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Abstract

The massive amount of information produced by ChIP-Seq, RNA-Seq, and other next-generation 

sequencing-based methods requires computational data analysis. However, biologists performing 

these experiments often lack training in bioinformatics. BioWardrobe aims to bridge this gap by 

providing a convenient user interface and by automating routine data-processing steps. This 

protocol details the use of BioWardrobe for identifying and visualizing ChIP-Seq peaks, 

calculating RPKMs, performing differential binding or gene expression analysis, and creating 

plots and heat maps. We specifically describe how to use BioWardrobe’s quality control measures 

for troubleshooting NGS-based experiments.
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1 Introduction

The introduction of next-generation sequencing (NGS) led to the development of ChIP-Seq 

[1–3] (chromatin immunoprecipitation sequencing), RNA-Seq [4] (RNA sequencing), 

DNase-Seq [5] (DNase 1 sequencing), ATAC-Seq [6] (assay for transposase-accessible 

chromatin sequencing) and other “acronym”-Seqs. Due to the power of NGS, many methods 

previously used for a study of a single gene or locus can now provide similar (and often 

better controlled) data for the whole genome. However, with this remarkable power comes 

an obstacle that is forcing many scientists to avoid the modern methods: the need for 

computational data analysis. Indeed, the majority of these experiments can be reliably 

performed by experienced molecular biologists, but the data analysis requires computational 

knowledge that many biologists do not have. BioWardrobe aims to overcome this obstacle 
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by providing a convenient browser-based graphical user interface and automated data 

analysis pipelines.

A majority of existing bioinformatics software require at least some programming expertise. 

Popular open source packages that are used for data analysis, such as HOMER [7] and 

Tuxedo Suite [8–11], have a command line interface. The user has to be technically adept 

and familiar with a Unix-like interface, and the packages have limited visualization options 

and no interactivity. The commercial software Strand NGS [12] and Partek [13] use a 

graphical interface and can be run on desktop computers; however, the sheer size of the files 

requires computational power and storage that is not available on a typical desktop 

computer. Web-based software, such as Illumina Basespace [14] and Galaxy [15] are more 

user friendly and allow for analysis and storage of data. However, even though the command 

line is not used, the user has to determine parameters for each tool, manage file format 

conversions and assemble pipelines, which requires almost as much knowledge as 

performing analysis in a command line interface. This can become cumbersome for users 

without a computational background.

BioWardrobe [16] overcomes these problems by allowing the users to download, visualize, 

and store data along with the analysis. The pipeline parameters are automatically chosen on 

the basis of the biological description of the experiment. The user-friendly web interface is 

primarily aimed at NGS analysis for biologists working in the epigenomics and 

transcriptional regulation field. The analysis routine is separated into two parts: basic and 

advanced analysis. For the semiautomated basic analysis, users need to provide the 

description of each experiment and the source of the data. BioWardrobe will download the 

data, map the reads, perform quality controls and provide initial output (e.g., peaks of 

enrichment). Advanced analysis allows for integration of multiple experiments and is guided 

by the user input. Overall, BioWardrobe improves accessibility of the NGS methodology by 

providing a convenient, browser-based graphical user interface and automated data analysis 

pipelines without requiring computational or programming expertise.

2 Materials

1. Hardware requirements. BioWardrobe can be installed on a Linux- or Mac-based 

server. For the human genome, we recommend at least an E5-based Mac Pro (or 

a Linux server) computer with at least 32 Gb of RAM and external (e.g., 

Thunderbolt or USB 3.0) storage array. We recommend at least 16 Tb of storage 

capacity for an average laboratory.

2. BioWardrobe installation. Though the user does not need to be a programming 

expert to perform data analysis, the native installation of BioWardrobe requires 

IT expertise and is not covered in this chapter. We recommend obtaining support 

from the institutional IT department or from a commercial service provider. 

BioWardrobe installation is described at https://biowardrobe.com and at https://

github.com/Barski-lab/biowardrobe/wiki/Installing-BioWardrobe

3. BioWardrobe virtual machine. For evaluation purposes, users can quickly install 

a simplified version of BioWardrobe as a virtual machine. This image contains 
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only the drosophila genome and can be run on desktop-class hardware (8 Gb 

RAM minimum). Virtual machine instructions are available here: https://

biowardrobe.com/projects/wardrobe/wiki/Install_VirtualBox_image Please 

replace the link with https://github.com/Barski-lab/biowardrobe/wiki/VirtualBox-

Instructions. For the production environment, we recommend using a native 

installation.

3 Methods

3.1 Basic Analysis

In basic analysis, the analytical pipeline is selected automatically on the basis of the 

experimental variables that are familiar to biologists: experiment type, library construction 

procedure, antibody, etc.

3.1.1 Adding Data

1. For loading the data, go to the “Data and Analysis” tab in BioWardrobe and click 

on “Experiments.” The experiments page shows all the existing data uploaded by 

the users. For performing a new analysis, click on the “New” button in the 

“Laboratory data” window.

2. The Experimental Form: The “Experimental form” is where the information 

about the library is entered. The “General Info” tab has the following entries:

(a) Record basic information about the library in the “Experiment 

Description” section: cell type, conditions, the genome, etc. For ChIP/

ATAC/DNase-Seq choose DNA-Seq as experiment type. Indicate if the 

experiment is paired or single read. For stranded RNA-Seq libraries 

choose RNA-Seq dUTP.

(b) Next, enter a short name for the experiment. This needs to be unique 

and descriptive because it will be used to identify experiment on the 

browser and in the advanced analysis. Along with the name, choose the 

folder where the data will be saved. Folders are managed by the 

administrators of each laboratory and can be shared with other 

laboratories.

(c) ChIP-Seq-specific parameters:

• Antibody: specifying antibody will instruct MACS2 [17] to 

identify either narrow (e.g., for TFs) or broad (e.g., for 

H3K27me3) peaks. The list of antibodies and what kind of 

peaks they produce can be edited in the Catalogs menu.

• Control for ChIP-Seq: Indicate that the library is an Input or 

IgG control by marking the checkbox. This will add the 

sample to the list of control experiments. Selecting a control 

experiment will instruct MACS2 to use it for peak calling.
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(d) In the next section, provide BioWardrobe with the source of data. For 

“Download Type,” most users will select “Direct Link” to enter a URL 

for the file. Other options include “Upload directory” for local files or 

“Core facility” if it has been set up. BioWardrobe can process both 

compressed (gz, bz2) and uncompressed .fastq and .sra files. The URL 

should be a direct link to the file (i.e., entering this link in the browser 

should start the download). For paired-end experiments or single read 

experiments containing multiple fastq files separate the links with a 

semicolon (;). See the instructions for finding the link to sra files here: 

https://github.com/Barski-lab/biowardrobe/wiki/How-to-find-a-link-

to-.sra-file-in-GEO

(e) The “Protocol” and “Notes” tabs are designed to enter the protocol and 

any additional information about the experiment, respectively.

(f) The “Advanced” tab contains additional parameters for ChIP-Seq 

experiments.

• The size of the fragment can be set in the “Expected Fragment 

Size” section. Normally the fragment size is determined 

automatically by MACS2, but the user can force BioWardrobe 

to use the fragment size specified here for both coverage and 

peak detection.

• This section also has the option of removing duplicates before 

analysis. Selecting this option will leave only one read aligned 

at the same position and strand (see Note 1).

• If poor quality bases are observed near the ends of the reads, 

they can be removed using the “Trim from the left” or “Trim 

from the right” options.

• The “Force to repeat experimental analysis” box needs to be 

checked if any of the parameters in the “Advanced” tab are 

changed after the initial analysis and the analysis has to be 

repeated.

(g) Click on “Save.” Typically, BioWardrobe takes ~2 h to perform the 

analysis.

3.1.2 Results of Basic Analysis

1. After the analysis is complete, click on the experiment. The second tab is 

“Quality Control.” This tab shows various statistics and quality control 

1.Removal of duplicates: Many bioinformaticians prefer to remove duplicate reads under the assumption that those are PCR 
duplicates. BioWardrobe provides the ability to remove duplicates by checking “Remove duplicates” in the “Advanced” tab. We 
recommend to first perform the analysis without removing duplicates and to check the results on the browser. The presence of tall, 
square peaks will indicate over-amplification of the PCR library (Fig. 3b). Please note that MACS2, which is used to call peaks, 
removes excess duplicates automatically and thus peak calling will be affected only slightly.
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measurements for the experiment (DNA-Seq/RNA-Seq). This tab also has the 

“Base Frequency plot” and the “QC” (quality control) sections.

(a) For DNA-Seq experiments (see Fig. 1a, b, Note 2), the statistics shown 

are:

• The number of reads—“Tags total.”

• The reads mapped to the genome—“Tags mapped,” shown in 

green in the pie chart.

• The reads that are mapped to multiple locations in the genome 

are discarded—“Multi-mapped reads,” shown in blue in the 

pie chart.

• Duplicates that are mapped, but removed if that option is 

selected in the “Advanced” tab—“Duplicates” (see Note 1).

• Reads that are not mapped—“Unmapped reads,” shown in red 

in the pie chart.

(b) For RNA-Seq experiments (see Fig. 1c, d, Note 3), the statistics shown 

are:

• The number of reads—“Tags total.”

• The reads mapped to the transcriptome in a unique way—

“Tags mapped,” shown in green in the pie chart.

• The reads mapped to the genome outside the transcriptome, 

often because of DNA contamination as a result of insufficient 

digestion by DNAse—“Outside annotation,” shown in orange 

in the pie chart.

• The reads that can be mapped to multiple locations are 

discarded—“Multi-mapped reads,” shown in blue in the pie 

chart.

2.Mapping statistics (ChIP-seq): For ChIP-Seq, mapping is performed with BowTie and allows up to one mismatch. BioWardrobe 
shows the percentage of reads that are mapped to a unique location, mapped to multiple locations or are unmapped (Fig. 1a, b). Only 
uniquely mapped reads are used for downstream analysis. Results of mapping depend on several biological and technical variables 
including quality of sequencing, read length, contamination and biological features of the target protein. For a typical ChIP-Seq 
experiment, 70–80% of reads are uniquely mapped. An increased fraction of unmapped reads may be caused by a bad sequencing run 
(also see base quality plot—Note 5), contamination with adapter dimers (base frequency plot will be spiky—Fig. 2c), very short 
fragments such that the second adapter is included in the read (trimming on 3′ end before alignment may help) or contamination with 
the DNA/library from another organism. An increased fraction of multi-mapped reads may indicate that the protein of interest (e.g., 
H3K9me3) is recruited to repetitive areas of the genome.
3.Mapping statistics (RNA-seq): For RNA-Seq, mapping is performed with RNA-STAR, which is provided with transcriptome 
annotation. BioWardrobe shows the percentage of reads that are mapped to a unique location within annotation or outside of 
annotation, mapped to multiple locations or are unmapped. For stranded (dUTP) RNA-Seq, only reads mapped to the correct strand 
are considered to be within annotation. Only reads that are mapped to annotations are used in RPKM calculations, but all uniquely 
mapped reads are displayed on the browser. Typically for unstranded polyA RNA-Seq, ~15% of reads are uniquely mapped outside of 
annotation (Fig. 1c, d). A higher percentage of reads mapped outside of the transcriptome may indicate contamination with genomic 
DNA (Fig. 1d). In this case, DNase treatment needs to be added to the RNA extraction protocol. For total transcriptome/RiboZero 
experiments, the percentage of the reads mapped outside of annotation is much higher due to the presence of unspliced transcripts.
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• Reads that are not mapped—“Unmapped reads,” shown in red 

in the pie chart.

(c) The reads that can be mapped to the ribosomal DNA repeat—

“Ribosomal contamination” (see Fig. 1e, Note 4).

(d) The “Base frequency plot” (see Fig. 2) shows the frequency of 

occurrence of each base (A/T/G/C/N) at each position of the read (see 
Note 5).

(e) The “QC” section has a box plot showing the Phred quality scores for 

each base (see Note 6).

(f) These images can be downloaded by clicking on “Save chart.”

2. The “Genome browser” tab (see Fig. 3a–c): It displays read coverage and 

MACS2 peaks (for ChIP-Seq and similar libraries) on the local mirror University 

of California, Santa Cruz (UCSC) genome browser (see Note 7). All the data are 

uploaded to the browser and it can be used for performing “bioinformatics by 

eye”—comparing peaks between the experiments around the genome.

3. The “Run R” tab: The section “Default Result(s)” shows the various plots 

created by MACS2 for DNA-Seq experiments and shows the RKPM distribution 

and gene body density for RNA-Seq experiments. The results can be customized 

in the “Custom Result(s)” section, and the administrators also can edit the R 

code in the “Source” section (see Subheading 3.3).

4. The “RKPM list” tab (see Fig. 4): This window shows the RKPM values for 

genes for RNA-Seq data. These data can be saved as a .csv file by clicking on the 

“Save” option. The genome browser tab of the selected gene opens when the 

“Jump” button is clicked. The data can be presented for individual isoforms or 

summed up for genes or for common TSSs (see Note 8).

4.rRNA contamination: Given that 85–95% of total RNA is rRNA, researchers use means such as oligodT hybridization or 
RiboZero/Rybominus hybridization to enrich for mRNAs. Ribosomal RNA contamination shows the percentage of the reads that can 
be mapped to rDNA repeats and shows whether an mRNA isolation step worked successfully. For human samples constructed using 
the oligo-dT approach, rRNA contamination is typically <2%; for a RiboZero-like approach, the rRNA contamination is ~4–10% (Fig. 
1e).
5.Base frequency plots are very simple yet useful for troubleshooting an experiment. The human genome is normally AT-rich, but 
genes are not. Thus, for ChIP-Seq, the absence of an AT bias in these base frequency plots suggests enrichment in the vicinity of genic 
areas (Fig. 2a). Conversely, being derived from genes, RNA-Seq reads typically do not have an AT bias; thus, having an AT bias may 
indicate DNA contamination during library construction (Fig. 2b). DNaseI treatment may be used during RNA purification to get rid 
of genomic DNA. The spiky plot in Fig. 2c is characteristic of adapter contamination in the library and suggests that the adapter/insert 
ratio during ligation needs to be decreased. This problem will not affect results, but the experiment will require more sequencing since 
a large fraction of the reads will be unproductively used on adapter dimers.
6.Base quality box plots show the Phred scores at each base as reported by the sequencer in the fastq file. The sequencing quality 
typically decreases toward the end of the run and may result in reduced mapping. If needed, the reads can be trimmed on either end in 
the “Advanced” tab of the Experiment form. Typically, Illumina sequencers report scores in the 30–40 range. Phred quality scores 
represent the probability of error in matching the bases during sequencing. Higher scores represent a greater chance that the base call 
is correct.
7.Genome browser: For ChIP-Seq, we display results on the browser as coverage by fragments normalized to the number of millions 
of reads mapped (Fig. 3a). For single-read sequencing, the fragments are estimated by extending reads in the 3′ direction to average 
fragment length (determined by MACS2). For paired-end experiments, actual fragment lengths are used. For both single and paired 
read RNA-Seq, coverage by actual reads is shown. In the case of stranded RNA-Seq, we employ a custom modification of the UCSC 
browser that displays strand-specific coverage (Fig. 3c).
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5. Islands list: DNA-seq data have the “Islands list” tab (see Note 9) with the list of 

islands detected by MACS2, their position, and other statistics. The table also 

contains the information regarding nearby genes.

(a) If an island has more than one summit, each entry is shown separately 

with the summit coordinates as “start” and “end” along with the 

position of the island.

(b) If the box “Show unique islands” is selected, each island is shown only 

once and the summits are not shown.

(c) The “region” section has information about the islands, if they are in 

the promoter region, upstream of the promoter, or in an exon, intron, or 

intergenic region.

(d) The definition of promoter (radius around the TSS) can be changed in 

the heading area of the tab. Any changes made will also be reflected in 

the “Islands Distribution Plot.”

(e) Peaks can be filtered by specifying a minimum p/q/fold enrichment 

value.

(f) The “get fasta” button is used to obtain the sequence under the peak in 

fasta format. The “Fasta region” specifies the radius around the summit 

to report. Selecting 0 will produce the sequence under the whole peak.

(g) The table can be saved in the .csv format by clicking the “Save” button.

6. Average Tag Density (see Fig. 5a, b): The “Average Tag Density” tab shows the 

density profiles for a DNA-seq experiment around all the annotated transcription 

start sites (TSS) (see Note 10).

7. The “Islands Distribution” (see Fig. 6): The “Islands Distribution” window 

shows the distribution of the island over the promoter, upstream, exonic, intronic, 

and intergenic regions (assigned in this order). It also displays the percentage of 

distribution in each region on the diagram (see Note 11).

8.RPKMs are estimated for transcripts using a custom BioWardrobe algorithm. The results can be summed up for transcripts using a 
common TSS, which is useful for the study of transcriptional regulation, or for genes, which is useful for functional analysis, such as 
Gene Ontology (Fig. 4). Raw read numbers can also be viewed by adding the read number column to the RPKM table.
9.Island list: Peak calling is performed by MACS2 software using either a narrow or broad peak function. The user can select whether 
narrow or broad peak calling is used for each antibody in the antibody catalog. MACS2 can also be instructed to use input control for 
peak calling by designating an input sample as a control and then selecting it in the “Experiment form” tab. The island table lists peak 
coordinates, nearest gene, peak location relative to it and p/q-values for each peak. Sequences under the peaks can be obtained by 
clicking the “fasta” button located above the table. These sequences can be used to identify overrepresented motifs using tools such as 
MEME-ChIP [21] or PScan [22].
10.Average tag density profiles can be used to assess the enrichment obtained in the experiment. This is particularly useful for TSS-
proximal modifications such as H3K4me or ATAC-seq. The ratio of the signal at the TSS to the signal away from the TSS is a good 
indication of quality immunoprecipitation (Fig. 5).
11.Peak distribution plots show the distribution of peaks between genomic areas (i.e., promoter, upstream, etc.). The definition 
(radius around TSS) of the promoter can be adjusted in the island tab.
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3.2 Advanced Analysis

If the quality of experimental data is satisfactory, the users can proceed to further analysis. 

BioWardrobe’s advanced analysis options allow the user to integrate data from several 

experiments to perform differential expression or binding analysis and create average tag 

density profiles and heatmaps.

1. To start the analysis, go to the “Data & Analysis” menu and click on “Analyze” 

→ “Project designer”.

2. A new project can be created by typing the project name in the field on the top 

left.

3. After entering the name of the new project and hitting enter, the project file will 

be created. Upon clicking it, the various analysis options will become available. 

This includes “Genes Lists,” “R language processing,” “ATDP & Heatmaps,” 

“DESeq” [18, 19], and “MAnorm” [20] (see below).

3.2.1 Gene Lists—The “Gene Lists” function allows the user to create and manage lists 

of genes for future analysis. Experimental raw data can be added to the project by dragging 

the library from the middle pane. Here gene lists can be created by filtering RNA-Seq data 

on the basis of gene expression level in one or several experiments.

3.2.2 DESeq—The “DESeq” function (see Note 12) can be used to perform the 

differential gene expression analysis. In order to define replicates, a user can create 

experiment groups and drag the replicate experiments into these groups. After the conditions 

are defined, DESeq analysis can be performed.

1. Click on “DESeq.”

2. Select the conditions (groups of replicates) to use and populate them by dragging 

libraries from the RNA-Seq data tab.

3. To initiate the analysis click the “+” icon next to one of the groups. Enter a name 

for the analysis and specify the conditions to be compared in the “DESeq input” 

field. Series type is used when more than two conditions are compared. 

Assuming that there are three conditions (1, 2, and 3), selecting “Pairwise series” 

will perform all pairwise comparisons (1–2, 1–3, 2–3), whereas “Time series” 

will perform 1–2 and 2–3 and “Kinetics series” will perform 1–2 and 1–3 

comparisons. “Annotation grouping” specifies the annotation to be used for 

comparison—(isoforms/genes/common TSS—see Note 8).

4. After all the conditions have been set up, click “Run.”

5. Once analysis is complete the results of DESeq will appear and can be saved as 

an excel file by clicking on “Save.”

12.DEseq2: To identify differentially expressed genes, BioWardrobe uses DESeq2. The comparisons can be set up for genes, common 
TSS or isoforms. DESeq2 performs a pairwise comparison using the raw read numbers for each expression unit. For convenience, 
BioWardrobe provides average RPKM values for each condition. Since the normalization used in DESeq2 is different from RPKM, 
the fold change reported by DESeq2 will not necessarily match the fold change between average RPKMs. We recommend filtering 
analysis results on the basis of p-adj and log fold change (LOGR).
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6. The results can be filtered and gene sets can be created by choosing the options 

in the “Filter” section. Filtering can be done on the basis of raw/adjusted p-value, 

RPKMs or chromosome using logical operators (AND/OR).

3.2.3 ATDP and Heatmaps—The “ATDP & Heatmaps” function serves to produce the 

average tag density profiles and heat maps to compare the chromatin environment at 

different gene sets. The gene sets created while doing the DESeq analysis can be viewed in 

this window. ChIP-Seq data can be added here by dragging and dropping the data.

1. Average tag density profiles are used to analyze the differential enrichment of 

certain modifications around TSS or gene bodies. To create one, click the graphs 

icon next to one of libraries.

2. In the “ATDP input,” the plots can be added along with the names that will be 

displayed in the plot legend.

3. Click “Run.” The plots will be generated within a few minutes. The three tabs 

will show “Average Tag Density” around TSS, “Gene Body Average Tag 

Density” and “Tag Density Heatmaps.” Plots can be saved in .svg format using 

the save button.

4. In the “Average Tag Density” tab the difference in the modification level 

between the gene sets can be further analyzed using the Mann–Whitney–

Wilcoxon (MWW) test. To perform the statistical analysis, highlight the area 

around TSS (or within gene body) that will be compared. After confirming the 

coordinates, BioWardrobe will produce the box-plot and the matrix of MWW p-

values indicating whether the tag densities are significantly different between the 

gene sets.

5. The “Tag Density Heatmaps” tab will show tag density for individual genes 

within the same groups. These can be used to correlate gene expression data with 

data for several modifications in several conditions.

6. In the “Tag Density Heatmaps” section, the color scale and order of the genes 

can be changed by using the buttons above the graphs.

3.2.4 MAnorm—“MAnorm” (see Note 13) can be used to obtain differential ChIP-Seq 

enrichment (different levels of binding between the data sets compared). Data can be added 

by dragging and dropping.

1. To perform analysis by MAnorm, enter the name that will be assigned to the 

result of the analysis.

2. In the “MAnorm Input” section, add the data sets that are going to be compared.

13.MAnorm is used to perform differential enrichment analysis. The analysis can take up to an hour. In addition to displaying the 
islands, the table shows the neighboring genes and where the island is located relative to these genes. We recommend filtering the list 
on the basis of both the p-value and rescaled M (log2 fold change). Unlike some other programs, MAnorm adjusts for differential 
enrichment between experiments by assuming that the true intensities of most common peaks are the same between two ChIP-Seq 
samples. We consider this to be a very important feature that overrides some of MAnorm’s deficiencies: replicates cannot be used for 
MAnorm, and MAnorm analysis is not commutative (see Wiki at biowardrobe.com for further discussion).
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3. Click on “Run.” The analysis can take up to an hour.

4. The results can be saved using the “Save” option. They can be filtered using the 

p values and rescaled M (log fold change) value.

3.3 Customizable Analysis with R

BioWardrobe allows advanced users to add customizable analysis using precalculated values 

from the BioWardrobe database. R scripts can be used in both basic and advanced analysis. 

Additionally, an R library that allows users to access the data stored in BioWardrobe from 

the R environment is provided.

3.3.1 Basic Analysis with R

1. After the basic analysis of an experiment is completed, the R analysis tab 

becomes visible. Switching to the R tab triggers the scripts to run. BioWardrobe 

checks the time stamps of the last script edit and last run and reinitiates a run if 

the script was edited after the completion of the last run. There are two scripts 

available, default and custom. Default scripts will be run on every experiment in 

the database.

(a) Open an experiment after the analysis is finished.

(b) Switch to the R tab. If it is the first time that the R tab is accessed after 

analysis, the system will run the scripts. If not, it will show the results.

2. To edit default scripts, there is a “source” subtab on the R tab. Select a script to 

edit, “Default” or “Custom.”

(a) When script editing is finished, press the “Apply” button at the top left. 

It saves the script and updates the time stamp.

(b) Close the experiment window and open it again.

(c) Switch to the R tab and BioWardrobe will run the new script.

3.3.2 Advanced Analysis with R

1. Select the “R language processing” in “Advanced Analysis.” This option can be 

used to run preconfigured R scripts that use data from more than a single 

experiment in BioWardrobe. “The R language processing” panel has a tree view 

with two main folders, “Raw Data” and “R Results.” The “Raw Data” folder is 

the list of experiments used in the current project.

(a) To perform analysis, click the “R” icon and in the window that appears, 

type the name that will be assigned to the result.

(b) The “Predefined R script” then has to be selected (the current version 

of BioWardrobe has “IDR” and “PCA” analysis).

(c) In the “R arguments” section, experiments to be analyzed can be 

selected.

(d) Run the experiment by selecting the “Run” button.
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3.3.3 BioWardrobe R Library—Advanced users can access BioWardrobe’s 

precalculated data in R by installing and using a BioWardrobe R library on the same system 

that has BioWardrobe installed.

1. To install BioWardrobe R library:

(a) Clone BioWardrobe repository from GitHub by “git clone https://

github.com/CCH-MC/biowardrobe”.

(b) Go into scripts/R folder by “cd scripts/R”.

(C) Run “R CMD INSTALL wardrobe.”

2. To use BioWardrobe R library:

(a) Run R.

(b) To load the library in R, type “library(wardrobe)”.

(c) To access the data set from an experiment with an ID (1000 for 

instance), type “experiment<-wardrobe (id=1000)”.

(d) Now the experiment variable contains all the available information:

• experiment$uid: experiment internal UID—string.

• experiment$isRNA: numeric 1/0, if 1 it is an RNA-Seq 

experiment.

• RNA-Seq specific

experiment$dataseti: ’data.frame’—table with RPKM 

values counted against isoforms.

experiment$datasetg: ’data.frame’—table with RPKM 

values counted against genes.

experiment$datasetc: ’data.frame’—table with RPKM 

values counted against common TSS.

• DNA-Seq specific

experiment$dataset: ’data.frame’—MACS output table.

experiment$fragmentsize: numeric—ChIP-seq library 

fragment size that was used in the calculations.

experiment$isPair: 1/0—1 if it is a pair-end experiment.

experiment$isDUTP: 1/0—1 if it is a dUTP experiment.

experiment$tagsmapped: integer—the number of tags 

mapped to the reference genome.

experiment$db: string—UCSC database name: e.g., 

mm10/hg19/rn5/xenTro3.
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experiment$annotation: string—UCSC annotation table; 

for instance, using “refGene,” one can select data from 

experiment$db.experiment$annotation to view an 

annotation for the reference genome.

experiment$alias: string—a short experiment name.

experiment$bamfile: string—the full path to the bam file.

experiment$fastgz: string the full path to the fastq 

bzipped file.

References

1. Barski A, Cuddapah S, Cui K et al. (2007) High-resolution profiling of histone methylations in the 
human genome. Cell 129:823–837. 10.1016/j.cell.2007.05.009 [PubMed: 17512414] 

2. Mikkelsen TS, Ku M, Jaffe DB et al. (2007) Genome-wide maps of chromatin state in pluripotent 
and lineage-committed cells. Nature 448:553–560. 10.1038/nature06008 [PubMed: 17603471] 

3. Robertson G, Hirst M, Bainbridge M et al. (2007) Genome-wide profiles of STAT1 DNA association 
using chromatin immunoprecipitation and massively parallel sequencing. Nat Methods 4:651–657. 
10.1038/nmeth1068 [PubMed: 17558387] 

4. Mortazavi A, Williams BA, McCue K et al. (2008) Mapping and quantifying mammalian 
transcriptomes by RNA-Seq. Nat Methods 5:621–628. 10.1038/nmeth.1226.nmeth.1226 [pii] 
[PubMed: 18516045] 

5. Boyle AP, Davis S, Shulha HP et al. (2008) High-resolution mapping and characterization of open 
chromatin across the genome. Cell 132:311–322. 10.1016/j.cell.
2007.12.014.S0092-8674(07)01613-3 [pii] [PubMed: 18243105] 

6. Buenrostro JD, Giresi PG, Zaba LC et al. (2013) Transposition of native chromatin for fast and 
sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. 
Nat Methods 10:1213–1218. 10.1038/nmeth.2688 [PubMed: 24097267] 

7. Heinz S, Benner C, Spann N et al. (2010) Simple combinations of lineage-determining transcription 
factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell 
38:576–589. 10.1016/j.molcel.2010.05.004 [PubMed: 20513432] 

8. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of 
short DNA sequences to the human genome. Genome Biol 10:R25 10.1186/gb-2009-10-3-r25 
[PubMed: 19261174] 

9. Trapnell C, Roberts A, Goff L et al. (2012) Differential gene and transcript expression analysis of 
RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7:562–578. 10.1038/nprot.2012.016 
[PubMed: 22383036] 

10. Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. 
Bioinformatics 25:1105–1111. 10.1093/bioinformatics/btp120 [PubMed: 19289445] 

11. Trapnell C, Hendrickson DG, Sauvageau M et al. (2013) Differential analysis of gene regulation at 
transcript resolution with RNA-seq. Nat Biotechnol 31:46–53. 10.1038/nbt.2450 [PubMed: 
23222703] 

12. Strand NGS: http://www.strand-ngs.com

13. Partek: http://www.partek.com/

14. Illumina Basespace. https://basespace.illumina.com

15. Goecks J, Nekrutenko A, Taylor J, Galaxy Team (2010) Galaxy: a comprehensive approach for 
supporting accessible, reproducible, and transparent computational research in the life sciences. 
Genome Biol 11:R86 10.1186/gb-2010-11-8-r86 [PubMed: 20738864] 

16. Kartashov AV, Barski A (2015) BioWardrobe: an integrated platform for analysis of epigenomics 
and transcriptomics data. Genome Biol 16:158 10.1186/s13059-015-0720-3 [PubMed: 26248465] 

Vallabh et al. Page 12

Methods Mol Biol. Author manuscript; available in PMC 2018 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.strand-ngs.com
http://www.partek.com/
https://basespace.illumina.com


17. Zhang Y, Liu T, Meyer CA et al. (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol 
9:R137 10.1186/gb-2008-9-9-r137 [PubMed: 18798982] 

18. Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 
11:R106 10.1186/gb-2010-11-10-r106 [PubMed: 20979621] 

19. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for 
RNA-seq data with DESeq2. Genome Biol 15:550 10.1186/s13059-014-0550-8 [PubMed: 
25516281] 

20. Shao Z, Zhang Y, Yuan G-C et al. (2012) MAnorm: a robust model for quantitative comparison of 
ChIP-Seq data sets. Genome Biol 13: R16 10.1186/gb-2012-13-3-r16 [PubMed: 22424423] 

21. Machanick P, Bailey TL (2011) MEME-ChIP: motif analysis of large DNA datasets. 
Bioinformatics 27:1696–1697. 10.1093/bioinformatics/btr189 [PubMed: 21486936] 

22. Zambelli F, Pesole G, Pavesi G (2009) Pscan: finding over-represented transcription factor binding 
site motifs in sequences from co-regulated or co-expressed genes. Nucleic Acids Res 37:W247–
W252. 10.1093/nar/gkp464 [PubMed: 19487240] 

Vallabh et al. Page 13

Methods Mol Biol. Author manuscript; available in PMC 2018 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Mapping statistics (a) and (b) ChIP-Seq mapping statistics show mapped reads in green, 

multi-mapped reads in blue and unmapped reads in red. A high percentage of unmapped 

reads may indicate contamination with adapter dimers—see Fig. 2c. (c) and (d) RNA-Seq 
mapping statistics shows reads mapped to annotation in green, multi-mapped reads in blue, 

reads mapped outside annotation in orange and unmapped reads in red. High percentage of 

reads mapped outside annotation may indicate DNA contamination. (e) Ribosomal RNA 
contamination: High percentage of reads mapping to rDNA repeat indicate problems with 

mRNA isolation
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Fig. 2. 
Base frequency plot (a) Absence of AT bias in H3K4me3 ChIP-Seq reads suggests 

enrichment of H3K4me3 in genic areas. For RNA-Seq such plot would indicate a good 

library without gDNA contamination. (b) For RNA-Seq AT bias indicates DNA 

contamination. (c) The spiky plots indicate adapter contamination during library 

construction
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Fig. 3. 
(a) Genome browser tab showing H3K4me3 peaks at the ACTB promoter. (b) The 

presence of tall square peaks in the genome browser before removing duplicates indicates 

over amplification. (c) Customized display for showing strand-specific RNA-Seq tag density
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Fig. 4. 
RPKMS can be grouped by isoforms, a common Transcription Start Site (TSS) or genes
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Fig. 5. 
Average tag density profiles (a) and (b) Show the enrichment of H3K4me3 around the 

Transcription Start Site. Note that the signal-to-noise ratio is different in (a) and (b), 

suggesting that experiment (a) worked much better. Direct peak height comparison between 

the peaks on the browser may be ill-advised. Also note that the resolution in (a) is better due 

to better fragmentation
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Fig. 6. 
Islands distribution shows the distribution of H3K4me3 around different genomic regions. 

From this figure, we can conclude that H3K4me3 is enriched around the promoter regions
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