for each time bin. The solid
bars on the bottom of Figures 2, 3, 7 and 8 indicate time points
in which the decoding results were greater than all 1000 points
in the shuffled decoding null distribution (P < 0.001 for each
time bin). The thin traces in Figure 2 show the maximum and
minimum values from the shuffled decoding null distribution
for each time bin. More information about this permutation test
can be found in (Meyers and Kreiman 2012). When reporting the
“first detectable information latencies” (Table 1), a 30 ms bin was
used and the latencies reported are relative to the end of these
bins (e.g., if the firing rates were computed over a bin ranging
from 71 to 100 ms relative to the stimulus onset, then a latency
of 100ms for this bin would be reported in the article). These
latencies were defined as the first time of 5 consecutive bins in
which the real decoding accuracy result was greater than all
points in the shuffled decoding null distribution. The choice of
using 5 consecutive bins was chosen prior to doing the analysis,
however, from looking at the results we see that once the results
became statistically significant they remained highly statistically
significant and so this choice did not affect the results.

To assess whether there was a difference in the latency
when location information first appeared in LIP compared with
dIPFC we ran another permutation test. This test was done by
combining the data from the LIP and dIPFC populations of neu-
rons into a single larger population, and then randomly select-
ing 651 neurons to be a surrogate dIPFC population and taking
the remaining 393 neurons to be a surrogate LIP population;
that is, we created surrogate populations that were consistent
with the null hypothesis that there is no information latency
difference between LIP and dIPFC so neurons in the LIP and
dIPFC populations are interchangeable. We then ran the full
decoding procedure on these surrogate LIP and dIPFC popula-
tion pairs and we repeated this procedure 1000 times to get
1000 pairs of decoding results that were consistent with the
null hypothesis that LIP and dIPFC had the same information
latency (Fig. S3 shows the decoding accuracies for the LIP and
PFC results and all the surrogate runs). For each of these 1000
pairs of surrogate LIP and PFC decoding accuracies, we calcu-
lated their first detectable information latency, and we sub-
tracted these latencies to get a null distribution of latency
differences. A P-value was then created based on the number
of points in this null distribution of latency difference that
were as large or larger than the real LIP — PFC latency difference
(this is the P-value reported in the body of article).

Additionally, to make sure that the results were robust, we
assessed the latency difference at a range of decoding accuracy
threshold levels (rather than just using the decoding accuracy
level at the first detectable latency difference). To do this we
calculated the time when the decoding first reached a 45%
accuracy level, we will refer to these latencies as L45prc and
L45;;p (a 45% decoding accuracy that was greater than all the
points in the shuffled decoding null distribution for all time
bins, and thus corresponded to a P < 0.001 in our shuffled
decoding permutation test). We then calculated IL45prc — L4511l
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to get the real latency difference between LIP and PFC at this
45% accuracy level, and we also calculated the IL45ppc — L4515l
for all 1000 surrogate pairs to get a null distribution of latency
differences under the assumption that LIP and PFC had the
same latency. A P-value was then calculated as the proportion
of points in this null distribution that was greater than the
actual [L45ppc — L45.ppl difference. To make sure this procedure
was robust, we repeated it for different decoding accuracy levels
from 45% to 65% (i.e., we assessed |L45ppc — L45ppl, [L46ppc —
L46y1pl, ..., IL65prc — L651pl) calculating the P-value at each decod-
ing accuracy level and we plotted these P-values as a function of
the decoding accuracy level in Figure S3e, S3i.

Data Analysis: Firing Rate Analyses

To calculate population firing rates (Figs 4, S1, and S6) we sim-
ply averaged the firing rates of all neurons from the relevant
trials together. Only neurons that went into our decoding anal-
ysis were used when calculating these mean firing rates in
order to make a direct comparison to the decoding results (see
selection criteria above). Because we wanted to report results in
meaningful units of spikes per second, we did not normalize
the firing rates of neurons before averaging. However, we
checked all results to make sure that neurons with higher fir-
ing rates were not unduly influencing the results by applying
a z-score normalization to each neuron before averaging all
the neurons together, and saw that the results looked very
similar and led to all the same conclusions. When comparing
firing rate to decoding results we scaled the axes so that the
maximum and minimum heights of firing rates and decoding
results are the same, which makes it much easier to compare
their time courses of these different results. Similarly, when
comparing firing rates from LIP to dIPFC we also scale the
axes to have the same maximum and minimum heights
when plotted to make a comparison of their time courses
possible (as can be seen on the figures axes, LIP has a higher
population firing rate than dIPFC).
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To compare firing rates when the cue stimulus was shown
inside a neuron’s receptive field versus outside of a neuron’s
receptive field for the multi-item display trials (Fig. S6a, Séb),
we recreated the Figure 3a, b of Katsuki and Constantinidis
(2012) (for our analysis we only used neurons that were used in
the other analyses in our study; i.e., that had at least 5 repeats
of all the stimulus conditions which was as slightly different
set of neurons than used by Katsuki and Constantinidis (2012)).
To do this analysis we found all neurons that showed spatial
selectivity as determined by an ANOVA with an alpha level of
0.01 using the average firing rate in a 500 ms bin of data from
the “isolated cue trials.” For each of these neurons, we deter-
mined the spatial location that had the highest firing rate as
the neuron’s “preferred location” (i.e., the location in the neu-
ron’s receptive field), and we chose the location that has the
lowest firing rate as the neuron’s “anti-preferred location” (i.e.,
the location that was outside the neuron’s receptive field) again
using data from the isolated cue trials. We then found the firing
rates on the “multi-item display trials” when the cue was at the
“preferred” location and averaged these firing rates from all neu-
rons together and did the same procedure for the “anti-preferred”
location. The analysis was done separately for LIP (Fig. S6a) and
for dIPFC (Fig. Séb) and we combined the data from the red cue
and green cue trials. An analogous procedure was used for plot-
ting the firing rates inside and outside of the receptive field for
the isolated object trials (Fig. S6c, S6d), but for this analysis we
found each neuron’s preferred and anti-preferred locations using
data form the multi-item display trials, and then we plotted the
population average firing rate on the isolated object trials based
on those locations.

Results

In order to gain insight into the neural processing that under-
lie parallel search, we analyzed neural activity in LIP and
dIPFC that was recorded as monkeys performed a delayed
match to sample task (Fig. 1). Monkeys were shown either

@ p dIPFC  (b)
(8 and 46) Isolated cue Multi-item
15° 15°
()
Fixation Cue Delay Non-match Delay Match
500 ms 1000 ms 500 ms 500 ms lever release

Figure 1. Brain regions and experimental design. (a) Locations of the 2 brain regions (LIP and dIPFC) where the recordings were made. (b) Examples of the isolated cue
and multi-item displays. The stimuli were 1.5° in size and were displayed 15° apart. The cue was either green or red and the distractors were the opposite color and
the cue and the distractors were isoluminant. (c) An example of an experimental trial. Trials were initiated when a monkey fixated on a dot in the center of the
screen. A cue, which consisted of either a single square displays on a blank background (isolated cue trial; not shown) or a square of one color with 8 other “distrac-
tor” squares of a different color (multi-item trial) was displayed for 500 ms. The monkey needed to remember the location of the cue and perform a delayed match to
sample task on the cue location. All analyses in this article only examine data from the time when the cue display was displayed (i.e., data from time periods in the

gray box were not analyzed).
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Figure 2. Comparison of decoded information about the cue location from LIP and PFC. A comparison of information decoded from LIP (blue) and PFC (red).
(a) Isolated cue trials, showing information increases earlier in LIP than in dIPFC. (b) Multi-item trials, showing information increases earlier in PFC than in LIP. The
black vertical line shows the time of stimulus onset, and the black horizontal line shows the level of decoding accuracy expected by chance. Solid bars at the bottom
of the plots show when the decoding accuracies for LIP (blue) and PFC (red) are above chance, and light horizontal traces show the maximum and minimum decoding

accuracies obtained from the null distribution.

isolated cue displays where a single stimulus appeared by
itself, or multi-item displays where a salient cue stimulus was
shown surrounded by other stimuli of opposite color (Fig. 1b).
The monkeys needed to remember the location of the salient
stimuli and release a lever when a second stimulus was shown
at the same location (Fig. 1c). The cue stimulus could be either
red or green, and on the multi-item display trials the distractor
stimuli were of the opposite color as the cue. The monkeys
were able to process these displays in parallel rather than
requiring serial search; when tested with a version of the task
requiring an immediate response, using identical stimuli, reac-
tion time was flat as a function of number of elements in the
display (Katsuki and Constantinidis 2012). Our analyses here
focused on the first 500 ms of activity after the cue was shown
since this was the time window in which information first
entered these brain regions.

Location Information Appears Much Later in Multi-item
Display Trials Relative to Isolated Cue Trials

Previous work has shown that firing rates are propagated in a
feed-forward manner from LIP to dIPFC (Buschman and Miller
2007; Katsuki and Constantinidis 2012; Siegel et al. 2015), and
indeed, a firing rate analysis of our data shows that firing rates
increases also first occur in LIP and then in PFC for both the iso-
lated and multi-item display trials (Fig. S1). However, while it
has often been assumed that information increases have the
same time course as firing rate increases (Nowak and Bullier
1997), this assumption does not necessarily need to be true
(Heller et al. 1995), and since we are generally interested in how
the brain processes information to solve tasks, assessing the
latency of information should be most relevant for our under-
standing. Thus, we examined the time course of information
about the location of the cue stimulus using a decoding analy-
sis, where a classifier had to predict the spatial location of the
cue stimulus from the firing rates of populations of neurons in
LIP and dIPFC (see Materials and Methods). To do this analysis
we combined data from the red and green cue trials and tried

Table 1 Summary of first detectable information latencies for LIP
and dIPFC for the isolated cue and multi-item displays. The first
detectable information latency was defined as the first of 5 bins
when the real decoding result was larger than all the values in the
null distribution. The results are based on using a 30 ms bin, and
the time reported is the end of the bin (see Materials and Methods
for more details). For the isolated cue trials, information first
appeared in LIP prior to dIPFC. For the multi-item display trials, the
latency in both areas was delayed and information now first
appeared in dIPFC prior to LIP

Isolated Multi-item Difference:

cue display multi-item - isolated
LIP 67 161 94
dIPFC 79 146 67
Difference: LIP — dIPFC -12 15

to predict which of 4 locations the cue stimulus was presented
at (Supplemental Fig. 2 shows the results separately for the red
and for the green cue trials, and we analyze the color informa-
tion later in the article).

Results from these analyses on the isolated cue trials (Fig. 2a)
showed that information appeared ~12ms earlier in LIP than in
dIPFC, and a permutation test revealed that these results were
statistically significant (P < 0.01, also see Fig. S3a-e). This pattern
was consistent for both the red and green cue trials (Fig. S2a,
S2b). Thus these results suggest that information (as well as
firing rates) propagate in feed-forward manner from LIP to
dIPFC (Table 1). Surprisingly, however, for the multi-item trials
information appeared ~15ms later in LIP compared with dIPFC
(Fig. 2b), and a permutation test revealed that these results
were statistically significant (P < 0.01, also see Fig. S3f-j). This
pattern of results were again consistent across the 2 indepen-
dent data sets for the red and green cue trials and were robust
to analysis parameters such as bin size (Fig. S2c, S2d). Thus,
these results are consistent with information flowing from
dIPFC to LIP for the multi-item displays (or potentially both
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regions getting the information from a common brain region
with a larger delay for LIP). Additionally, the small latency dif-
ferences between LIP and dIPFC suggest that the information
might be traveling directly between these regions, which is
consistent with the known anatomy (Cavada and Goldman-
Rakic 1989; Felleman and Van Essen 1991).

In Figure 3, we also replot the results of Figure 2 to show a
direct comparison of the time course of information on the iso-
lated cue trials to the multi-item display trials. In contrast to
the small latency difference seen when comparing LIP to dIPFC,
information was substantially delayed in the multi-item dis-
play trials relative to the isolated cue trials on the order of
94 ms for LIP and 67 ms for dIPFC (Table 1). Thus these findings
suggest that location information on the isolated cue trials is
traveling in a “bottom-up” direction from LIP to dIPFC while
location information in the multi-item trials takes much longer,
perhaps due to processing requirements, and appears to be
traveling in the reverse direction from dIPFC to LIP. We explore
possible explanations for this substantial delay of spatial infor-
mation later in the article.

To better compare the time course of firing rates with the
time course of decoded information, we also plotted the firing
rates and decoded spatial information on the same figure
(Fig. 4). These results show that in the isolated cue trials for
both LIP and dIPFC (Fig. 4a, D), the time course of firing rate
increases and increases in decoding accuracy are closely
aligned indicating that spatial information appears as soon as
there is an increase in firing rate. In contrast, for both LIP and
dIPFC in the multi-item trials, the population firing rate
increases much earlier than the increase in spatial information
(Fig. 4c, d). Thus the firing rate increases are much more closely
tied to the onset of the stimulus rather than to the increase in
information about the location of the cue.

Examining Dynamic and Stationary Neural Coding

The fact spatial information is delayed relative to the time
course of firing rate increases in the multi-item displays, but
not in the isolated cue displays, raises questions about the role
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of the early firing rate increase in the isolated cue displays. One
possible explanation is that the initial spatial information seen
in the isolated cue displays is tied to lower level features (e.g.,
“there is retinotopic stimulation at location X”) while later
activity might be coding an abstract representation of spatial
information (e.g., “location X contains an object of interest,
even though there is visual stimulation throughout the visual
field”). If this is the case, then decoding spatial information
would work from the onset in the isolated cue trials because
the classifier could use activity related to simple lower level
retinotopic features, but decoding would not work for the
multi-item trials because these lower level features would acti-
vate neural activity at all locations. As a first test of this idea,
we applied a “temporal generalization analysis” where a classi-
fier was trained with data from one point in time in the trial,
and then tested on data from a different point in time (Meyers
et al. 2008, 2012; Stokes et al. 2013; King and Dehaene 2014). If
the information contained in the initial response in the isolated
cue trials was different then the information contained later,
then training the classifier on the initial firing rate increase in
the multi-item trials would lead to poor classification perfor-
mance later in the trials (King and Dehaene 2014).

Results from LIP reveal a square region of high decoding
accuracies in the temporal-cross decoding plot (Fig. 5a), indicat-
ing that spatial information is represented the same way
throughout the first 500 ms of the trial, although the initial
representation in both areas showed a slightly more reliable
than later in time, which can be seen by the slightly higher
decoding accuracies when information first appears. Similar
results are seen in the isolated decoding results in dIPFC
(Fig. 5b). Applying this temporal generalization analysis to
results to the multi-item trials showed a similar stationary
code as seen in the isolated cue trials (Fig. 5c, d). Examining the
results over a longer time window also revealed that this sta-
tionary pattern of results extended across the entire delay
period (Fig. S4), which is a similar stationary code to what has
been reported in a few other studies (Zhang et al. 2011; Murray
et al. 2017). Overall, given these results show that spatial infor-
mation is being coded similarly at all time periods, although
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Figure 3. Comparing decoding accuracies for the isolated cue and multi-item trials. A comparison decoding accuracies for isolated cue (cyan) and multi-item trials
(magenta) for LIP (a) and PFC (b). Information appears much early on the isolated cue trials compared with the multi-item display trials. The black vertical line shows
the time of stimulus onset, and the black horizontal line shows the level of decoding accuracy expected by chance. Solid bars at the bottom of the plots show when
the decoding accuracies for isolated cue trials (cyan) and multi-item trials (magenta) are above chance.
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Figure 4. Comparison of decoding accuracy and firing rates. The yellow traces show the average population firing rates and the blue and red traces show the decoding
accuracies for LIP (left/blue) and PFC (right/red). (a, b) Results for the isolated cue trials. The decoding information and population firing rates have the similar time
courses. (¢, d) Results for the multi-item displays trials. Firing rate increases occurs much earlier than the decoded information increases.

the higher decoding accuracy in the initial response could be
related to information about lower level features.

Spatial Location Information is Invariant to the Color of
the Cue

To further examine whether the initial information in LIP and
dIPFC represented abstract spatial locations as opposed to low-
level visual features, we examined whether the representation
of spatial information was invariant to the color of the cue
stimulus, and whether spatial information was represented the
same way in isolated cue trials compared with multi-item dis-
play trials. To test this idea we conducted a “generalization
analysis” (Meyers 2013) where we trained classifiers using data
from trials from each of the 4 conditions: (1) isolated red cue
displays, (2) isolated green cue displays, (3) multi-item red cue
displays, and (4) multi-item green cue color displays. We then
tested these classifiers using data from isolated red cue trials
(using a different subset of data than was used to train the red
isolated cue classifier). If the representations are invariant to
the color of the cue stimulus, then training and testing on data
from different cue colors should achieve a decoding accuracy
that is just as high as when training and testing a classifier
with data from the same cue color condition (e.g., training on
isolated green cue trials and testing on isolated red cue trials,

should yield the same performance training and testing on the
isolated red cue trials).

Results from LIP are shown in Figure 6a. The red trace shows
the results from training a classifier with the isolated red cue
trials and also testing with data from the isolated red cue trials
which serves as a control case (this is same as the blue trace in
Fig. S2a). The blue trace in the figure shows the color invariant
results for isolated cue displays, that is, training with data from
the isolated green cue trials and testing again with data from
the isolated red trials. As can be seen, the results generalize
almost perfectly across color of the cue for the isolated cue dis-
plays. The cyan trace in Figure 6a shows the results evaluating
whether the neural representing is invariant to distractors, that
is, training the classifier on the multi-item display red cue trials
(with green distractors), and again testing the classifier with
the isolated red cue trials. The information in this case is
delayed, as discussed above, however, overall the classification
accuracy is robust to the presence of the green distractors.
Finally, the green trace shows the results from training with
data from the multi-item green displays trials (and red distrac-
tors) and again testing with data from the isolated red cue
trials. The results are very similar to the results when training
with the multi-item display red cue trials—namely the infor-
mation is delayed as expected, and the decoding accuracy
levels are nearly identical. This result is particularly impressive
because the trained spatial location was based on a green cue
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Figure 5. Temporal-cross decoding plots examining dynamic population coding. The temporal-cross decoding plots for LIP and PFC isolated cue trials (a and b, respec-
tively), and LIP and PFC for the multi-item display trials (c and d, respectively). Overall training and testing the classifier at different points in time led to similar levels
of performance as when training and testing the classifier at the same point in time, although there was often a slightly higher level of decoding accuracy when infor-
mation first entered these brain regions. Thus information was contained in a relatively static code, at least compared with previous studies (Meyers et al. 2008, 2012;

Stokes et al. 2013).

that is the opposite color as the red test cue color, while simul-
taneously there were red distractors at irrelevant spatial loca-
tions that match the red color of the test cue that needed to be
decoded. Thus, this is strong evidence that LIP contains an
abstract representation of location information that is invariant
to the color of the cue.

The same pattern of results was seen in dIPFC (Fig. 6b)
showing that dIPFC also contains an abstract representation of
spatial information. An analysis based on testing the classifier
with multi-item red cue trials (with green distractors) shows
the same pattern of results for both LIP and PFC (Fig. 6c, d),
which make an even stronger case that the data is invariant to
both the color of the cue and across distractors. Finally, the
same pattern of results is seen when testing the classifier using
green cue trials (Fig. S5).

Color Information is Present in LIP and dIPFC on the
Multi-item Trials Although it is Relatively Weak

The previous results show that the spatial information in LIP
and dIPFC is invariant to the color of the cue. However, it is still
possible that color information is present in the population of
LIP or dIPFC neurons. Prior work has shown it is possible to
decode information in a way that is invariant along a particular
dimension, while also being able to decode information about
that same dimension; for example, from the same population
of neurons it is possible to decode information about the

identity of an individual face regardless of the pose of the
head, and also to decode the pose of the head regardless of
the individual face (Hung et al. 2005; Meyers et al. 2015). Color
information is critical for resolving the location of the cue in
the multi-item display trials, so if LIP or dIPFC is performing
the computation that converts low-level visual features into
an abstract spatial representations, then color information
should be present in these populations prior to the presence
of spatial information.

To analyze whether color information was present in LIP
and dIPFC, we trained a classifier to discriminate trials when a
red cue was shown from trials when a green cue was shown
using data in 100 ms bins. Figure 7a shows that the ability to
decode color in isolated cue trials was consistently at chance
for both LIP and dIPFC indicating that there was little color
information in either area for the isolated cue trials. In con-
trast, results from the multi-item display trials in LIP (Fig. 7b)
revealed that there was a small amount of color information
present in LIP and dIPFC that was above chance (P < 0.001 per-
mutation test). Figure 8 compares the time course of color
information to the time course of location information on the
multi-item trials using smaller 30 ms bins. While overall the
decoding accuracy for color information is much lower and
noisier than the decoding accuracy for cue location informa-
tion, the results do show that first detectable color information
had a latency of 108 ms for LIP and 143 ms for PFC which is ear-
lier than the reliably detectable location information of 161 in
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Figure 6. Examining whether the spatial location decoding generalizes across the color of the cue. (a, b) Results from LIP (a) and from PFC (b) when testing with iso-
lated red cue data. The color lines in the figure legend show the different conditions under which the classifier was trained: (1) red traces: the classifier was trained on
(different) isolated red cue trials; (2) blue traces: the classifier was trained on isolated green cue trials. The performance of the classifier trained on red cue trials was
almost identical to the performance of a classifier trained on green cue trials showing spatial information is highly color invariant for the isolated cue trials. We also
trained the classifier on multi-item trials: (3) cyan traces: training the classifier with multi-item red cue trials; and (4) green traces: training the classifier with multi-item
green cue trials (again all testing was done on the isolated red trials). Since information on the multi-item trials appears later, the results are shifted in time, however,
the classification accuracy was still highly insensitive to color, even when training for the location using a green cue among the red distractors. (c, d) Results from LIP
(c) and PFC (d) when testing on data from red cue multi-item trials and training on the all 4 cue/distractor combinations. Again the results are highly invariant to the
color of the cue.
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Figure 7. Decoding color information for LIP and PFC. Results from decoding the color of the cue stimuli (red vs. green) for the isolated cue and multi-item display
trials. Solid bars at the bottom of the plots show when the decoding accuracies for LIP (blue) and PFC (red) are above chance. (a) For the isolated cue displays, the
decoding accuracy for the color information was never significantly above chance. (b) For the multi-item displays, the earliest detectable color information had a
latency of 143 ms in dIPFC and 108 ms in LIP.
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LIP and 146 in PFC. Thus it is possible that LIP and dIPFC is
involved in the computation converting this low-level color
information into a more abstract spatial representation that is
needed to resolve the spatial location of the cue.

Discussion

In this article, we examined the time course of firing rate and
information changes in LIP and dIPFC while monkeys viewed
isolated cue and multi-item pop-out display images. The
results show that firing rates first increase in LIP and then in
dIPFC for both types of displays (Fig. S1). For isolated cue dis-
plays, information about the location of the cue also appears
first in LIP and then in dIPFC and the information time course
matches the firing rate time course (Figs 2a and 4a, b).
Importantly, spatial information for multi-item displays is sub-
stantially delayed relative to the firing rate time course, and it
appears in dIPFC before LIP (Figs 2b, 3 and 4c, d). This difference
between the information about the single-object and multi-
item displays is present even though spatial information is
largely contained in a stationary code, and represented the
same way for both cue colors (Figs 5 and 6). Finally, we see that
color information could be decoded from the multi-item dis-
plays trials, although overall the color information was rela-
tively weak (Figs 7 and 8). As discussed below, the results shed
light on the nature of information processing in the prefrontal
and posterior parietal cortex, and give new insights into how
pop-out visual displays are processed.

Representation of Pop-Out Information in the Cortex

The established view of pop-out processing posits that pop-out
elements are detected by a feed-forward sweep of information
along the dorsal pathway, with location information first in the
parietal and then in prefrontal cortex, and a common mecha-
nism to operate for single-object and multi-item displays
(Buschman and Miller 2007; Siegel et al. 2015). Recent evidence,
however, suggests this dorsal stream feed-forward account
might be too simplistic (Awh et al. 2012; Khorsand et al. 2015).
Previous work by Katsuki and Constantinidis (2012) analyzed

data from multi-item pop-out display trials and found that
single-neuron responses in dIPFC contained location informa-
tion no later than LIP. Here we used population decoding analy-
ses to extend these findings and show that for the multi-item
display trials, information appears first in dIPFC relative to LIP
which is inconsistent with the simple dorsal stream feed-
forward account. A similar pattern of results of information
being present in “higher brain regions” prior to “lower level
areas” has also been seen by researchers who compared activ-
ity in FEF and LIP (Schall et al. 2007; Cohen et al. 2009; Monosov
et al. 2010; Zhou and Desimone 2011; Gregoriou et al. 2012;
Purcell et al. 2013; Pooresmaeili et al. 2014).

The fact that our results show information first in dIPFC
prior to LIP for the multi-item displays while the study of
Buschman and Miller (2007) found the opposite temporal pat-
tern raises the question of why do the results differ. We believe
that the key difference is that in our study the color of the pop-
out stimulus was unknown to the monkey prior to its appear-
ance, while in the study of Buschman and Miller (2007) the
monkeys were cued ahead to time of the color of the pop-out
stimulus. By cueing the monkeys ahead of time, it is possible
that color-selective input that matched the distractor color was
suppressed by anticipatory processing, so that information
about the pop-out stimulus’ location was available in the first
sweep of neural activity; this is the essence of top-down control
(Katsuki and Constantinidis 2014).

The idea that anticipatory processing could filter out a par-
ticular color in advance is consistent with the findings of Bichot
et al. (1996) who showed that spatial information about a pop-
out stimulus is present in the first initial increase in firing rates
in FEF when monkeys have been over-trained on displays
where the distractors and cue always had the same colors on
all trials. Indeed, the findings of Bichot et al. (1996) appear simi-
lar to the fact that location information was present in the first
wave of neural activity during the isolated cue trials, and sug-
gests that similar neural processing might be involved in pro-
cessing predictable displays as is involved in processing
isolated cue displays. Further support for this type of anticipa-
tory filtering comes from psychophysics findings that have
shown reaction times are 50-125 ms faster when humans need
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to resolve a spatial location from predictable pop-out displays
compared with when the color of the pop-out stimulus is not
known prior to the start of a trial (Bravo and Nakayama 1992;
Wolfe et al. 2003; Leonard and Egeth 2008). This additional
50-125ms of processing time seen in psychophysics experi-
ments for unpredictable displays appears very similar to the to
the additional 67-94 ms processing time needed to resolve the
spatial location in multi-item display trials (Fig. 3 and Table 1)
and further suggests that the neural processing we observed in
this study might underlie the behavioral effects observed in
humans.

Potential Pathways Involved in Converting Color
Information to Spatial Information

The fact that color information needs to be converted into spa-
tial information on the multi-item displays raises the question
of which brain regions are central to this conversion process.
Given that color information was present in LIP and dIPFC prior
to spatial information (Figs 7 and 8), one possibility is that the
color to spatial conversion is occurring in these brain regions,
although this explanation does not account for the facts that
spatial information was first in dIPFC prior to LIP, that color
information appears relatively weak in these regions (Fig. 8),
and that spatial information is invariant to the color of the cue
as soon as spatial information is present in these brain regions
(Fig. 6). An alternative possibility, outlined in Figure 9, is that
the color to spatial information conversion is occurring in the
ventral pathway and then information is passed on to dIPFC
and then on to LIP (also see Koch and Ullman 1985; Chikkerur
et al. 2010; Borji and Itti 2013 which contain similar ideas). In
this scenario, visual information travels through both the dor-
sal and a ventral pathway (Mishkin et al. 1983), where informa-
tion in the dorsal pathway propagates from low-level areas to
LIP and finally to dIPFC, while in the ventral pathway, informa-
tion propagates from lower level visual areas to color-selective
midlevel visual areas that convert color information to spatial
information, then on to dIPFC and finally to LIP.

To see how this second scenario (shown in Fig. 9) is consis-
tent with the results in this article, we observe that for the iso-
lated cue trials, both firing rate latencies (Fig. Sla, S1b) and
information latencies (Fig. 2a, b) are earlier in LIP than in dIPFC,
which is consistent with information flowing in a feed-forward
manner through the dorsal pathway. Conversely, for the multi-
item display trials information about the cue location travels

PFC
LIP i Va4 (?)
Dorsal Competitive
pathway T feature maps
--------------- Ventral
V1o pathway

Figure 9. A 2-pathway diagram for how spatial information travels through the
dorsal and ventral visual pathways when processing pop-out displays. For the
isolated cue displays, information about the location of the cue primarily tra-
vels along the dorsal pathway from V1 to LIP to PFC (blue arrows). For the
multi-item displays, information about the cue location is resolved in the com-
petitive/contrastive feature maps in the ventral pathway (most likely in V4)
before the spatial information travels to PFC and into LIP (red arrows).

through the ventral pathway. When the multi-item displays
are shown, firing rates latencies still increase in LIP before
dIPFC due to input from the dorsal pathway (Fig. Slc, S1d),
however, these initial firing rate increases occur in all neurons,
and thus there is no information about the location of the cue
(Figs 4c, d); the early color information in LIP and dIPFC is pres-
ent because these areas are connected to color-selective
regions but LIP and dIPFC are not actively using this informa-
tion which could explain why the information is relatively
weak and transient in these regions. Information also simulta-
neously flows through the ventral pathway, to visual areas
such as area V4, where the location of the cue stimulus is selec-
tively enhanced via competitive/contrastive interactions in
color maps (Koch and Ullman 1985; Itti and Koch 2001).
Information about the cue location then travels to dIPFC, and
then propagates to LIP. The idea of processing occurring in 2
pathways suggests that there are 2 waves of input into LIP and
dIPFC for the multi-item displays, where the first wave comes
from the dorsal pathway and second one coming from the ven-
tral pathway. In fact, these waves of firing rate increases can be
seen as 2 peaks in the firing rate plots when the data is plotted
comparing trials when the cue is in a neuron’s receptive field to
trials when the cue is not in a neuron’s receptive field (Katsuki
and Constantinidis 2012, Fig. S6a, S6b), and has also been seen
in previous work (Bisley et al. 2004). In contrast, only 1 peak of
firing rate increases is seen for the isolated cue displays, which
is primarily driven by the input coming from the dorsal path-
way (Fig. S6c, S6d).

Results in the literature are also consistent with information
travel over 2 pathways. Of particular relevance is a study by
Schiller and Lee (1991) in which monkeys needed to detect an
odd-ball stimulus in an array of stimuli that could either be
more or less salient (e.g., more or less bright) than other stimuli
in a display. Intact monkeys were able to perform proficiently
at this task, however, after lesioning V4, monkeys were only
able to perform proficiently when the odd-ball stimulus was
more salient than the surrounding stimuli. Figure 9 explains
this counterintuitive result based on the fact that when a more
salient stimulus is shown, a strong drive could carry spatial
location over the dorsal pathway leading to intact spatial repre-
sentations in LIP and dIPFC. In contrast, when a less salient
odd-ball stimulus is shown, spatially selective information will
not be present in the dorsal pathway (since all locations except
the location of the odd-ball stimulus will have high firing rates),
and lesioning V4 would prevent the enhancement of the weak-
er drive in the odd-ball stimulus—thus spatial representations
of the odd-ball stimulus will not form in dIPFC and LIP.
Recordings made by Ibos et al. (2013) show that when a more
salient stimulus is shown, information is present in LIP prior to
FEF while when a less salient stimulus is shown FEF is active
prior to LIP, which is consistent with our proposal. Further find-
ings in the literature are also consistent, such as the fact that
lesioning dIPFC causes a decreased ability to detection of pop-
out stimuli in multi-item displays (Iba and Sawaguchi 2003;
Rossi et al. 2007), which can be explained by the fact that the
default pathway from dIPFC to LIP has been disrupted and
information must travel over other neural pathways (this same
pathway might also account of the transitory hemineglect seen
with PFC damage). Additionally, a transcranial magnetic stimu-
lation (TMS) study that deactivated the inferior parietal lobule
in humans showed that there are 2 time windows in which
TMS disrupts performance and led the authors to similar con-
clusions that spatial information travels along 2 neural path-
ways (Chambers et al. 2004).



Differential Processing of Pop-out Displays Meyers etal. | 3827

Conclusions

In this article, we report several new findings about how the
visual system processes pop-out displays. Rather than describ-
ing attention in cognitive terms, such as “bottom-up” and “top-
down,” we offer a diagram that can explain how attentional
demands influence dynamically different parts of the visual
system, depending on the incoming information. These results
and diagram shown in Figure 9 help clarify that top-down and
bottom-up attention do not constitute an adequate dichotomy
for describing visual attention generally, across different condi-
tions (Awh et al. 2012). This is useful for both interpreting the
large body of existing behavioral and electrophysiological
results and for generating testable predictions in future studies
which can help either verify or refute the flow of information
proposed in this article. We anticipate that turning this concep-
tual diagram into a working computational model will be bene-
ficial in generating additional insights in the future.

Supplementary Material

Supplementary data are available at Cerebral Cortex online.
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