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Abstract

We propose a framework for the linear prediction of a multi-way array (i.e., a tensor) from another 

multi-way array of arbitrary dimension, using the contracted tensor product. This framework 

generalizes several existing approaches, including methods to predict a scalar outcome from a 

tensor, a matrix from a matrix, or a tensor from a scalar. We describe an approach that exploits the 

multiway structure of both the predictors and the outcomes by restricting the coefficients to have 

reduced CP-rank. We propose a general and efficient algorithm for penalized least-squares 

estimation, which allows for a ridge (L2) penalty on the coefficients. The objective is shown to 

give the mode of a Bayesian posterior, which motivates a Gibbs sampling algorithm for inference. 

We illustrate the approach with an application to facial image data. An R package is available at 

https://github.com/lockEF/MultiwayRegression.
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1 Introduction

For many applications data are best represented in the form of a tensor, also called a multi-
way or multi-dimensional array, which extends the familiar two-way data matrix (Samples × 
Variables) to higher dimensions. Tensors are increasingly encountered in fields that require 

the automated collection of high-throughput data with complex structure. For example, in 

molecular “omics” pro ling it is now common to collect high-dimensional data over multiple 

subjects, tissues, fluids or time points within a single study. For neuroimaging modalities 

such as fMRI and EEG, data are commonly represented as multi-way arrays with 

dimensions that can represent subjects, time points, brain regions, or frequencies. In this 

article we consider an application to a collection of facial images from the Faces in the Wild 

database (Learned-Miller et al., 2016), which when properly aligned to a 90 90 pixel grid 

can be represented as a 4-way array with dimension Faces × X × Y × Colors, where X and Y 
give the horizontal and vertical location of each pixel.
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This article concerns the prediction of an array of arbitrary dimension Q1 × ⋯ QM from 

another array of arbitrary dimension P1 × ⋯ PL. For N training observations, this involves an 

outcome array 𝕐 : N × Q1 × ⋯ × QM and a predictor array 𝕏 : N × P1 × ⋯ × PL. For example, 

we consider the simultaneous prediction of several describable attributes for faces from their 

images (Kumar et al., 2009), which requires predicting the array 𝕐 :Faces × Attributes from 

𝕏:Faces × X × Y × Colors. Another potential application is the prediction of EEG from fMRI 

data (see De Martino et al. (2011)), or fMRI from EEG data (see Jansen et al. (2012)). The 

spatial resolution of fMRI is richer than that for EEG, and the temporal resolution of EEG is 

richer than that for fMRI. Thus, an understanding of the predictive relationship between the 

two datasets can be used to infer missing temporal information for fMRI (e.g., the order in 

which certain region activations occur) and missing spatial information for EEG (e.g., the 

exact spatial location of certain electrical signals) (Huster et al., 2012). Yet another potential 

application is the prediction of gene expression across multiple tissues from other genomic 

variables (see Ramasamy et al. (2014)). The association between genetic polymorphisms 

with gene expression is an important first step to understanding the genetic etiology of a 

disease, and such associations are known to differ across tissue types (GTEx Consortium, 

2015).

The task of tensor-on-tensor regression extends a growing literature on the predictive 

modeling of tensors under different scenarios. Such methods commonly rely on tensor 

factorization techniques (Kolda and Bader, 2009), which reconstruct a tensor using a small 

number of underlying patterns in each dimension. Tensor factorizations extend well known 

techniques for a matrix, such as the singular value decomposition and principal component 

analysis, to higher-order arrays. A classical and straightforward technique is the PARAFAC/

CANDECOMP (CP) (Harshman, 1970) decomposition, in which the data are approximated 

as a linear combination of rank-1 tensors. An alternative is the Tucker decomposition 

(Tucker, 1966), in which a tensor is factorized into basis vectors for each dimension that are 

combined using a smaller core tensor. The CP factorization is a special case of the Tucker 

factorization wherein the core tensor is diagonal. Such factorization techniques are useful to 

account for and exploit multi-way dependence and reduce dimensionality.

Several methods have been developed for the prediction of a scalar outcome from a tensor of 

arbitrary dimension: 𝕐 : N × 1 and 𝕏: N × P1 × ⋯ × PL. Zhou et al. (2013) and Guo et al. 

(2012) propose tensor regression models for a single outcome in which the coefficient array 

is assumed to have a low-rank CP factorization. The proposed framework in Zhou et al. 

(2013) extends to generalized linear models and allows for the incorporation of sparsity-

inducing regularization terms. An analogous approach in which the coefficients are assumed 

to have a Tucker structure is described by Li et al. (2013). Several methods have also been 

developed for the classification of multiway data (categorical Y : N × 1) (Tao et al., 2007; 

Wimalawarne et al., 2016; Lyu et al.), extending well-known linear classification techniques 

under the assumption that model coefficients have a factorized structure.

There is also a wide literature on the prediction of a matrix from another matrix, 𝕐 : N × Q
and 𝕏: N × P. A classical approach is reduced rank regression, in which the P × Q coefficient 

matrix is restricted to have low rank (Izenman, 1975; Mukherjee and Zhu, 2011). Miranda et 
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al. (2015) describe a Bayesian formulation for regression models with multiple outcome 

variables and multiway predictors ( 𝕐 : N × Q and 𝕏: N × P1 × ⋯ × PL), which is applied to a 

neuroimaging study. Conversely, tensor response regression models have been developed to 

predict a multiway outcome from vector predictors ( 𝕐 :N × Q1 × ⋯ × QM, 𝕏: N × P). Sun and 

Li (2016) propose a tensor response regression wherein a multiway outcome is assumed to 

have a CP factorization, and Li and Zhang (2016) propose a tensor response regression 

wherein a multiway outcome is assumed to have a Tucker factorization with weights 

determined by vector-valued predictors. For a similar context Lock and Li (2016) describe a 

supervised CP factorization, wherein the components of a CP factorization are informed by 

vector-valued covariates. Hoff (2015) extend a bilinear regression model for matrices to the 

prediction of an outcome tensor from a predictor tensor with the same number of modes 

(e.g., 𝕐 : N × Q1 × ⋯ × QK and 𝕏: N × P1 × ⋯ × PK) via a Tucker product and describe a Gibbs 

sampling approach to inference.

The above methods address several important tasks, including scalar-on-tensor regression, 

vector-on-vector regression, vector-on-tensor regression and tensor-on-vector regression. 

However, there is a lack of methodology to addresses the important and increasingly relevant 

task of tensor-on-tensor regression, i.e., predicting an array of arbitrary dimension from 

another array of arbitrary dimension. This scenario is considered within a comprehensive 

theoretical study of convex tensor regularizers Raskutti and Yuan (2015), including the 

tensor nuclear norm. However, they do not discuss estimation algorithms for this context, 

and computing the tensor nuclear norm is NP-hard (Sun and Li, 2016; Friedland and Lim, 

2014). In this article we propose a contracted tensor product for the linear prediction of a 

tensor 𝕏 from a tensor 𝕐 , where both 𝕏 and 𝕐  have arbitrary dimension, through a 

coefficient array 𝔹 of dimension P1 × ⋯ × PL × Q1 × ⋯ × QM. This framework is shown to 

accommodate all valid linear relations between the variates of 𝕏 and the variates of 𝕐 . In our 

implementation 𝔹 is assumed to have reduced CP-rank, a simple restriction which 

simultaneously exploits the multi-way structure of both 𝕏 and 𝕐  by borrowing information 

across the different modes and reducing dimensionality. We propose a general and efficient 

algorithm for penalized least-squares estimation, which allows for a ridge (L2) penalty on 

the coefficients. The objective is shown to give the mode of a Bayesian posterior, which 

motivates a Gibbs sampling algorithm for inference.

The primary novel contribution of this article is a framework and methodology that allows 

for tensor-on-tensor regression with arbitrary dimensions. Other novel contributions include 

optimization under a ridge penalty on the coefficients and Gibbs sampling for inference, and 

these contributions are also relevant to the more familiar special cases of tensor regression 

(scalar-on-tensor), reduced rank regression (vector-on-vector), and tensor response 

regression (tensor-on-vector).

2 Notation and Preliminaries

Throughout this article bold lowercase characters (a) denote vectors, bold uppercase 

characters (A) denote matrices, and uppercase blackboard bold characters ( 𝔸) denote multi-

way arrays of arbitrary dimension.
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Define a K-way array (i.e., a Kth-order tensor) by 𝔸: I1 × ⋯ × IK, where Ik is the dimension 

of the kth mode. The entries of the array are defined by indices enclosed in square brackets, 

𝔸 i1, …, iK , where ik ∈ {1, …, Ik} for k ∈ 1, …, K.

For vectors a1, …, aK of length I1, …, IK, respectively, define the outer product

𝔸 = a1 ∘ a2⋯ ∘ aK

as the K-way array of dimensions I1 × ⋯ × IK, with entries

𝔸 i1, …, iK = ∏
k = 1

K
ak ik .

The outer product of vectors is defined to have rank 1. For matrices A1, …, AK of the same 

column dimension R, we introduce the notation

〚 A1, …, AK 〛 = ∑
r = 1

R
a1r

∘ ⋯ ∘ aKr
, (1)

where akr is the rth column of Ak. This gives a CP factorization, and an array that can be 

expressed in the form (1) is defined to have rank R.

The vectorization operator vec(·) transforms a multiway array to a vector containing the 

array entries. Specifically, vec 𝔸  is a vector of length ∏k = 1
K IK where

vec 𝔸 i1 + ∑
k = 2

K
∏

l = 1

k − 1
Il ik − 1 = 𝔸 i1, …, iK .

It is often useful to represent an array in matrix form via unfolding it along a given mode. 

For this purpose we let the rows of A(k) : Ik × (∏j≠k Ij) give the vectorized versions of each 

subarray in the kth mode.

For two multiway arrays 𝔸: I1 × ⋯ × IK × P1⋯PL and 𝔹:P1 × ⋯ × PL × Q1 × ⋯ × QM we 

define the contracted tensor product

𝔸, 𝔹 L: I1 × ⋯ × IK × Q1 × ⋯ × QM

by

𝔸, 𝔹 L i1, …iK, q1, …, qM = ∑
p1 = 1

P1
⋯ ∑

pL = 1

PL
𝔸 i1, …iK, p1, …, pL 𝔹 p1, …pL, q1, …, qM .
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An analogous definition of the contracted tensor product, with slight differences in notation, 

is given in Bader and Kolda (2006). Note that for matrices A : I × P and B : P × Q,

A, B 1 = AB,

and thus the contracted tensor product extends the usual matrix product to higher-order 

operands.

3 General framework

Consider predicting a multiway array 𝕐 : N × Q1 × ⋯ × QM from a multiway array 

𝕏: N × P1 × ⋯ × PL with the model

𝕐 = 𝕏, 𝔹 L + 𝔼 (2)

where 𝔹:P1 × ⋯ × PL × Q1 × ⋯ × QM is a coefficient array and 𝔼: N × Q1 × ⋯ × QM is an error 

array. The first L modes of 𝔹 contract the dimensions of 𝕏 that are not in 𝕐 , and the last M 
modes of 𝔹 expand along the modes in 𝕐  that are not in 𝕏. The predicted outcome indexed 

by (q1, …, qM) is

𝕐 n, q1, …, qM ≈ ∑
p1

P1
⋯∑

pL

PL
𝕏 N, p1, …pL 𝔹 p1, …, pL, q1, …qM (3)

for observations n = 1, …, N. In (2) we forgo the use of an intercept term for simplicity, and 

assume that 𝕏 and 𝕐  are each centered to have mean 0 over all their values.

Let P be the total number of predictors for each observation, P = ∏l = 1
L PL, and Q be the 

total number of outcomes for each observation, Q = ∏m = 1
M QM. Equation (2) can be 

reformulated by rearranging the entries of 𝕏, 𝕐 , 𝔹 and 𝔼 into matrix form

Y 1 = X 1 B + E 1 (4)

where Y(1) : N × Q, X(1) : N × P, and E(1) : N × Q are the arrays 𝕐 , 𝕏 and 𝔼 unfolded along 

the first mode. The columns of B : P × Q vectorize the first L modes of 𝔹 (collapsing 𝕏), and 

the rows of B vectorize the last M modes of 𝔹 (expanding to 𝕐 ):

B p1 + ∑
l = 2

l − 1
∏

i = 1

l − 1
Pl pl − 1 , q1 + ∑

m = 2

M
∏

i = 1

m − 1
Qm qm − 1 = 𝔹 p1, …, pL, q1, …, qM .
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From its matrix form (4) it is clear that the general framework (2) supports all valid linear 

relations between the P variates of 𝕏 and the Q variates of 𝕐 .

4 Estimation criteria

Consider choosing 𝔹 to minimize the sum of squared residuals

𝕐 − 𝕏, 𝔹 L F
2 .

The unrestricted solution for 𝔹 is given by separate OLS regressions for each of the Q 

outcomes in 𝕐 , each with design matrix X(1); this is clear from (4), where the columns of B 

are given by separate OLS regressions of X(1) on each column of Y(1). Therefore, the 

unrestricted solution is not well-defined if Q > N or more generally if X(1) is not of full 

column rank. The unrestricted least squares solution may be undesirable even if it is well-

defined, as it does not exploit the multi-way structure of 𝕏 or 𝕐 , and requires fitting

∏
l = 1

L
Pl ∏

m = 1

M
Qm (5)

unknown parameters. Alternatively, the multi-way nature of 𝕏 and 𝕐  suggests a low-rank 

solution for 𝔹. The rank R solution can be represented as

𝔹 = 〚 U1, …, UL, V1, …, VM 〛, (6)

where Ul : Pl × R for l = 1, …, L and Vm : Qm × R for m = 1, …, M. The dimension of this 

model is

R P1 + ⋯ + PL + Q1 + ⋯ + QM , (7)

which can be a several order reduction from the unconstrained dimensionality (5). Moreover, 

the reduced rank solution allows for borrowing of information across the different 

dimensions of both 𝕏 and 𝕐 . However, the resulting least-squares solution

arg min
rank 𝔹 ≤ R

𝕐 − 𝕏, 𝔹 L F
2 . (8)

is still prone to over-fitting and instability if the model dimension (7) is high relative to the 

number of observed outcomes, or if the predictors 𝕏 have multicollinearity that is not 

addressed by the reduced rank assumption (e.g., multicollinearity within a mode). High-

dimensionality and multicollinearity are both commonly encountered in application areas 
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that involve multi-way data, such as imaging and genomics. To address these issues we 

incorporate an L2 penalty on the coefficient array 𝔹,

arg min
rank 𝔹 ≤ R

𝕐 − 𝕏, 𝔹 L F
2 . + λ 𝔹 F

2 , (9)

where λ controls the degree of penalization. This objective is equivalent to that of ridge 

regression when predicting a vector outcome 𝕐 : N × 1 from a matrix 𝕏: N × P, where 

necessarily R = 1.

5 Identifiability

The general predictive model (2) is identifiable for 𝔹, in that 𝔹 ≠ 𝔹∗ implies

𝕏∼, 𝔹 L ≠ 𝕏∼, 𝔹∗
L

for some 𝕏∼ ∈ ℝ
P1 × ⋯ × PL. To show this, note that if 𝕏∼ is an array with 1 in position [p1, …, 

pL] and zeros elsewhere, then

𝕏∼, 𝔹 L q1, …qM = 𝔹 p1, …, pM, q1, …, qM .

However, the resulting components U1, …, UL, V1, …, VM in the factorized representation 

of 𝔹 (6) are not readily identified. Conditions for their identifiability are equivalent to 

conditions for the identifiability of the CP factorization, for which there is an extensive 

literature. To account for arbitrary scaling and ordering of the components, we impose the 

restrictions

1. ‖u1r‖ = ⋯ = ‖uLr‖ = ‖v1r‖ = ⋯ = ‖vMr‖ for r = 1 …, R, and

2. ‖u11‖ ≥ ‖u12‖ ≥ ⋯ ≥ ‖u1R‖.

The above restrictions are generally enough to ensure identifiability when L+M ≥ 3 under 

verifiable conditions (Sidiropoulos and Bro, 2000). If L + M = 2 (i.e., when predicting a 

matrix from a matrix, a 3-way array from a vector, or a vector from a 3-way array), then 𝔹 is 

a matrix and we require additional orthogonality restrictions:

3. u1r
T u

1r∗ = 0 for all r ≠ r*, or v1r
T v

1r∗ = 0 for all r ≠ r*.

In practice these restrictions can be imposed post-hoc, after the estimation procedure 

detailed in Section 7. For L + M ≥ 3, restrictions (a) and (b) can be imposed via a re-

ordering and re-scaling of the components. For L + M = 2, components that satisfy 

restrictions (a), (b) and (c) can be identified via a singular value decomposition of 𝔹.
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6 Special cases

Here we describe other methods that fall within the family given by the reduced rank ridge 

objective (9). When predicting a vector from a matrix (Q = 0, P = 1), this framework is 

equivalent to standard ridge regression (Hoerl and Kennard, 1970), which is equivalent to 

OLS when λ = 0. Moreover, a connection between standard ridge regression and continuum 

regression (Sundberg, 1993) implies that the coefficients obtained through ridge regression 

are proportional to partial least squares regression for some λ = λ*, and the coefficients are 

proportional to the principal components of 𝕏 when λ → ∞.

When predicting a matrix from another matrix (Q = 1, P = 1), the objective given by (9) is 

equivalent to reduced rank regression (Izenman, 1975) when λ = 0. For arbitrary λ the 

objective is equivalent to a recently proposed reduced rank ridge regression (Mukherjee and 

Zhu, 2011).

When predicting a scalar from a tensor of arbitrary dimension (Q = 0, arbitrary P), (9) is 

equivalent to tensor ridge regression (Guo et al., 2012). Guo et al. (2012) use an alternating 

approach to estimation but claim that the subproblem for estimation of each Ul cannot be 

computed in closed form and resort to gradient style methods instead. On the contrary, our 

optimization approach detailed in Section 7 does give a closed form solution to this 

subproblem (11). Alternatively, Guo et al. (2012) suggest the separable form of the 

objective,

arg min
rank 𝔹 ≤ R

y − 𝕏, 𝔹 L F
2 . + λ ∑

l = 1

L
Ul F

2 . (10)

This separable objective is also used by Zhou et al. (2013), who consider a power family of 

penalty functions for predicting a vector from a tensor using a generalized linear model; 

their objective for a Gaussian response under L2 penalization is equivalent to (10). The 

solution of the separable L2 penalty depends on arbitrary scaling and orthogonality 

restrictions for identifiability of the Ul’s. For example, the separable penalty (10) is 

equivalent to the non-separable L2 penalty (9) if the columns of U2, …, UL are restricted to 

be orthonormal.

Without scale restrictions on the columns of Ul, the solution to the separable L2 penalty is 

equal to the solution for the non-separable penalty 𝔹 ∗ for L = 2, where 𝔹 ∗ defines the 

nuclear norm (i.e., the sum of the singular values of 𝔹). This interesting result is given 

explicitly in Proposition 1, and its proof is given in Appendix C.

Proposition 1

For 𝔹 = 〚 U1, U2 〛 = U1U2
T, where the columns of U1 and U2 are orthogonal,
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arg min
rank 𝔹 ≤ R

y − 𝕏, 𝔹 2 F
2 + λ ∑

l = 1

2
Ul F

2 = arg min
rank 𝔹 ≤ R

y − 𝕏, 𝔹 2 F
2 + 2λ 𝔹 ∗ .

7 Optimization

We describe an iterative procedure to estimate 𝔹 that alternatingly solves the objective (9) 

for the component vectors in each mode, {U1, …, UL, V1, …, VM}, with the others fixed.

7.1 Least-squares

Here we consider the case without ridge regularization, λ = 0, wherein the component 

vectors in each mode are updated via separate OLS regressions.

To simplify notation we describe the procedure to update U1 with {U2, …, UL, V1, …, VM} 

fixed. The procedure to update each of U2, …, UL is analogous, because the loss function is 

invariant under permutation of the L modes of 𝕏.

Define ℂr : N × P1 × Q1 × ⋯ × QM to be the contracted tensor product of 𝕏 and the r’th 

component of the CP factorization without U1:

ℂr = 𝕏, u2r ∘ ⋯ ∘ uLr ∘ v1r ∘ ⋯ ∘ vMr L − 1 .

Unfolding ℂr along the dimension corresponding to P1 gives the design matrix to predict 

vec(Y) for the r’th column of U1, Cr : NQ × P1. Thus, concatenating these matrices to define 

C : NQ × RP1 by C = [C1 … CR] gives the design matrix for all of the entries of U1, which 

are updated via OLS:

vec U1 = CTC −1CTvec 𝕐 . (11)

For the outcome modes we describe the procedure to update VM with {U1, …, UL, V1, …, 

VM−1} fixed. The procedure to update each of V1, …, VL−1 is analogous, because the loss 

function is invariant under permutation of the M modes of 𝕐 .

Let YM :QM × N∏m = 1
M − 1Qm be 𝕐  unfolded along the mode corresponding to QM. Define 

D: N∏m = 1
M − 1Qm × R so that the r’th column of D, dr, gives the entries of the contracted 

tensor product of 𝕏 and the r’th component of the CP factorization without VM:

dr = vec 𝕏, u1r ∘ ⋯ ∘ uLr ∘ v1r ∘ ⋯ ∘ v M − 1 r L
.

The entries of VM are then updated via QM separate OLS regressions:
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VM = DTD −1DTYM
T . (12)

7.2 Ridge-regularization

For λ > 0, note that the objective (9) can be equivalently represented as an unregularized 

least squares problem with modified predictor and outcome arrays 𝕏∼ and 𝕐∼:

arg min
rank 𝔹 ≤ R

𝕐∼ − 𝕏∼, 𝔹 L F
2 .

Here 𝕏∼: N + P × P1 × ⋯ × PL is the concatenation of 𝕏 and a tensor wherein each P1 × ⋯ PL 

dimensional slice has λ for a single entry and zeros elsewhere; 𝕐∼: N + P × Q1 × ⋯ × QM is 

the concatenation of 𝕐  and a P × Q1 × ⋯ QM tensor of zeros. Unfolding 𝕏∼ and 𝕐∼ along the 

first dimension yields the matrices

X∼ 1 =
X 1

λIP × P
and Y∼ 1 =

Y 1

0
P × ∏m = 1

L Qm

,

where I is the identity matrix and 0 is a matrix of zeros.

Thus, one can optimize the objective (9) via alternating least squares by replacing 𝕏∼ for 𝕏
and 𝕐∼ for 𝕐  in the least-squares algorithm of Section 7.1. However, 𝕏∼ and 𝕐∼ can be very 

large for high-dimensional 𝕏. Thankfully, straightforward tensor algebra shows that this is 

equivalent to a direct application of algorithm in Section 7.1 to the original data 𝕏 and 𝕐 , 

with computationally efficient modifications to the OLS updating steps (11) and (12). The 

updating step for U1 (11) is

vec U1 = CTC + λ U2
TU2⋯ ⋅ ⋅ UL

TUL ⋅ V1
TV1⋯ ⋅ ⋅ VM

T VM ⊗ IP1 × P1

−1
CTvec 𝕐 (13)

where · defines the dot product and ⊗ defines the Kronecker product. The updating step for 

VM (12) is

VM = DTD + λ U1
TU1⋯ ⋅ ⋅ UL

TUL ⋅ V1
TV1⋯ ⋅ ⋅ VM − 1

T VM − 1
−1DTYM

T . (14)

This iterative procedure is guaranteed to improve the regularized least squares objective (9) 

at each sub-step. The algorithm is “multi-convex”, i.e., the objective is convex and the 

parameter domains that are iteratively optimized are each convex. However, this is not 

enough to guarantee convergence to a global optimum, and the full space of low-rank tensors 

is not a convex space. The algorithm also may not converge to a local optimum, in that for a 
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given distance metric it is possible that there exists alternative solutions within an 

infinitesimally small ε-ball of the converged solution with a better objective (see (Chen et 

al., 2012) for a discussion on iterative tensor optimization and stationary points). However, it 

is straightforward that the algorithm is guaranteed to converge to a coordinate-wise 
optimum, wherein the solution cannot be improved by changing the parameters in any single 

dimension. Higher levels of regularization (λ → ∞) tend to convexify the objective and 

facilitate convergence to a global optimum, a similar phenomenon is observed in Zhou et al. 

(2013). In practice we find that robustness to initial values and local optima is improved by a 

tempered regularization, starting with larger values of λ that gradually decrease to the 

desired level of regularization.

7.3 Tuning parameter selection

Selection of λ and R (if unknown) can be accomplished by assessing predictive accuracy 

with a training and test set, as illustrated in Section 10. More generally, these parameters can 

be selected via K-fold cross-validation. This approach has the advantage of being free of 

model assumptions, and is assessed via a simulation study in Appendix F. Alternatively, it is 

straightforward to compute the deviance information criterion (DIC) (Spiegelhalter et al., 

2014) for posterior draws under the Bayesian inference framework of Section 8 and use this 

as a model-based heuristic to select both λ and R.

8 Inference

In the previous sections we have considered optimizing a given criteria for point estimation, 

without specifying a distributional form for the data or even a philosophical framework for 

inference. Indeed, the estimator given by the objective (9) is consistent under a wide variety 

of distributional assumptions, including those that allow for correlated responses or 

predictors. See Appendix A for more details on its consistency.

For inference and uncertainty quantification for this point estimate, we propose a Markov 

chain Monte Carlo (MCMC) simulation approach. This approach is theoretically motivated 

by the observation that (9) gives the mode of a Bayesian probability distribution. There are 

several other reasons to use MCMC simulation for inference in this context, rather than 

(e.g.,) asymptotic normality of the global optimizer under an assumed likelihood model (see 

Zhou et al. (2013) and Zhang et al. (2014) for related results). The algorithm in Section 7 

may converge to a local minimum, which can still be used as a starting value for MCMC. 

Moreover, our approach gives a framework for full posterior inference on β over its rank R 
support, the conditional mean for observed responses, and the predictive distribution for the 

response array given new realizations of the predictor array without requiring the 

identifiability of θ = {U1, …, UL, V1, …, VM}. Inference for θ is also possible under the 

conditions of Section 5.

If the errors 𝔼 have independent N(0, σ2) entries, the log-likelihood of 𝕐  implied by the 

general model (2) is
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logpr 𝕐 σ2, 𝔹, 𝕏 = constant − 1
2σ2 𝕐 − 𝕏, 𝔹 L F

2 ,

and thus the unregularized objective (8) gives the maximum likelihood estimate under the 

restriction rank 𝔹 = R. For λ > 0, consider a prior distribution for 𝔹 that is proportional to 

the spherical Gaussian distribution with variance σ2/λ over the support of rank R tensors:

pr 𝔹 ∝
exp − λ

2σ2 𝔹 F
2 if rank 𝔹 ≤ R .

0 otherwise,
(15)

The log posterior distribution for 𝔹 is

log pr 𝔹 𝕐 , 𝕏, σ2 = constant − 1
2σ2 𝕐 − 𝕏, 𝔹 L F

2 + λ 𝔹 F
2

(16)

where rank 𝔹 = R, which is maximized by (9).

Under the factorized form (6) the full conditional distributions implied by (16) for each of 

U1, …, UL, V1, …, VM are multivariate normal. For example, the full conditional for U1 is

pr vec U1 U2, …, UL, V1, …, VM, 𝕐 , 𝕏, σ2 = N μ1, ∑1 ,

where μ1 is the right hand side of (13) and

∑1 = σ2 CTC + λ U2
TU2⋯ ⋅ ⋅ UL

TUL ⋅ V1
TV1⋯ ⋅ ⋅ VM

T VM ⊗ IP1 × P1

−1

where C is defined as in Section 7.1. The full conditional for VM is

pr vec VM U2, …, UL, V1, …, VM, 𝕐 , 𝕏, σ2 = N μL + M, ∑L + M ,

where μL+M is given by the right hand side of (14) and

∑L + M = σ2 DTD + λ U1
TU1⋯ ⋅ ⋅ UL

TUL ⋅ V1
TV1⋯ ⋅ ⋅ VM − 1

T VM − 1
−1 ⊗ IQM × QM

The derivations of the conditional means and variances μi, ∑i i = 1
L + M are given in Appendix 

B. When λ = 0 the full conditionals correspond to a at prior on 𝔹, pr 𝔹 ∝ 1 for rank 𝔹 = R, 

and the posterior mode is given by the unregularized objective (8).
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In practice we use a flexible Jeffrey’s prior for σ2, pr(σ2) ∝ 1=σ2, which leads to an inverse-

gamma (IG) full conditional distribution,

pr σ2 𝔹, 𝕐 , 𝕏 = IG NQ
2 , 1

2 𝕐 − 𝕏, 𝔹 L F
2 . (17)

We simulate dependent samples from the marginal posterior distribution of 𝔹 by Gibbs 

sampling from the full conditionals of U1, …, UL, V1, …, VM, and σ2:

1. Initialize 𝔹 0  by the posterior mode (9) using the procedure in Section 7.

For samples t = 1, …, T, repeat (b) and (c):

2. Draw σ2(t) from P σ2 𝔹 t − 1 , 𝕐 , 𝕏  as in (17).

3. Draw 𝔹 t = 〚 U1
t , …, UL

t , V1
t , …, VM

t 〛, as follows:

U1
t P U1 U2

t − 1 , …, UL
t − 1 , V1

t − 1 , …, VM
t − 1 , 𝕐 , 𝕏, σ2 t

⋮

UL
t P UL U1

t , …, UL − 1
t − 1 , V1

t − 1 , …, VM
t − 1 , 𝕐 , 𝕏, σ2 t

V1
t P V1 U2

t , …, UL
t , V2

t − 1 , …, VM
t − 1 , 𝕐 , 𝕏, σ2 t

⋮

VL
t P VM U1

t , …, UL
t , V1

t − 1 , …, VM
t − 1 , 𝕐 , 𝕏, σ2 t .

For the above algorithm U1, …, UL, V1, …, VM serve as a parameter augmentation to 

facilitate sampling for 𝔹. Interpreting the marginal distribution of each of the U′ls or V′ms

separately requires careful consideration of their identifiability (see Section 5). One 

approach is to perform a post-hoc transformation of the components at each sampling 

iteration

𝔹 t = 〚 U1
∗ t , …, UL

∗ t , V1
∗ t , …, VM

∗ t 〛,

where U1
∗ t , …, UL

∗ t , V1
∗ t , …, VM

∗ t  satisfy given restrictions for identifiability.

For Ñ out-of-sample observations with predictor array 𝕏new: N∼ × P1 × ⋯ × PL, the point 

prediction for the responses is

𝕐 new = 𝕏new, 𝔹
L

(18)

where 𝔹 is given by (9). Uncertainty in this prediction can be assessed using samples from 

the posterior predictive distribution of 𝕐 new:
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𝕐 new
t = 𝕏new, 𝔹 t

L
+ 𝔼new

t , (19)

where 𝔼new
t  is generated with independent N(0, σ2(t)) entries.

9 Simulation study

9.1 Approach

We conduct a simulation study to predict a three-way array 𝕐  from another three-way array 

𝕏 under various conditions. We implement a fully crossed factorial simulation design with 

the following manipulated conditions:

• Rank R = 0, 1, 2, 3, 4 or 5 (6 levels)

• Sample size N = 30 or 120 (2 levels)

• Signal-to-noise ratio SNR = 1 or 5 (2 levels).

For each of the 24 scenarios, we simulate data as follows:

1. Generate 𝕏 : N × P1 × P2 with independent N(0, 1) entries.

2. Generate Ul : Pl × R for l = 1, …, L and Vm : Qm × R for m = 1, …, M, each 

with independent N(0, 1) entries.

3. Generate error 𝔼 : N × Q1 × Q2 with independent N(0, 1) entries.

4. Set 𝕐 = 𝕏, 𝔹 L + 𝔼, where

𝔹 = c 〚 U1, …, UL, V1, …, VM 〛

and c is the scalar giving

𝕏, 𝔹 L F
2

𝔼 F
2 = SNR .

We x the dimensions p1 = 15, p2 = 20, q1 = 5, q2 = 10, and generate 10 replicated datasets as 

above for each of the 24 scenarios, yielding 240 simulated datasets. For each simulated 

dataset, we estimate 𝔹 as in Section 7 under each combination of the following parameters:

• Assumed rank R = 1, 2, 3, 4 or 5 (5 levels)

• Regularization term λ = 0, 0:5, 1, 5 or 50 (5 levels).

For each of the 240 simulated datasets and 5 5 = 25 estimation procedures, we compute the 

relative out-of-sample prediction error of the resulting coefficient estimate 𝔹. This is done 

empirically by generating a new dataset with Ñ = 500 observations:
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𝕐 new = 𝕏new, 𝔹
L

+ 𝔼new

where 𝕏new and 𝔼new have independent N(0, 1) entries. The relative prediction error (RPE) 

for these test observations is

RPE =
𝕐 new − 𝕏new, 𝔹

L F

2

𝕐 new F
2 . (20)

Symmetric 95% credible intervals are created for each value of 𝕐 new using T = 1000 

outcome arrays simulated from the posterior (19).

9.2 Results

First we consider the results for those cases with no signal, R = 0, where the oracle RPE is 1. 

The marginal mean RPE across the levels of N, λ, and R are shown in Table 1. Overall, 

simulations with a higher training sample size N resulted in lower RPE, estimation with 

higher regularization parameter λ resulted in lower RPE, and estimation with higher 

assumed rank resulted in higher RPE. These results are not surprising, as a lower sample 

size, higher assumed rank and less regularization all encourage over-fitting.

Table 2 shows the effect of the regularization parameter λ on the accuracy of the estimated 

model, in terms of RPE and coverage rates, for different scenarios. As expected, prediction 

error is generally improved in scenarios with a higher training sample size and higher signal-

to-noise ratio. Higher values of λ generally improve predictive performance when the 

sample size and signal-to-noise ratio are small, as these scenarios are prone to over-fitting 

without regularization. However, large values of λ can lead to over-shrinkage of the 

estimated coefficients and introduce unnecessary bias, especially in scenarios that are less 

prone to over-fitting. Coverage rates of the 95% credible intervals are generally appropriate, 

especially with a higher training sample size. However, for the scenario with low sample size 

and high signal (N = 30, λ = 120) coverage rates for moderate values of λ are poor, as 

inference is biased toward smaller values of 𝔹.

Table 3 illustrates the effects of rank misspecification on performance, under the scenario 

with N = 120, SNR= 1 and no regularization (λ = 0). For each possible value of the true 

rank R = 1, …, 5, the RPE is minimized when the assumed rank is equal to the true rank. 

Predictive performance is generally more robust to assuming a rank higher than the true rank 

than it is to assuming a rank lower than the true rank.

See Appendix D for additional simulation results when the predictors 𝕏 or response 𝕐  are 

correlated, and see Appendix E for a comparison with ad-hoc approaches that do not account 

for low rank dependence in 𝕏 or 𝕐 .
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10 Application

We use the tensor-on-tensor regression model to predict attributes from facial images, using 

the Labeled Faces in the Wild database (Learned-Miller et al., 2016). The database includes 

over 13000 publicly available images taken from the internet, where each image includes the 

face of an individual. Each image is labeled only with the name of the individual depicted, 

often a celebrity, and there are multiple images for each individual. The images are unposed 

and exhibit wide variation in lighting, image quality, angle, etc. (hence “in the wild”).

Low-rank matrix factorization approaches are commonly used to analyze facial image data, 

particularly in the context of facial recognition (Sirovich and Kirby, 1987; Turk and 

Pentland, 1991; Vasilescu and Terzopoulos, 2002; Kim and Choi, 2007). Although facial 

images are not obviously multi-linear, the use of multi-way factorization techniques has 

been shown to convey advantages over simply vectorizing images (e.g., from a P1 P2 array 

of pixels to a vector of length P1 × P2) (Vasilescu and Terzopoulos, 2002). Kim and Choi 

(2007) show that treating color as another mode within a tensor factorization framework can 

improve facial recognition tasks with different lighting. Moreover, the CP factorization has 

been shown to be much more efficient as a dimension reduction tool for facial images than 

PCA, and marginally more efficient than the Tucker and other multiway factorization 

techniques (Lock et al., 2011).

Kumar et al. (2009) developed an attribute classifier, which gives describable attributes for a 

given facial image. These attributes include characteristics that describe the individual (e.g., 

gender, race, age), that describe their expression (e.g., smiling, frowning, eyes open), and 

that describe their accessories (e.g., glasses, make-up, jewelry). These attribute were 

determined on the Faces in the Wild dataset, as well as other facial image databases. In total 

72 attributes are measured for each image. The attributes are measured on a continuous 

scale; for example, for the smiling attribute, higher values correspond to a more obvious 

smile and lower values correspond to no smile.

Our goal is to create an algorithm to predict the 72 describable and correlated attributes from 

a given image that contains a face. First, the images are frontalized as described in Hassner 

et al. (2015). In this process the unconstrained images are rotated, scaled, and cropped so 

that all faces appear forward-facing and the image shows only the face. After this step 

images are aligned over the coordinates, in that we expect the nose, mouth and other facial 

features to be in approximately the same location. Each frontalized image is 90 × 90 pixels, 

and each pixel gives the intensity for colors red, green and blue, resulting in a multiway 

array of dimensions 90 × 90 × 3. We center the array by subtracting the “mean face” from 

each image, i.e., we center each pixel triplet (x × y × color) to have mean 0 over the 

collection of frontalized images. We standardize the facial attribute data by converting the 

measurements to z-scores, wherein each attribute has mean zero and standard deviation 1 

over the collection of faces.

To train the predictive model we use a use a random sample of 1000 images from unique 

individuals. Thus the predictor array of images 𝕏 is of dimension 1000 × 90 × 90 × 3, and 

the outcome array of attributes 𝕐  is of dimension 1000 × 72. Another set of 1000 images 
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from unique individuals are used as a validation set, 𝕏new:1000 × 90 × 90 × 3 and 

𝕐 new:1000 × 72.

We run the optimization algorithm in Section 7 to estimate the coefficient array 

𝔹:90 × 90 × 3 × 72 under various values for the rank R and regularization parameter λ. We 

consider all combinations of the values λ = {0, 0:1, 1, 10, 100, 1000, 104, 105} and R = {1, 

2, …, 16}. We also consider the full rank model that ignores multi-way structure, where the 

coefficients are given by separate ridge regressions for each of the 72 outcomes on the 90 · 

90 · 3 = 24300 predictors. For each estimate we compute the relative prediction error (RPE) 

for the test set (see (20)). The resulting RPE values over the different estimation schemes are 

shown in Figure 1. The minimum RPE achieved was 0:568, for R = 15 and λ = 105. The 

performance of models with no regularization (λ = 0), or without rank restriction 

(rank=FULL), were much worse in comparison. This illustrates the benefits of simultaneous 

rank restriction and ridge regularization for high-dimensional multi-way prediction 

problems.

In what follows we use R = 15 and λ = 105. Figure 2 shows the predicted values vs. the 

given values, for the test data, over all 72 characteristics. The plot shows substantial residual 

variation but a clear trend, with correlation r = 0:662.

To assess predictive uncertainty we generate 5000 posterior samples as in Section 8, yielding 

samples from the posterior predictive distribution of the 72 characteristics for each of the 

1000 test images. Symmetric credible intervals were computed for each characteristic of 

each image. The empirical coverage rates for the given values were 0:934 for 95% credible 

intervals and 0:887 for 90% credible intervals. The full posterior distributions for a small 

number of select characteristics, for a single test image, are shown in Figure 3 as an 

illustration of the results.

11 Discussion

In this article we have proposed a general framework for predicting one multiway array from 

another using the contracted tensor product. The simulation studies and facial image 

application illustrate the advantages of CP-rank regularization and ridge regularization in 

this framework. These two parameters define a broad class of models that are appropriate for 

a wide variety of scenarios. The CP assumption accounts for multi-way dependence in both 

the predictor and outcome array, and the ridge penalty accounts for auxiliary high-

dimensionality and multi-collinearity of the predictors. However, several alternative 

regularization strategies are possible. The coefficient array can be restricted to have a more 

general Tucker structure (as in Li et al. (2013)), rather than a CP structure. A broad family of 

separable penalty functions, such as the separable L2 penalty in (10), are straightforward to 

impose within the general framework using an alternating estimation scheme similar to that 

described in Zhou et al. (2013). In particular, a separable L1 penalty has advantages when a 

solution that includes sparse subregions of each mode is desired. The alternating estimation 

scheme described herein for the non-separable L2 penalty is not easily extended to 

alternative non-separable penalty functions.
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We have described a simple Gaussian likelihood and a prior distribution for 𝔹 that are 

motivated by the least-squares objective with non-separable L2 penalty. The resulting 

probability model involves many simplifying assumptions, which may be over-simplified for 

some situations. In particular, the assumption of independent and homoscadastic error in the 

outcome array can be inappropriate for applications with auxiliary structure in the outcome. 

The array normal distribution (Akdemir and Gupta, 2011; Hoff et al., 2011) allows for 

multiway dependence and can be used as a more flexible model for the error covariance. 

Alternatively, envelope methods (Cook and Zhang, 2015) rely on a general technique to 

account for and ignore immaterial structure in the response and/or predictors of a predictive 

model. A tensor envelope is defined in Li and Zhang (2016), and its use in the tensor-on-

tensor regression framework is an interesting direction for future work.

The approach to inference used herein is “semi-Bayesian”, in that the prior is limited to 

facilitate inference under the given penalized least-squares objective and is not intended to 

be subjective. Fully Bayesian approaches, such as using a prior for both the rank of the 

coefficient array and the shrinkage parameter, are another interesting direction of future 

work.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

A Consistency

Here we establish the consistency of the minimizer of the objective (9), for fixed dimension 

as N → ∞, under general conditions.

Theorem 1

Assume model (2) holds for, where

1. For each response index (q1, …, qM), the errors 𝔼[n, q1, …, qM] are independent 

and identically distributed (iid) for n = 1, …, N, with mean 0 and finite second 

moment.

2. For each predictor index (p1, …, pL), 𝕏[n; p1, …, pL] are iid for n = 1, …, N from 

a bounded distribution.

3. 𝔹0 has a rank R0 factorization (6), where θ0 = {U1, …, UL, V1, …, VM} is in the 

interior of a compact space Θ and is identifiable under the restrictions of Section 

5.

For R = R0 and fixed ridge penaly tλ ≥ 0, the minimizer of the objective (9), βN, converges 

to in probability as N → ∞. Moreover, under the restrictions of Section 5 the factorization 

parameters θ N converge to θ0 in probability as N → ∞.
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For Theorem 1 we require that the observations are iid, but within an observation the 

elements of the error array 𝔼 or predictor array 𝕏 may be correlated or from different 

distributions. Also, note that the correct rank is assumed for the estimator, but the result 

holds for any fixed penalty λ ≥0. Theorem 1 applies to the global minimizer of objective 

(9), which may not be attained by the iterative algorithm of Section 7. The requirements that 

the predictors 𝕏 are bounded and that Θ is compact are similar to those used to show the 

constancy of tensor regression under a normal likelihood model in Zhou et al. (2013). These 

requirements facilitate the use of Glivenko-Cantelli theory with a classical result on the 

asymptotic consistency of M-estimators (Van der Vaart, 2000); the proof is given below.

Proof

Let 𝔹(θ) be the coefficient array resulting from θ = {U1, …, UL, V1, …, VM}:

𝔹(θ) = 〚 U1, …, UL, V1, …, VM 〛 .

Let M(θ) be the expected squared error for a single observation:

M(θ) = E 𝕐 n − 𝕏n, 𝔹(θ)
F
2 ,

which exists for all θ ∈ Θ because the entries of 𝔼 are assumed to have finite second 

moment. Let MN
λ (θ) be the penalized empirical squared error loss (9) divided by N:

MN
λ (θ) = 1

N ∑
n = 1

N
𝕐 n − 𝕏n, 𝔹(θ)

F
2 + λ

N 𝔹(θ) F
2 .

From Theorem 5.7 of Van der Vaart (2000), the following three properties imply θ  is a 

consistent estimator of θ0:

1. 1. inf
θ:d(θ, θ0) ≥ ε

M(θ) > M(θ0) ε > 0,

2. 2. MN
λ (θn) ≤ MN

λ (θ0) − OP(1), where OP (1) defines a stochastically bounded 

sequence of random variables, and

3. 3. sup
θ ∈ Θ

MN
λ (θ) − M(θ) P 0.

Because E(𝕐 ) = 𝕏, 𝔹(θ0)
L
, the coefficient array 𝔹(θ0) minimizes the expected squared error. 

Property 1 then follows from the identifiability of θ0. For any θ ∈ Θ, MN
λ (θ) − M(θ) almost 

surely by the strong law of large numbers and the fact

lim
N ∞

sup
θ ∈ Θ

λ
N 𝔹(θ) F

2 = 0. (21)
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Also, M(θ) is necessarily bounded over the compact space Θ. Thus, both MN(θn) and Mn(θ0) 

are stochastically bounded, and property 2 follows. For property 3 it suffices to show 

uniform convergence of the unpenalized squared error MN
0 (θ), by

sup
θ ∈ Θ

MN
λ (θ) − M(θ) ≤ sup

θ ∈ Θ
MN

0 (θ) − M(θ) + sup
θ ∈ Θ

λ
N 𝔹(θ) F

2

and (21). The uniform convergence of MN
0 (θ) can be verified by Glivenko-Cantelli theory.

Define

m0 𝕏n, 𝕐 n = 𝕐 n − 𝕏n, 𝔹(θ)
F
2 .

The class {m : θ ∈ Θ } is Glivenko-Cantelli, because Θ is compact and m0(𝕏n, 𝕐 n) is 

continuous as a function of θ and bounded on Θ for any (𝕏n, 𝕐 n). Thus, property 3 holds and 

θ  is a consistent estimator of θ.

By the continuous mapping theorem, 𝔹(θ ) is also consistent estimator of the true coefficient 

array 𝔹(θ) □.

B Posterior derivations

Here we derive the full conditional distributions of the factorization components for 

𝔹 = 〚 U1, …, UL, V1, …, VM 〛, used in Section 8.

First, we consider the a priori conditional distributions that are implied by the spherical 

Gaussian prior for 𝔹 (15). Here we derive the prior conditional for U1, pr(U1 | U2, …, UL, 

V1, …, VM); the prior conditionals for U2, …, UL, V1, …, VM are analogous, because the 

prior for 𝔹 is permutation invariant over its L + M modes. Let br
(1) give the vectorized form 

of the CP factorization without U1,

br
(1) = vec(u2r ∘ ⋯ ∘ uLr ∘ v1r ∘ ⋯ ∘ vMr),

and define the matrix B(1):Q∏l = 2
L Pl × R by B(1) = b1

(1)⋯bR
(1) . Then

vec U1B(1)T = vec(𝔹) N 0, σ2
λ IPQ × PQ ,

and it follows that
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pr(vec(U1) U2, …, UL, V1, …, VM) = N 0, B(1)T B(1) −1
⊗ σ2

λ IP1 × P1
.

The general model (2) implies

Cvec(U1) + vec(𝔼) = vec(𝕐 ),

where C is defined as in (11). If 𝔼 has independent N(0, σ2) entries, a direct application of 

the Bayesian linear model (Lindley and Smith, 1972) gives

pr(vec(U1) U2, …, UL, V1, …, VM, 𝕐 , 𝕏, σ2) = N(μ1, ∑1)

where

μ1 = CTC + λB(1)TB(1) ⊗ IP1 × P1

−1
CT vec(𝕐 )

and

∑1 = σ2 CTC + λB(1)TB(1) ⊗ IP1 × P1

−1
.

Basic tensor algebra shows

B(1)TB(1) = U2
TU2 ⋅ ⋅ ⋅ ⋅ ⋅ UL

TUL ⋅ V1
TV1 ⋅ ⋅ ⋅ ⋅ ⋅ VM

T VM .

The posterior mean and variance for U2, …, UL are derived in an analogous way.

For the Vm′ s it suffices to consider VM, as the posterior derivations for V1, …, VM − 1 are 

analogous. The prior conditional for VM is

pr(vec(VM) U1, …, UL, V1, …, VM − 1) = N 0, B(L + M)T B(L + M) −1
⊗ σ2

λ IQM × QM

and the general model (2) implies

DVM + E = Ym,

where D and YM are defined as in (12), and E has independent N(0, σ2) entries. Separate 

applications of the Bayesian linear model for each row of VM gives
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pr(vec(VM) U1, …, UL, V1, …, VM − 1, 𝕐 , 𝕏, σ2) = N(μL + M, ∑L + M)

where

μL + M = vec((DTD + λB(L + M)TB(L + M))
−1

DTYM
T )

and

∑L + M = σ2 DTD + λB(L + M)TB(L + M) −1
⊗ IQM × QM

.

Basic tensor algebra shows

B(L + M)TB(L + M) = U1
TU1 ⋅ ⋅ ⋅ ⋅ ⋅ UL

TUL ⋅ V1
TV1 ⋅ ⋅ ⋅ ⋅ ⋅ VM − 1

T VM − 1 .

C Proof of Proposition 1

Here we prove the equivalence of separable L2 penalization and nuclear norm penalization 

stated in Proposition 1. The result is shown for predicting a vector from a three-way array, in 

which 𝔹 = U1U2
T. Analogous results exist for predicting a matrix from a matrix (𝔹 = U1V1

T)

and predicting a three-way array from a vector (𝔹 = V1V2
T).

In the solution to

arg min
rank(𝔹) ≤ R

y − 𝕏, 𝔹 2 F
2 + λ ∑

l = 1

2
Ul F

2 (22)

the columns of U1 and U2, {u11, …, u1R} and {u21, …, u2R}, must satisfy

u1r
2 = u2r

2 = u1ru2r
T

F
for r = 1, …, R . (23)

Here (23) follows from the general result that for c > 0,

arg min a, b :ab = c a2 + b2 = c, c ,

where a = ‖u1r‖2, b = ‖u2r‖2, and c = u1ru2r
T

F
2

. Thus,
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∑
l = 1

2
Ul F

2 = ∑
l = 1

2
∑

r = 1

R
ulr

2

= 2 ∑
r = 1

R
u1ru2r

T
F

,

(24)

Under orthogonality of the columns of U1 and U2, the non-zero singular values of 𝔹 are 

u1ru2r
T

F r = 1
R

, and therefore (24) is equal to 2 𝔹 ∗. It follows that (22) is equivalent to

arg min
rank 𝔹 ≤ R

y − 𝕏, 𝔹 2 F
2 + 2λ 𝔹 ∗ .

D Correlated data simulation

Here we describe the results of a simulation study analogous to that in Section 9, but with 

correlation in the predictors 𝕏 or in the response 𝕐 . We simulate Gaussian data with an 

exponential spatial correlation structure using the R package fields (Douglas Nychka et 

al., 2015). The entries of 𝔼 are assumed to be on a Q1 × Q2 grid (Q1 = 5, Q2 = 10) with 

adjacent entries having distance 1. The entries of 𝕏 are assumed to be on a P1 × P2 grid (P1 

= 15, P2 = 20) with adjacent entries having distance 1. The correlation between adjacent 

locations is ρ = 0.6 for each scenario, and the marginal variance of the entries is 1. Thus, 

data are simulated exactly as in Section 9.1, except for the correlation structure of 𝕏 (step 1.) 

or 𝔼 (step 3.).

The resulting RPE and credible interval coverage rates are shown in Table 4, which is 

analogous to Table 2 for the uncorrelated case. Interestingly, for penalized estimation and n 
= 30 the scenario with correlated 𝕏 gives significantly better performance in terms of RPE 

than the scenario without correlation. This was unexpected, but may be because correlation 

in 𝕏 discourages the algorithm from converging to a local minimum. For correlated 𝔼 the 

results are often similar to the uncorrelated scenario but tend toward lower accuracy. In 

particular, the credible intervals tend to undercover more than for the uncorrelated scenario, 

or for the scenario with correlated 𝕏. This is probably because correlation in 𝔼 violates the 

assumed likelihood model for inference, while correlation in 𝕏 does not.

E Full-rank comparison

Here we describe the results of a simulation study in which data are generated as in Section 

9, but the model is estimated without low-rank constraints. For each simulation scenario, we 

consider two additional estimation approaches:

1. Unconstrained 𝕏 and unconstrained 𝕐 , in which the solution is given by 

independent ridge regression for each location of 𝕐  on the vectorized entries of 

𝕏.
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2. Rank constraint for 𝕏, but not for 𝕐 , in which the solution is given by separate 

tensor regressions with ridge regularization for each location of 𝕐  on 𝕏. That is, 

each location in 𝕐  is considered independently as a univariate outcome, and 

criteria (9) is optimized separately for each of the Q1Q2 = 50 outcomes (Q1 = 5, 

Q2 = 10).

The resulting RPE under the different simulation scenarios and estimation approaches are 

shown in Table 5. Recall that each outcome has N = 30 or 120 observations; for approach 1 

the total number of parameters for each outcome is P1P2 = 300 (P1 = 15 and P2 = 20), and 

for approach 2 the total number of parameters for each outcome is R(P1 + P2). Thus, without 

ridge regularization (λ = 0), the solution is always undefined for approach 1, and is also 

undefined under approach 2 for most values of N and R considered. With ridge 

regularization (λ > 0), the results under approach 1 are generally inferior to those under 

approach 2, and both approaches are inferior to the tensor-on-tensor approach presented in 

Section 9 with a low-rank constraint for both 𝕏 and 𝕐 . Moreover, while approach 1 is very 

fast because it is non-iterative, approach 2 was generally much slower than the tensor-on-

tensor approach because it requires fitting a separate model for each location; an average, 

model estimation for approach 2 took 12 minutes per simulated dataset, and the tensor-on-

tensor model took 3 minutes per dataset. This demonstrates the potential advantages of 

simultaneously allowing for low-rank dependence in both the predictors 𝕏 and the outcomes 

𝕐  in the tensor-on-tensor context.

F Cross-validation simulation

Here we describe the results of a simulation study to assess the use of cross-validation to 

select the parameters R and λ. Data were generated as in Section 9. For each dataset 

generated, we perform five-fold cross-validation for each pair (R, λ) over the grid R = {1, 2, 

3, 4, 5} and λ = {0, 0:5, 1, 5, 50}. The estimates R, λ  are selected as the pair that gives the 

lowest mean squared prediction error across test folds. The resulting estimates are 

summarized in Table 6. The accuracy of the selected ranks varied widely depending on the 

simulation scenario. For the scenario with larger sample size and larger signal, N = 120, 

SNR = 5, the true underlying rank was selected for every replication. With lower sample size 

(N = 30) the true rank was selected for only approximately 1/3 of the replications, and for 

remaining replications the results were evenly split between overestimation and under-

estimation of the rank. The selected value for λ  generally increased with lower signal and 

lower sample size, which is consistent with the values of λ that gave optimal performance 

for the larger test set (see Table 2).
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Figure 1. 
Relative prediction error for characteristics of out-of-sample images for different parameter 

choices. The top row (full rank) gives the results under separate ridge regression models for 

each outcome without rank restriction.
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Figure 2. 
Actual vs. predicted values for 1000 test images across 72 characteristics.

Lock Page 28

J Comput Graph Stat. Author manuscript; available in PMC 2019 June 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Example test image (left), and its posterior samples for 5 select characteristics (right).
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Table 6

Rank selection accuracy and selected regularization parameter (λ) under five-fold cross-validation, averaged 

over replications for four different scenarios.

R = R R < R R > R Mean λ

N = 120, SNR = 5 100% 0% 0% 0.03

N = 120, SNR = 1 88% 12% 0% 2.14

N = 30, SNR = 5 34% 32% 34% 16.1

N = 30, SNR = 1 30% 38% 32% 27.8

J Comput Graph Stat. Author manuscript; available in PMC 2019 June 06.


	Abstract
	1 Introduction
	2 Notation and Preliminaries
	3 General framework
	4 Estimation criteria
	5 Identifiability
	6 Special cases
	Proposition 1

	7 Optimization
	7.1 Least-squares
	7.2 Ridge-regularization
	7.3 Tuning parameter selection

	8 Inference
	9 Simulation study
	9.1 Approach
	9.2 Results

	10 Application
	11 Discussion
	A Consistency
	B Posterior derivations
	C Proof of Proposition 1
	D Correlated data simulation
	E Full-rank comparison
	F Cross-validation simulation
	References
	Figure 1
	Figure 2
	Figure 3
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	Table 6

