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Abstract

1. Migratory birds are an increasing focus of interest when it comes to infection dynamics 

and the spread of avian influenza viruses (AIV). However, we lack detailed 

understanding migratory birds’ contribution to local AIV prevalence levels and their 

downstream socio-economic costs and threats.

2. To explain the potential differential roles of migratory and resident birds in local AIV 

infection dynamics, we used a susceptible-infectious-recovered (SIR) model. We 

investigated five (mutually non- exclusive) mechanisms potentially driving observed 

prevalence patterns: 1) a pronounced birth pulse (e.g. the synchronised annual influx of 

immunologically naïve individuals), 2) short-term immunity, 3) increase of susceptible 

migrants, 4) differential susceptibility to infection (i.e. transmission rate) for migrants 

and residents, and 5) replacement of migrants during peak migration.

3. SIR models describing all possible combinations of the five mechanisms were fitted to 

individual AIV infection data from a detailed longitudinal surveillance study in the 

partially migratory mallard duck (Anas platyrhynchos). During autumn and winter, the 
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local resident mallard community also held migratory mallards that exhibited distinct 

AIV infection dynamics.

4. Replacement of migratory birds during peak migration in autumn was found to be the 

most important mechanism driving the variation in local AIV infection patterns. This 

suggests that a constant influx of migratory birds, likely immunological naïve to 

locally circulating AIV strains, is required to predict the observed temporal prevalence 

patterns and the distinct differences in prevalence between residents and migrants.

5. Synthesis and applications. Our analysis reveals a key mechanism that could explain 

the amplifying role of migratory birds in local avian influenza virus infection 

dynamics; the constant flow and replacement of migratory birds during peak migration. 

Aside from monitoring efforts, in order to achieve adequate disease management and 

control in wildlife - with knock-on effects for livestock and humans, - we conclude that 

it is crucial, in future surveillance studies, to record host demographical parameters 

such as population density, timing of birth and turnover of migrants.

Keywords

Avian influenza; Migratory birds; SIR; Migratory connectivity; Mallard; Host-pathogen 
interactions; Epidemiology; Immunity

Introduction

Highly pathogenic avian influenza (e.g. H5N1, H5N8) is a prime example of an emerging 

infectious disease with rapid rise in incidences in poultry, and potentially in humans and 

wild birds (Alexander 2007). When it comes to the spread and local amplification of avian 

influenza viruses (AIV), herewith threatening global economies and public health, migratory 

birds are increasingly thought to play a central role (Lycett et al. 2016). Several 

characteristics of migratory species make them seemingly perfect vectors for a variety of 

pathogens (Altizer, Bartel & Han 2011). During their migratory journey migrants may 

encounter a broad range of parasite species and strains, thereby increasing the likelihood of 

transmitting novel parasites to resident communities they encounter en-route (Waldenström 

et al. 2002). Moreover, the physiological challenges migrants face during their migration, 

leading to potential trade-offs with their immune function, may increase their susceptibility 

to infection (Buehler et al. 2008). Finally, many migrants aggregate in large numbers at so-

called stop-over sites leading to further enhancement of pathogen transmission (Krauss et al. 
2010; Fritzsche McKay & Hoye 2016). However, despite the pervasive support for the role 

of migrants in pathogen dispersal (e.g. Fourment, Darling & Holmes 2017), conceptual 

support of clearly documented and quantified examples of their role in infection dynamics 

are surprisingly rare (Altizer, Bartel & Han 2011). This significantly constrains our ability to 

design strategies to recognise and mitigate potential disease threats coming from wildlife 

populations, which in turn could minimize the risk of spill-over to domestic animals and 

humans.

In this study, we built on a unique dataset from a detailed study on mallard ducks (Anas 
platyrhynchos); van Dijk et al., (2014) described AIV infection dynamics at a small spatial 
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scale, a single duck decoy, over a full annual cycle. During part of the year (i.e. autumn and 

winter), the local mallard community consisted of resident and migratory birds and by 

characterizing the majority of individuals as either migratory or resident, van Dijk et al. 

(2014) showed that the major peak of AIV infection in autumn coincided with the arrival of 

susceptible migratory mallards. Here, we use a Susceptible-Infectious-Recovered (SIR) 

modelling framework, aiming to explore multiple mechanisms that are suggested to drive 

local AIV infection dynamics in wild birds, quantify their relative importance, and identify 

the differential role of migrants and residents within the population. We start with a very 

basic demographic and epidemiological model, gradually increasing the complexity by 

adding and combining the following five, non-mutually exclusive, mechanisms:

1 – Birth pulse

The synchronised hatching of chicks can be a major factor influencing seasonal changes to 

the density of susceptible individuals. The vast majority of animal populations show marked 

seasonal variation in the timing of birth, resulting in a pulsed influx of immunologically 

naïve juveniles (Hosseini, Dhondt & Dobson 2004; Begon et al. 2009). Such seasonal birth 

pulses have been shown to both precede annual peaks in infection prevalence in wildlife 

(Hinshaw et al. 1985; Peel et al. 2014; Avril et al. 2016), and be fundamental to producing 

these dynamics in empirically validated models (Hosseini, Dhondt & Dobson 2004; He 

2005; Begon et al. 2009).

2 – Short-term immunity

The vast majority of theoretical AIV infection studies assume long-term or even permanent 

immunity (e.g. Galsworthy et al. 2011; Nickbakhsh et al. 2014). In fact, the immune 

response to AIV within the host appears to be sufficient to attenuate the duration and the 

intensity of subsequent infections (Fereidouni et al. 2010; Jourdain et al. 2010). However, 

the relatively weak antibody response may be short-term and antibodies might be detectable 

for a few months only (Kida, Yanagawa & Matsuoka 1980; Hoye et al. 2011; Samuel et al. 
2015).

3 – Increase of susceptible migrants

A key feature that put migrants into the spotlight of infectious disease dynamics is the fact 

that they visit disparate locations throughout their annual cycle (Altizer, Bartel & Han 2011). 

In combination with the rather strain-specific immune response to AIV infections (Jourdain 

et al. 2010), migrants may thus be generally more susceptible to local AIV strains once they 

arrive at a new location (Verhagen et al. 2014).

4 – Differential susceptibility

The physiological challenges associated with migratory journeys may result in a trade-off 

with immune functioning, leading to a reduced immunocompetence in migrants compared to 

residents (Altizer, Bartel & Han 2011). These differences in immune status may translate 

into a higher likelihood of migrants becoming infected with AIV after contact with an 

infectious individual.
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5 – Replacement of migrants

In the context of infectious disease dynamics, like with AIV, a yet understudied part of 

migration is the diversity in migratory strategy. At one extreme all individuals of a 

population may have an identical spatial-temporal pattern in their migration (e.g. Orell et al. 
2007; Stanley et al. 2012), while at the other end of the spectrum, individuals migrate within 

a broad time window and may not necessarily follow the same route. These differences in 

migration timing and arrival can have profound effects on the local composition, density and 

turnover of individuals at breeding, wintering and staging sites, and therewith on the local 

host-pathogen dynamics (Møller & Szep 2011; Bauer, Lisovski & Hahn 2016).

Materials and Methods

Study Species

Mallards are one of the most common and numerous waterfowl species around the world, 

with an estimated population size of 19 million individuals (Delany & Scott 2006). The 

species is also considered to be the major AIV reservoir in the wild (Webster et al. 1992). 

Mallards are partially migratory, meaning that the population consists of both migratory and 

resident birds. Birds breeding in western Europe (e.g. the Netherlands) are mainly sedentary, 

and northern breeding birds (e.g. Scandinavia, the Baltic, north-west Russia) migrate in 

autumn to overwinter between Denmark, northern France and Britain (Scott & Rose 1996).

Study Site and Sampling

Detailed description of the sampling diagnostic methods can be found in van Dijk et al. 

(2014). In short, mallards were caught using swim-in traps of a duck decoy (Payne-Gallwey 

1886) located near Oud Alblas (4°42’26’’E, 51°52’38’’N), the Netherlands. Sampling took 

place from March 2010 until February 2011. On average, the duck decoy was visited six 

times per month, capturing approximately 15 individuals per visit, resulting in a total of 

1109 samples being collected. For detection of current AIV infection, both cloacal and 

oropharyngeal samples were taken and analysed. To determine the origin of the individuals, 

thus distinguishing between migrants and residents, stable hydrogen isotope (δ2H) ratios 

were measured within freshly moulted feather collected from the individuals caught between 

August and December. The origin of 319 out of 458 individuals could be classified (van 

Dijk, Meissner & Klaassen 2014).

Modelling

All five potential mechanisms (“modifications” hereafter) had an identical underlying 

“basic” model (Figure 1), describing mallard demography – birth, death, migration – at the 

study site and the basic AIV infection dynamics.

Basic model structure

The AIV infection dynamics were modelled using a SIR model with the components 

Susceptible (S), Infectious (I) and Recovered (R) (Figure 1). Infections are generally thought 

to be density dependent (McCallum, Barlow & Hone 2001), and modelled with a 

transmission term β, describing the rate at which susceptible birds (S) become infected 
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through direct or indirect contact with infectious individuals (I). For AIV, indirect 

transmission is considered to be of crucial importance and follow a faecal-oral route via 

water (Webster et al. 1992). In addition to the β term for transmission, we allowed for 

background transmission (η) to account for virus persistence in water (e.g. Stallknecht et al. 

1990), because environmental transmission can potentially occur after infectious individuals 

have left the site. However, background transmission was set to a low value given that Nazir 

et al. (2010) found persistence of AIV to range between days to a couple of weeks 

depending on temperature. Most importantly background transmission allows occasional re-

introduction of the virus in the absence of infectious birds and is a crucial mechanism 

enabling the persistence of pathogens, particularly within small wildlife communities that 

are below the critical community size where epidemics cannot be sustained by direct 

transmission only (Breban et al. 2009). Birds that recovered from AIV infection at rate γ, 

were moved from the infectious compartment (I) to the recovered compartment (R). Loss of 

immunity occurred at rate σ, transferring individuals from the recovered (R) to the 

susceptible (S) compartment. Arriving migrants were allocated across the susceptible (S), 

infectious (I) and recovered (R) compartments in the same proportions as the resident 

population.

The demography was modelled as an integral part of the SIR model, with separate 

differential equations describing the migrant and resident population. The basic model 

assumed a resident population of 700 adult individuals, reflecting the approximate number 

of residents observed at the study site (van Dijk et al. 2014). Birth rate (B(t)) was modelled 

for residents only and followed a normal distribution, defined by mean day of birth (Bmean) 

and its standard deviation (Bsd), which was multiplied by the number of breeding pairs 

(0.5*Npop, i.e. half the resident population size) and a fixed number of hatchlings per pair 

(Nhatch) to derive a daily number of hatchlings that enter the population. All individuals (i.e. 

residents and migrants) experienced natural mortality at rate m. The arrival of migrants at 

rate M(t) was also modelled following a normal distribution defined by mean arrival date 

(Amean) and its standard deviation (Asd), which was multiplied by the resident population 

size (Npop) and the ratio of migrants to residents (Prmig). Departure of migrants was 

modelled by setting the migratory population to 0 at day 92 (1st of April), when migrants 

were expected to have left the area for spring migration (Cramps & Simmons 1977).

These assumptions formed the basic model that consisted of six ordinary differential 

equations:

Resident population

dSR(t)
dt = − β(IM + IR)SR + σRR − ηSR − mSR + B(t) 1

2 ∙ N pop Nhatch eq. 1

dIR(t)
dt = β(IM + IR)SR − γIR + ηSR − mIR eq. 2
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dRR(t)
dt = γIR − σRR − mRR eq. 3

Migrant population

dSM(t)
dt = − β(IM + IR)SM + σRM − ηSM − mSM + M(t)(

SR
SR + IR + RR

)N popPrm eq. 4

dIM(t)
dt = β(IM + IR)SM − γIM + ηSM − mIM + M(t)(

IR
SR + IR + RR

)N popPrm eq. 5

dRM(t)
dt = γIM − σRM − mRM + M(t)(

RR
SR + IR + RR

)N popPrm eq. 6

Model modifications

For the 1st modification birth pulse we divided the resident population into adults (>10 

months old) and juveniles (<10 months old), with 10 months being the period between 

hatching and sexual maturity in juveniles. Separation in age class allowed for differential 

mortality rates. At the end of the annual cycle (defined at day 92, April 1st) all juveniles 

were transferred into the pool of adults. The 2nd modification, short-term immunity, did not 

require a structural change of the basic model. In the 3rd modification, increase of 
susceptible migrants, relatively more migrants (b) enter into the susceptible (S) compartment 

instead of being distributed across the three compartments according to the proportions of 

the resident population. In the 4th modification, differential susceptibility, we allowed for 

separate transmission rates for residents and migrants (βR and βM, respectively). To model 

the 5th modification, replacement of migrants, a function describing this replacement was 

added R(t), which was modelled using a symmetric double logistic function with parameters 

mean, amplitude, slope and kurtosis (i.e. Rmean, Ramp, Rslope, Rkurt respectively). All model 

equations can be found in supplementary material S1.

Model parameterisation

Only few model parameters could be fixed at a value derived from literature or personal 

observations (Table 1). For most parameters, we lack data since these are often difficult or 

even impossible to measure. For ‘non-fixed’ parameters we defined a likely range (Table 1) 

over which they were allowed to vary during model simulations. Simulations were 

conducted with 32 different model scenarios, where each scenario consisted of a 

combination of the basic model and one or more of the five model modifications.
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In the basic model, birth was modelled using a fixed number of 0.63 hatchlings per pair 

(Nhatch). This value ensured a stable population size over time given a natural daily mortality 

rate (m) of 8.63×10−5, which was based on a life expectancy of 2.27 years for mallards 

(Schekkerman & Slaterus 2008). AIV transmission rates (β) in wildlife populations are 

largely unknown, therefore we chose a broad range for β, making sure that the basic 

reproduction number of the virus (R0) ranges from 0.8 to 8.0. The background infection rate 

(η) was set to a fixed value of η = 10−5, which gives a probability of 1% for a single mallard 

to become infected in a mean lifetime of 828 days (Galsworthy et al. 2011). The mean 

recovery rate (γ) and the immune loss rate (σ) can vary between host-species, their 

immunological history and between AIV strains (Costa et al. 2010; Fereidouni et al. 2010; 

Jourdain et al. 2010; Curran 2012). A mild strain may cause longer periods of virus 

excretion (γ≈1/12: Kida, Yanagawa & Matsuoka 1980; Costa et al. 2010; Jourdain et al. 
2010), whereas a more severe strain may have a short generation time of approximately 

three days (γ≈1/3: Ng & Higgins 1986; van der Goot et al. 2008; Latorre-Margalef et al. 
2009). The immune rate (σ) was set to a range resulting in a mean loss of immunity within 

75 to 730 days. Mean autumn migration (Amean) was set from August 27th to November 

30th, depicting the period that migratory mallards may arrive at the wintering grounds in 

Western Europe. This period reflects the observed bird migration window (Fransson & 

Petersson 2001; Bakken, Runde & Tjorve 2003).

For the 1st modification birth pulse, a larger number of hatchlings was chosen. Mallards are 

known to produce large clutches with an average clutch size of 9 to 13 eggs (Cramp & 

Simmons 1977), that potentially result in 4 instead of 0.63 hatchlings per pair (Npulse) that 

enter the resident population (Figure 1). Mortality rates for juveniles (mjuv) were estimated 

prior to each simulation to ensure a stable population size (N = 700), taking the Bmean, Bsd, 

and m into account. The parameter boundaries describing the replacement of migrants (R(t)) 

in the 5th modification replacement of migrants was defined to allow the replacement of 

individuals at the start of the migratory period (August 27th) until mid-October, depicting the 

peak of migration. Migrants with a current AIV infection were not subject to replacement, 

since this would not change the number of infected individuals and the infection dynamic. 

Although in reality, infected individuals might also be subjected to replacement. Empirical 

studies in mallards and other waterfowl have shown that AIV infection may hamper 

migration and movements (van Gils et al. 2007; van Dijk et al. 2015; Hoye et al. 2016), 

suggesting that infected individuals may remain stationary during the course of an infection.

Simulation and model fit

To allow demographic and infection patterns to stabilize, all models were run over ten 

annual cycles, where the last cycle was used for comparison with the empirical patterns 

observed in the field. All possible model scenarios (n = 32) were written in C++ and 

compiled, as well as integrated using the ‘ode’ method in R Package deSolve (Soetaert, 

Petzoldt & Setzer 2010). To estimate parameter values, their relative importance and 

uncertainties, we used a Markov Chain Monte Carlo (MCMC) simulation with a delayed 

adaptive Metropolis algorithm (Haario et al. 2006), implemented in the function MCMCmod 

from R Package FME (Soetaert & Petzoldt 2010). This MCMC algorithm uses a 

multivariate proposal distribution that is automatically adapted to allow for posterior 
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corrections between parameters and identifies the direction of principal change along the 

ridges in the posterior landscape. The acceptance rate is improved by the delayed rejection 

part of the algorithm where, instead of immediately advancing the chain following rejection 

of a parameter set, a second proposal is made that depends on both the current position of 

the chain and the rejected parameter set. Ultimately, the DRAM algorithm produces 

posterior distributions of the parameters by minimizing the so-called ‘model costs’ defined 

as the negative sum of the log-binomial densities (binomial response of the number of 

infected and non-infected individuals).

For all possible model scenarios, we simulated 25 independent MCMC chains using 10,000 

iterations with an update of the covariance matrix after every 50th iterations and one delayed 

rejection step. Initial parameters were chosen randomly from the parameter ranges for each 

MCMC chain. The possible parameter space for all non-fixed parameters is shown in Table 

1. The last 2,500 iterations were used to describe the posterior distribution of each of the 

non-fixed parameters as well as to calculate the confidence interval of the model predication 

and the goodness of fit used to compare model scenarios based on Watanabe-Akaike 

information criterion (WAIC), a pointwise out-of-sample prediction accuracy (Watanabe 

2010; Gelman et al. 2013). Within the DRAM optimization routine, observations for 

residents and migrants were compared separately with the respective model output (i.e. 

number of infected and non-infected individuals in residents and migrants). Sampling results 

of individuals with unknown migration status were also included in the model and compared 

with the pooled predicted prevalence in both residents and migrants. Thus, the best fitting 

model is based on the sum of three (i.e. resident, migrant, unknown status) separate ‘model 

costs’ (or the sum of three log-binomial density distributions). We used median WAIC value 

for each model scenario to rank their potential in predicting the observed AIV infection 

dynamic.

We investigated potential collinearity of model parameters for each of the scenarios by 

calculating the correlation matrix of the parameters across the final 2,500 iterations.

Results

Model scenarios

The basic model in combination with the five different model modifications led to 32 

possible scenarios (Figure 2). The median WAIC values of the model fit for these 32 

scenarios ranged from 135.5 to 324.6, with lower values indicating better model fits and a 

higher potential to predict the observed AIV infection dynamic. Although their annual AIV 

infection dynamics appeared slightly different, the best fitting three scenarios (rank 1 to 3) 

were within a small WAIC range of 4.8, and could be considered similarly good (Figure 2). 

In fact, the first 8 scenarios differed in their ability to predict the observed infection dynamic 

from the remaining scenarios with median WAIC values from 135.46 to 156.17 compared to 

> 172.3 in the ranks from 9 to 32. These 16 best ranked scenarios all included the 5th 

modification, the replacement of migrants. In addition to the 5th modification, modification 

4 was found to increase the fit in the 8 best-ranked scenarios (Figure 2). This modification 

also contributed the 8 scenarios missing the 5th most important modification (rank 17 to 24).
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The replacement of migrant modification was the best modification in explaining the 

observed WAIV prevalence pattern in isolation with the basic model (rank 12, Figure 2 and 

Figure 3). However, in isolation, the 4th modification resulted in a relatively poor fit (rank 

22, Figure 3). No eminent pattern was found in the distribution of the other three 

modifications across the 32 scenarios ranked by their WAIC value (Figure 2).

Parameter estimates

Looking at the best parameter combinations across all 32 scenarios (Figure 2), once the 

transmission rates were modelled separately for migrants and residents (thus including the 

4th differential susceptibility modification), βM was estimated higher than βR except for rank 

6 that was the only scenarios where βM was chosen within the boundaries of βR. The 

recovery rates (γ) were almost always at the lower end of the pre-defined parameter range: 

AIV infected individuals recovered after an average of approximately 12 days. The immune 

rates (σ) were highly variable across the different scenarios and thus unrelated to the 

goodness of fit (WAIC value) of the models. However, in all scenarios that included short-

term immunity, the rate (σs) was higher than it would have been in the absence of the 2nd 

short-term immunity modification. This was notably true for scenarios missing the 4th and 

the 5th modification when short-term immunity was the mechanism that could elevate the 

prevalence levels during the late summer and autumn period. In almost all scenarios, the 

ratio of migrants to residents (Prmig) was highly skewed towards migrants: 3–4 times the 

resident population.

In general, across the first 16 scenarios that included the 5th replacement of migrants 
modification, the arrival peak of migrants (Amean) occurred relatively early (low Amean) with 

respect to the pre-set window (early August). In contrast, without this modification, peak 

arrival dates occurred in mid-October. The shape of the arrival curve (Asd) was consistently 

in the lower half of the pre-set parameter range and was particularly low, i.e. reflecting a 

quick and synchronised arrival, in the best fitting scenarios. Not much variation was found in 

the timing of replacement (Rmean), i.e. the start was always at the upper boundary and 

therefore as early as possible. The amplitude of the replacement curve (Ramp) varied, but 

was consistent within the upper half of the parameter range (0.35–0.6).

Parameter correlation

We used the posterior distributions of each parameter from the last 2,500 MCMC iterations 

to illustrate the potential correlation between parameters. In the best ranked model scenario 

(rank 1) that included the 2rd short-term immunity, the 4th differential susceptibility and the 

5th replacement of migrants modification, many parameters showed high correlation 

(indicating parameter identification problem), e.g. the recovery rate (γ) was positively 

correlated with the transmission rate of the resident population (βR). Whereas the immune 

rate (σ) was negatively correlated with the transmission rate of the migrant population (βM). 

This means that all four parameters could contribute to higher prevalence levels during the 

major peak. Additionally, the shape of the replacement of migrants distribution (Rsd) was 

found to be correlated with the transmission rates of residents (γ) and the immune rate. 

However, correlations between parameters different immensely between the scenarios 

(supplementary material S2).
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Discussion

Mathematical modelling has great potential to probe the complex dynamics of infectious 

diseases and identify the mechanisms of transmission. Therewith, it may also indicate 

approaches for prevention and control that may help shape national and international public 

health policy (Heesterbeek et al. 2015). In this study, we used a mathematical modelling 

approach to evaluate several mechanisms that have been suggested to drive local AIV 

dynamics in wild bird populations. To evaluate these mechanisms, we fitted the predicted 

infection dynamics to a unique sampling dataset of a year-round, small-scale AIV 

surveillance study in the key European AIV host species, the mallard (van Dijk et al. 2014). 

We found that one particular mechanism, the local replacement of migrants during the peak 

migration, contributed most significantly towards better model predictions.

There is a general perception that animal migration plays a central role in wildlife disease 

dynamics by enhancing the global spread of pathogens (Altizer, Bartel & Han 2011). 

Notably with respect to AIV there are a number of high-profile studies stressing this case 

(Verhagen, Herfst & Fouchier 2015; Hill et al. 2016; Lycett et al. 2016). In addition, we 

show that migrants may importantly facilitate local AIV infection dynamics. Our models 

provide strong indications that the role of migrants in infection dynamics is not simply 

determined by the presence of migrants, but critically relies on how migration takes place 

over time. Migratory birds within a population may migrate highly synchronised and visit 

stop-over sites all at once, or they may differ in their timing leading to several waves of 

migrants and extended periods during which migrants arrive at and depart from stop-over 

sites (Bauer, Lisovski & Hahn 2016). In most species, including the mallard (Fransson & 

Petersson 2001; Bakken, Runde & Tjorve 2003), the migratory season protracts over several 

weeks up to a few months. This is likely to lead to the mechanisms behind migratory 

replacement used as a modification in our model: arriving migrants stay in the area for a 

limited period of time after which they move on and are replaced by newly arriving 

individuals. As a consequence, individuals that have acquired some degree of protection 

against re-infection by means of AIV specific antibodies (either due to AIV exposure prior 

to arrival or at the study site itself), are replaced by potentially susceptible individuals that 

may perpetuate or even invigorate local transmission dynamics.

Besides the strong effect of the replacement of migrants, the models with better predicting 

power also included the modification differential susceptibility with higher transmission 

rates in migrants compared to residents. This is in line with the observed data showing that 

the major AIV prevalence peak coincided with the arrival of migrants (van Dijk et al. 2014). 

There are several non-mutually exclusive mechanisms that may explain why the better 

predicting models had an increased susceptibility in individual migrants. Empirical studies 

have shown that the physiological challenges accompanied with migration, including a 

potential trade-off with the immune system, can reduce their immunocompetence and render 

migrants more susceptible (Buehler et al. 2008). It has also been suggested that migrants are 

generally more susceptible, since their immune system is less specialised but adapted to 

cope with the exposure of different and disparate environments and their pathogens 

(Waldenström et al. 2002).
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Combining the findings from the model and the empirical study, we can conclude that 

migrants may not exclusively affect the AIV infection dynamics of resident populations 

through their often suggested role in the introduction of new virus strains (e.g. Verhagen, 

Herfst & Fouchier 2015; Lycett et al. 2016) and the general increase in host-densities 

(Gaidet et al. 2012, Hill et al. 2012), but may have an additional role in the amplification of 

the virus (Yin et al. 2017). Since migration is a large-scale multi-species phenomenon, this 

might more generally be the case and it questions the hypothesis that migrants only have a 

role in dispersing and introducing AIVs and thereby affecting resident populations.

Most northern hemisphere AIV surveillance studies in wild bird populations show similar 

patterns of pronounced late summer - early autumn infection peaks (e.g. Munster et al. 2007; 

Hénaux et al. 2013; Lisovski, Hoye & Klaassen 2017). Clearly, our model scenarios are 

ranked by their ability to capture this pronounced feature within the entire annual infection 

dynamic. While allowing for differential susceptibility to infection for migrants and 

residents seems to strengthen the predictions of the AIV infection peak, the overall 

importance of this parameter (i.e. transmission rate (β)) reduces the informative power of the 

remaining evaluated mechanisms, like the birth pulse (B(t)), the short-term immunity (σs) 

and the epidemiological state at which migrants enter a resident population (M(t)). However, 

those mechanisms might still be crucial. Indeed, the correlation matrix (Figure 4) shows that 

the immune rate (σ) and the transmission rate (β) could be parameters of importance and are 

highly correlated with parameters that significantly influence the autumn infection peak, like 

the ratio of migrants to residents (Prmig) and the amplitude of migratory replacement (Ramp). 

However, the correlation between such potentially important parameters also indicates that 

we require more information to narrow their potential range, otherwise the estimates become 

rather uninformative.

Birth pulses have previously been shown to be of importance in AIV infection dynamics in 

wild waterfowl (Hénaux et al. 2013), and appeared to be fundamental to produce annual 

infection peaks in empirically validated disease models (Hosseini, Dhondt & Dobson 2004; 

He 2005; Begon et al. 2009). Avril et al. (2016) showed that migratory juvenile mallards had 

a consistently higher risk of getting infected with AIV compared to adults. Hénaux et al. 
(2013) in particular showed that the early autumn AIV infection peak in a major host species 

across the North American continent, the blue-winged teal (Anas discors), was mainly due 

to infections in immunologically naïve juveniles, and that only a small proportion of adults 

were within the susceptible pool and contributed to the transmission dynamics. Although 

knowledge on the number of migrants among adults was not included in that study, our 

results raise questions whether accounting for the underlying geography of the locations at 

which the birds were sampled, including associated differences in their migration strategies, 

could lead to other conclusions. Migration routes across the North American continent are 

grouped into four major north-south stretching flyways, and phylogenetic analysis of AIV 

indeed indicate that those flyways represent corridors for gene flow with more restricted 

east-west gene flow, suggesting that migration of waterfowl occurs on a large scale from 

north to south with little longitudinal mixing (Lam et al. 2012; Fourment, Darling & Holmes 

2017, but see Krauss et al. 2010 for bottleneck in wader migration within North America). 

The preferentially north-south migration across a broad east-west front may restrict the 

origin and number of migrants within wetlands along the different migratory routes and 
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reduce their influence on the local AIV infection dynamics. In contrast, the wetlands in 

central-northern Europe (e.g. the Netherlands) are within a bottleneck of the East-Atlantic 

Flyway in which most routes of waterfowl from a vast geographical origin merge (Scott & 

Pose 1996).

In our effort to construct relatively simple models allowing for comprehensive testing of a 

set of hypothesised drivers for local AIV infection dynamics, we had to make a considerable 

number of assumptions. Possibly the most important one is that we ignored the existence of 

viral subtypes, and that AIV infection might elicit subtype specific immunity against further 

infections (Latorre-Margalef et al. 2017). However, ducks may show limited immune 

responses to AIV infection contrasting findings from e.g. chickens (Kida, Yanagawa & 

Matsuoka 1980) and can quickly be re-infected with the same AIV subtype (Chaise et al. 
2014) providing support for our simplifying approach to ignore potential antigenic variation 

in AIV infected mallards. Furthermore, like most SIR(S) modelling approaches, we ignore 

individual variation and the potentially important role of transmission heterogeneity and 

“superspreaders” in the infection dynamics (e.g. Lloyd-Smith et al. 2005). However, 

although we consider this of great importance, empirical data to support the existence of 

such transmission heterogeneity for AIV among conspecifics within wildlife populations is 

thus far lacking. Finally, the nature of the empirical data set that we used, e.g. one annual 

cycle at one location for one bird population, might limit our ability to extrapolate our 

findings. However, the temporal pattern and amplitude of the epizootic is comparable to 

what has been found in other studies in north-western Europe (e.g. Munster et al. 2007) and 

temperate areas in North America (e.g. Lisovski, Hoye & Klaassen 2017). Interestingly, 

despite some profound geographical variation in AIV infection patterns (Gaidet et al. 2012; 

Lisovski, Hoye & Klaassen 2017), globally the drivers for those patterns in AIV prevalence 

appear to be the same.

Management Implications

Avian influenza viruses are currently an increasing threat to the global poultry production 

sector and to public health (Hien, de Jong & Farrar 2004). The poultry industry and trade is 

an important part of this problem, with some highly pathogenic AIV strains being endemic 

in poultry in several countries in Africa and Asia, where also low pathogenic AIV is 

sometimes more readily circulating among domestic than wild birds (Hassan et al. 2017). 

Irrespectively, wild birds, and notably birds of the order Anseriformes (ducks and geese), are 

the ancestral reservoir host for AIV (Caron, Capelle & Gaidet 2017) and remain of key 

importance for global AIV diversity (Alexander 2007), notably in the face of readily 

reassorting high pathogenic AIV virus such as H5 clade 2.3.4.4 (Lee et al. 2017). 

Anseriformes also play a major role in the dispersal of AIV (Alexander 2007), including 

dispersal of highly pathogenic strains (e.g. Lycett et al. 2016); the latter most likely through 

spill-back from poultry (Messenger, Barnes & Gray 2014). It is for these reasons that an 

understanding of the ecology and transmission of AIV in wildlife, and migratory waterbirds 

in particular, is required to assist its management and control in livestock and humans in the 

future (Kuiken et al. 2005, Coker et al. 2011). Mathematical models allow probing the 

complex dynamics of host-pathogen interactions to help identify the mechanisms of 

transmission, enabling prediction and possibly prevention of outbreaks. In spite of AIV 
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infection dynamics being arguably one of the best studied avian-wildlife host-pathogen 

systems, our study highlights that we typically lack crucial information allowing identifying 

and quantifying the major mechanisms that lead to high prevalence levels in cases where 

migrants are involved; i.e., data on the number and turnover of migrants in a bird population. 

Thus, besides maintaining efforts in virus sampling and growing our understanding of virus 

diversity and evolution, their temporal occurrence and host range (Olsen et al. 2006; 

Munster et al. 2007; Caron, Capelle & Gaidet 2017) we additionally need increased efforts 

in recording of host demography. Given the here revealed importance of migration, and 

notably the timing and strategy of migration, it appears crucial to extend the wildlife disease 

surveillance database with demographic features such as the timing of birth and density, as 

well as turnover. Turnover can be estimated by flow models (Nolet & Drent 1998; Drever & 

Hrachowitz 2015), by combining counts with concurrent (re)sightings of marked individuals 

(e.g. Frederiksen et al. 2001) or by behavioural-based simulations of stopover site use (Nolet 

et al. 2016; Stillman et al. 2015). Knowledge of these parameters would allow us to use 

more in depth mathematical models allowing the estimation of e.g. transmission-, recovery- 

and immune rates, the key processes in host-pathogen interactions (McCallum 2000). 

Therefore, we believe that besides unravelling the mechanistic understanding of infection 

dynamics of wildlife diseases, understanding demographic patterns, especially for systems 

that involve considerable numbers of migratory individuals, are as important as pathogen 

detection.
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Figure 1. 
The structure of the basic model and the main differences of the modifications that are based 

on five potential mechanisms that may drive local AIV infection dynamics in wild birds. For 

the basic model, the grey box shows the flowchart of the movement of migrant (M) and 

resident (R) individuals between the susceptible (S), infectious (I) and recovered (R) 

compartments as described by the model equations 1–6. Natural mortality (m) is not 

depicted, but is assumed to occur within all three compartments and at the same rate for all 

individuals (i.e. resident and migrant). The graph below the grey box shows the general 

annual demographic dynamics of resident mallards (dashed line) and migratory mallards 
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(solid line) visiting the study site during the annual cycle. For the 1st model modification, 

the bold dashed line shows the potential dynamics of the resident population with a more 

pronounced birth pulse B(t). The 2nd model modification assumes a reduced immune rate 

(σ) and thus a faster loss of immunity against AIV infections. In the 3rd model modification, 

relatively more migrants enter into the pool of susceptible (S) individuals. In the 4th model 

modification, the transmission rate (β) is modelled separately and has different values for 

migrants (βM) and residents (βR). For the 5th model modification, the R(t) curve describes 

the amount and the shape at which migrants within the infectious (I) and the recovered (R) 

pool are replaced by new susceptible migrants.
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Figure 2. 
Ranked model scenarios based on median WAIC (‘model cost’) of the model fit. White bars 

indicate scenarios with a single modification on top of the basic model. The black bar shows 

the basic model without any modification. Models with lower WAIC represent better model 

fits. The bars represent the median WAIC over 25 independent MCMC chains with random 

selection of initial priors within the range of the respective parameter. Error bars indicate 

95% confidence intervals. The inclusion of the five model modifications to the basic model 

are shown below the bar plot, with a cross indicating that the particular modification was 

included in the scenario. The model scenarios are 1) Birth Pulse, 2) Short-term immunity, 3) 
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Increase of Susceptible Migrants, 4) Differential Susceptibility and 5) Replacement of 

Migrants. Below, all estimated parameter values across the 32 scenarios are shown with the 

50% (circle) and the 10% and 90% percentiles of the posterior distributions (10,000 

iterations). The grey areas between the dashed lines indicate the pre-set parameter ranges. In 

case of the transmission rate (β) and immune rate (σ), the dotted lines indicate the reduced 

boundaries of the parameter for the 4th differential susceptibility and the 2nd short-term 

immunity modifications.
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Figure 3. 
Results of three model scenarios: the best-ranked scenario (with 3rd, 4th and 5th 

modification, Rank 1), the scenario with the most influential modification only (5th 

modification, Rank 12), and the scenario with the second most influential modification only 

(4th modification; Rank 22). The left column shows which of the model modifications were 

included in the respective scenario. The middle column shows the observed AIV prevalence 

levels (±95% CI) at the study site (dashed line with diamond symbols), and the model 

prediction (bold line) of the best fitting model with the respective modifications. Grey area 

around model predictions indicate the sensitivity range of the fit (e.g. ±95% CI). The 

underlying demography for each depicted scenario is shown in the right column with 

absolute numbers of individuals (black line) consisting of migrants (dotted line) and 

residents (dashed line). The replaced migrants (R(t)) is also shown as the absolute number of 

individuals replaced at time t (in days). Additionally, the rate of change in individuals (∆ 

Individuals) is shown for residents indicating birth (light grey bars) and migrants indicating 

initial arrival (dark grey bars).
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Figure 4. 
The parameters of the best ranked model scenario (matrix diagonal) and the correlation 

matrix of all parameters from the last 2.500 MCMC iterations. The intensity of grey and 

shape of the ellipsoids represent the strength (dark colour and narrow ellipse represent 

correlation coefficients close to 1 or −1) and direction of the correlation.
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Table 1

The parameters of the basic model and model modifications. If the value of a parameter is a single integer, the 

parameter was hold fixed during the Markov Chain Monte Carlo (MCMC) simulation. All other parameters 

were optimised within the given range. Large numbers on the left group parameters that are unique to a certain 

model modification. See methods for references and validation of the defined parameter ranges.

Symbol Definition Value/Range Units

β transmission rate 0.1x10−4 to 0.4x10−3 bird−1 day−1

γ recovery rate 1/12 to 1/3 day−1

σ immune rate 0.0013 to 0.013 bird−1 day−1

η background transmission rate 10−5 day−1

Bmean mean day of birth 135 to 220 day of the year

Bsd standard deviation of birth 0.5 to 25 days

Nhatch number of hatchlings per pair 0.63 individuals

Prmig ratio of migrants to residents 0.5 to 4 proportion

Amean mean arrival day of migrants 240 to 335 day of the year

Asd standard deviation of arrival of migrants 0.5 to 50 days

m mortality rate 0.315/365 bird−1 day−1

1

Npulse number of hatchlings per pair 4 individuals

mjuv juvenile mortality rate estimated bird−1 day−1

2 σs short-term immunity rate 0.0013 to 0.066 bird−1 day−1

3 b susceptible migrants 5 to 75 percent

4

βM transmission rate in migrants 0.1x10−4 to 0.3x10−2 bird−1 day−1

βR transmission rate in residents 0.1x10−4 to 0.4x10−3 bird−1 day−1

5

Rmean mean of migratory replacement 240 to 288 day of the year

Ramp proportion of migratory replacement 0.05 to 0.6 proportion

Rslope slope of migratory replacement 2 to 25 days

Rkurt kurtosis of migratory replacement 2 to 3 days
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