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Abstract

Somatic genome instability is a hallmark of cancer genomes and has been linked to aging and a 

variety of other pathologies. Large-scale cancer genome and exome sequencing have revealed that 

mutation load and spectra in cancers can be influenced by environmental exposures, the 

anatomical site of exposures, and tissue type. There is now an abundance of data favoring the 

hypothesis that a substantial portion of the mutations in cancers originate prior to carcinogenesis 

in stem-cells of the healthy individual. Rapid advances in sequencing of non-cancer cells from 

healthy humans have shown that their mutation loads and spectra resemble cancer data. Like 

cancer genomes, mutation profiles of healthy cells show marked intra-individual variation, thus 

providing a metric of the various factors—environmental and endogenous— involved in 

mutagenesis in these individuals. This review focuses on the current methodologies to measure 

mutation loads and to determine mutation signatures for evaluating the environmental and 

endogenous sources of DNA damage in human somatic cells. We anticipate that in future, such 

large-scale studies aimed at exploring the landscapes of somatic mutations across different cell-

types in healthy people would provide a valuable resource for designing personalized preventative 

strategies against diseases associated with somatic genome instability.

Introduction

The adult human body consists of 1014 cells that arose from a single zygote via cell division. 

During the divisions and in the non-dividing terminally differentiated stage, each cell has the 

ability to acquire mutations from both endogenous and environmental processes. It has been 

reported that a cell may encounter more than 70,000 DNA lesions per day (Lindahl and 

Barnes, 2000; Tubbs and Nussenzweig, 2017). Such lesions may be due to spontaneous 

cytosine deamination, endogenous oxidative damage, or due to exogenous DNA damaging 

agents which include ultra-violet radiation, X-rays and tobacco smoke. If left unrepaired or 

if erroneously repaired, these lesions may result in DNA nucleotide substitutions (also 

termed as single nucleotide variations – SNVs), small or large insertions and deletions 

(indels), copy number variations (CNVs) and gross chromosomal rearrangements (GCRs). 

Moreover, DNA replication, transcription and recombination can destabilize and mutagenize 
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DNA, which further adds to the genome mutation burden. To avoid deleterious outcomes of 

DNA damage, cells have evolved a large repertoire of DNA repair pathways. Each pathway 

is specialized for a subset of lesions with defects leading to increased rates of DNA damage 

and mutagenesis. Thus, the somatic mutation burden, spectra and landscape can collectively 

act as a lifetime record reflecting the environmental exposures of the individuals and the 

efficacy of DNA repair processes in their cells.

With the advent of large-scale next generation genome and exome sequencing projects, a 

vast variety of cancer types have been sequenced. Since cell populations in tumors are 

highly clonal, most of the somatic mutations are found in high fraction sequence reads 

making mutation calls reliable and amenable to validation. Analysis of mutational burden 

and spectra in many thousands of tumor genomes led to the striking discovery that mutation 

profiles vary amongst cancer types based on cell-type and location in the body, and the 

known DNA damaging agents the individuals may have been exposed to over time 

(Alexandrov et al., 2013; Lawrence et al., 2013; Roberts and Gordenin, 2014; Roberts et al., 

2013). On the other hand, cell populations in the specimens directly collected from non-

cancerous tissues are mostly non-clonal thus not allowing for similar analyses in healthy 

individuals. As such, the somatic genome mutation loads and spectra from healthy 

individuals is largely an untapped resource. Advances in single-cell genome sequencing, and 

newer technologies to isolate single-cell-derived clones are providing unforeseen insights 

into this field. This review is focused on the current methodologies aimed to measure 

mutation loads and determine mutation spectra in non-cancerous somatic cells. We also 

highlight how such data can be used to understand the impact of environmental and 

endogenous DNA damage in the individual’s cells across the human body and through the 

individual’s lifetime. Understanding the mutation loads and spectra in cancer-free 

individuals is essential to providing the base-line for defining norm and pathology in human 

somatic genome instability.

Somatic Mutations associated with diseases and with aging

The mutator phenotype hypothesis postulates that increased mutation rates in cancer cells 

provides a fitness advantage by leading to tumor heterogeneity which may further contribute 

to the generation of resistant cell populations to chemotherapeutic agents (Loeb, 2001). 

Several examples can be found for factors leading to increased spontaneous or induced 

mutation rates in cells that are associated with heightened cancer risk and poor prognosis 

(Aaltonen et al., 1993; Cleaver and Crowley, 2002; Cunningham et al., 1998; Gansmo et al., 

2017; Hart et al., 1977; Hecht, 2008; Joo et al., 2016; Loeb et al., 1974; Parsons et al., 

1993). Over the last decade, several international consortia such as The Cancer Genome 

Atlas (TCGA), International Cancer Genome Consortium (ICGC), Pan Cancer Analysis of 

Whole Genomes (PCAWG) have undertaken efforts toward the sequencing and annotation 

of mutations in cancer exomes and genomes. Somatic mutation loads in tumors were found 

to be highly variable across cancer types ranging from ~100 mutations to >106 mutations per 

genome. This variability could in part be explained by the differences in the mutator 

phenotypic manifestation in the cancers, as well as the replicative history of the tissue, the 

age of cancer onset and the source of mutations, such that childhood tumors like Rhabdoid 

tumors or tumors in neuronal cells tend to have lower number of somatic mutations while, 
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cancers with known strong environmental mutagen exposures like lung and skin tend to have 

higher mutation loads (Alexandrov et al., 2013; Lawrence et al., 2013). Moreover, mutation 

spectra in the samples resembled known spectra of the environmental mutagens, such that 

lung cancers were predominantly C→A changes, characteristic of oxidative damage, while 

skin melanomas were characterized by a majority of C→T changes, attributable to ultra-

violet radiation (Alexandrov et al., 2013; Lawrence et al., 2013). Post zygotic mutations, 

have also been implicated in the pathology of a variety of diseases, other than cancer ranging 

from neurodevelopmental disorders, including the autism spectrum disorders, skin 

abnormalities like incontinentia pigmenti and syndromes with more widespread phenotypes 

including Proteus syndrome, Klippel–Trenaunay syndrome and Sturge–Weber syndrome 

(Table 1) and reviewed in (Erickson, 2003, 2010, 2014, 2016).

Both environmental and endogenous DNA damaging factors continuously mutagenize the 

somatic genomes of the human body’s cells over an individual’s lifetime. Increase in 

mutation loads with age has been documented in both model organisms and human cells 

from healthy or cancerous tissues. Moreover, defects in DNA repair pathways that could 

increase mutation load are often associated with diseases that manifest as premature aging 

(Gregg et al., 2012; Hoeijmakers, 2009; Loeb et al., 1974). Studies with reporter transgenes 

introduced in mouse liver, brain, heart, small intestine and spleen demonstrated an age-

dependent increase in transgene mutation frequencies (Dolle et al., 1997; Dolle and Vijg, 

2002). A similar age-associated increase in transgene mutation frequencies was 

demonstrated for Drosophila melanogaster. Interestingly, increased temperature, which has 

been shown to decrease the fly lifespan, had a dramatic impact on accelerating the mutation 

rates in the flies, implying that mutation loads and organismal fitness can be inversely 

correlated (Garcia et al., 2010), however, one cannot rule out other potential impacts of 

temperature on lifespan modulation in flies. Analysis of mutations in the HPRT, HLA-A, T-

cell receptor and glycophorin A genes in human cells also demonstrated an increase in 

somatic mutation load with age (Cibulskis et al., 2013; Davies et al., 1992; Koboldt et al., 

2012; Kroigard et al., 2016; Van der Auwera et al., 2013). In both mice and humans, the rate 

of increase in mutation frequencies varied in the tissues implying a dependence of the 

mutation loads on both the replicative potential of the cells and on varying exposures to 

DNA damaging agents in the tissues (Reviewed in (Kennedy et al., 2012)). In addition to 

single base substitutions, increase in other forms of genome instability including large-scale 

GCRs and CNVs (Dolle et al., 2000; Dolle and Vijg, 2002; Ramsey et al., 1995; Vijg and 

Dolle, 2002), and increased expression of retrotransposons and elevated L1 copy numbers, 

likely indicating increased transposition events (Lawrence et al., 2013), have also been seen 

to be associated with aging and age-associated diseases.

In further support of the association between increased somatic mutation loads and age, are 

the cancer-based studies of genome instability. Cancer is a known age-associated pathology 

and the cumulative risk of developing cancer has been shown to increase with age up to 70 

years (White et al., 2014). Somatic genome instability was found to correlate with age of the 

patients at the time of cancer detection (Milholland et al., 2015; Tomasetti et al., 2013), and 

analyses of mutations in cancer genomes suggested that age-associated mutation loads 

double every 8 years (Podolskiy et al., 2016). Importantly, tissues with high stem-cell 

Saini and Gordenin Page 3

Environ Mol Mutagen. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



turnover, demonstrate higher cancer risk, likely due to increased probabilities of 

accumulating potentially deleterious mutations (Tomasetti and Vogelstein, 2015).

Somatic mutation load and spectra in healthy cells

While it is estimated that more than half the mutations in cancer somatic genomes, arise in 

healthy cells prior to carcinogenesis (Tomasetti et al., 2013), the knowledge about and 

accurate measurements of somatic mutations load and spectra in non-cancerous human cells 

are limited. In recent years, novel technological advances in obtaining clonal populations or 

in sequencing single cells have initiated the progress in the accrual of genomic data for 

healthy human tissues and cells (Figure 1). Below we describe the methodologies developed 

for NextGen genome sequencing of healthy somatic cells and tissues.

Deep sequencing of bulk cell populations

The heterogeneity of healthy tissue poses a problem for reliable and comprehensive 

identification of somatic variants in a sample via standard sequencing methods. To detect 

rare somatic variants, present in low allele fractions in a sample, deep sequencing to ultra-

high coverage of either a fraction of the genome or the entire genome may be utilized. 

Moreover, estimation of allele frequencies of the somatic variants detected can allow for 

assessment of the clonality of the sample. Deep sequencing of a panel of driver genes from 

small biopsies obtained from eyelids of patients that underwent blepharoplasty (eyelid lift 

surgery), revealed that somatic genome changes are abundant in healthy tissue, with no 

evidence of negative selection of potentially deleterious variants. The majority among the 

mutations detected by deep sequencing in these skin biopsies were C→T and CC→TT 

changes and likely rose due to UV-irradiation of skin cells during the lifetime of the donors 

(Table 2). Interestingly, based on low fraction of reads containing mutations, clonality in 

these sequenced samples was very low, implying that the somatic mutations were present in 

very small localized regions of skin with large heterogeneity within the tissue (Martincorena 

et al., 2015). Sequencing the exomes of the bulk cells from skin biopsies from the forearms 

of hips demonstrated a similar clonal architecture, wherein each biopsy that was 4mm in size 

contained at least 10 clonal lineages. The cells from the forearms carried a higher mutation 

burden, and UV-mutation spectra were prevalent in cells from the forearms (Saini et al., 

2016).

A major caveat of deep sequencing bulk cells is the limitation of the current NGS 

technologies to accurately detect very low frequency somatic changes. The ability to detect 

rare variants is dependent on the number of reads obtained during sequencing, erroneous 

calls due to sequencing errors and the amount of the starting genetic material. As such, it 

may often not be feasible or cost effective to ultra-deep sequence genomes using the 

canonical NGS methods. As an alternative, DNA barcoding strategies have been developed 

wherein DNA molecules are uniquely barcoded at the ends with specific DNA sequence 

tags. The barcoded DNA is then PCR amplified and mutations present in >95% of the 

barcoded samples from the same barcoded molecule are considered true positives (Kinde et 

al., 2011). Alternatively, the individual strands of DNA may be barcoded with tag sequences 

incorporated within Illumina sequencing adapters followed by strand-specific PCR. The 
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amplified copies of the barcoded molecules allow for sequencing of each DNA strand 

repeatedly, thus, generation of consensus read sequences from these drastically reduces 

errors made during amplification and sequencing. This allows for detection of variants at 

frequencies as low as 10−5 mutations per base pair (Schmitt et al., 2012). A further 

improvement to these techniques is the CypherSeq approach which clones the barcoded 

library into circular vectors that can be enriched using rolling circle amplification of targeted 

molecules, thus maximizing read depth without off-target amplification. CypherSeq has 

been shown to accurately detect variants as low as 2.4 × 10−7 mutations per base pair 

(Gregory et al., 2016). Optimization and usage of these sequencing strategies for high 

throughput sequencing of panels of targeted genes can permit detection of somatic mutations 

across populations with high accuracy.

Sequencing single cells

The somatic mutation load present in a single cell represents the mutations accumulated in 

that cell lineage over an individual’s lifetime. Although sequencing bulk cells provided the 

first approximation of the mutation load and spectra in non-cancerous cells, such studies 

cannot address cell-to-cell variability within a tissue and provide the mutation load and 

spectra within independent cells. A single diploid human cell contains approximately 6pg of 

DNA, therefore, whole genome amplification is a prerequisite for single cell DNA 

sequencing (Figure 1). Since the first single cell genome sequencing study by Navin et. al in 

2011 (Navin et al., 2011), a variety of methods to amplify and sequence genomes from 

single cells have become available. Initial attempts to amplify the genome relied on PCR 

using either degenerate oligonucleotides, or primers targeting either specific sequences in 

the genomes or adaptors ligated to sheared genomic fragments. However, PCR-based 

methods were not efficient in yielding uniform coverage across the entire genome. The 

second generation of whole genome amplification methods including Multiple displacement 

amplification (MDA) or Multiple Annealing and Looping Based Amplification Cycles 

(MALBAC), involved isothermal amplification using the phi29 polymerase, which has a 

very low error-rate and high processivity with the ability to do strand displacement, allowing 

for large genomic regions to be amplified (Reviewed in (Gawad et al., 2016)). A major 

challenge in whole genome amplification (WGA) from single cells is the introduction of 

contaminating DNA from the environment. Performing single-cell WGA in microfluidic 

devices was found to drastically reduce such contamination (Blainey and Quake, 2011) and 

increase uniformity of genome coverage during both MDA and MALBAC approaches 

(Marcy et al., 2007; Yu et al., 2014). More recently, Chen et.al. developed Linear 

Amplification via Transposon Insertion (LIANTI) to linearly amplify single cell genomes. 

LIANTI involves DNA fragmentation by Tn5 insertions, and T7 transcription at promoters 

inserted during the transposition event followed by reverse transcription and cDNA synthesis 

to linearly amplify the DNA, thus reducing off target priming and the lack of exponential 

DNA synthesis abrogates amplification biases and artifacts (Chen et al., 2017). These 

technologies are revolutionizing the field of single cell DNA sequencing and are enabling 

efficient and accurate measurements in somatic cells that are difficult to culture in vitro.

Single cell DNA sequencing has been instrumental in understanding somatic genome 

variation in non-cancerous cells, especially in terminally-differentiated cell types that cannot 
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be easily propagated in vitro to obtain sufficient amount of clonal DNA for high coverage 

genome sequencing. Using MDA or GenomePlex (a PCR-based WGA technique [Sigma 

Aldrich Cat# WGA4, (Arneson et al., 2008)] followed by either low coverage whole genome 

sequencing (WGS) (Cai et al., 2014), or a combination of both low coverage WGS and SNP 

arrays (McConnell et al., 2013), it was established that neuronal genomes often carry large 

copy number variations (CNV) leading to mosaicism in the brain. With a predisposition to 

deletions, large-scale CNVs spanning megabases of the chromosomes, and whole 

chromosome aneuploidies could be detected in 13% to 41% of the cells analyzed (Cai et al., 

2014; McConnell et al., 2013). A slightly lower frequency (8–10%) was seen for the 

presence of large CNVs which were more than 5 Mb in size, in skin keratinocytes and 

neurons, when the sensitivity and selectivity of the CNV-calling algorithms was improved 

(Knouse et al., 2016) (Table 2).

Increasing the coverage for WGS studies to 60X allowed for estimation of the number of 

retrotransposition events and single nucleotide variants in single neurons. L1 

retrotransposition was found to be a rare event with a frequency of >0.6 retrotranspositions 

per genome (Evrony et al., 2012). On the other hand, 1685 to 1793 somatic SNVs were 

detected per neuron, and upon accounting for false-discovery rate due to amplification 

errors, the average number of mutations per neuron ranged from 1458 to 1580 (Lodato et al., 

2015). Interestingly, mutation loads were found to vary with the expression levels of genes 

and the predominant mutation types in neurons were C→T at CpG motifs, implying normal 

cellular transcription and repair input into mutagenesis in neurons. CNVs and SNVs were 

often also found to be shared between cells from the same individuals, suggesting that these 

changes may have occurred early during development and neurogenesis thus allowing to 

track developmental lineages within the tissues (Cai et al., 2014; Evrony et al., 2012; Evrony 

et al., 2015; Knouse et al., 2016; Lodato et al., 2015).

Combining single-cell sequencing techniques with strand-specific sequencing (StrandSeq) 

has further enabled detection of structural changes in the genome including inversions, 

which are otherwise difficult to sequence, with very high accuracy. In this approach, cells 

are grown in the presence of a thymidine analog 5-bromo-2′-deoxyuridin (BrdU) that is 

incorporated in the nascent strand during DNA replication. Irradiation by UV leads to 

nicking and removal of the BrdU-containing strand and allows for strand-specific DNA 

libraries to be created. Sequencing and alignment of the reads to the plus or minus strands 

maintains parental DNA directionality and permits identification of structural 

rearrangements (Falconer et al., 2012; Sanders et al., 2016). StrandSeq can provide 

information about sequence composition of homologous chromosomes, copy neutral 

rearrangements including translocations between homologs and between sister chromatids, 

which are currently unattainable by the conventional NGS approaches (Sanders et al., 2017). 

Single-cell sequencing of 47 cord blood samples using StrandSeq demonstrated the presence 

of 111 polymorphic inversions in the genomes with the smallest inversion being ~17kb in 

length (Sanders et al., 2016).

Overall, single cell WGS has already provided insights into the somatic mutation loads and 

spectra in healthy human tissues. However, the intrinsic error rates associated with whole 

genome amplification, and the lack of genetic material to orthogonally validate somatic 
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mutations are still the major impediments preventing accurate measurements of mutations in 

somatic cells. Despite the advances in WGA techniques, these still lag behind bulk DNA 

sequencing which can obtain 90% genome coverage with read-depths as low as 4X. MDA 

on the other hand, only covers 73% of the genome at 25X average read-depth, while 

MALBAC is limited to approximately 34% of the genome at the same average read-depths 

(Zong et al., 2012). Such loss in genome coverage lead to high rate of SNV-dropouts and 

often only one of the alleles are covered in the final data (allelic-dropout). Efficiencies of 

detecting both alleles of known SNVs range from 91% in MALBAC to as low as 10% in 

MDA (Zong et al., 2012). LIANTI was found to outperform both methodologies and achieve 

upto 97% genome coverage at 30X average read depths. LIANTI was found to outperform 

both MALBAC and MDA and achieve upto 97% genome coverage at 30X average read 

depth with only a 17% allele dropout rate, compared to upto 65% allele dropout rates by the 

previous methodologies (Chen et al., 2017; Zong et al., 2012). Furthermore, regions of the 

genome carrying repetitive DNA and other structural or sequence elements that may prevent 

amplification are significantly underrepresented in WGA and downstream WGS (Zong et 

al., 2012). WGA methods also have high SNV false positive rates being ~4 × 10−5 for 

classical WGA techniques to 5.4 × 10−6 for LIANTI. The false positives could potentially be 

eliminated by independently sequencing multiple single-kindred cells or kindred clonal 

lineages without need for amplification and comparing mutation calls (Zong et al., 2012). 

Alternatively, false positive calls may be ablated by comparison of single-cell sequencing 

data with unamplified bulk cells from the same population. This method was first applied to 

reliably detect base substitutions introduced by the activity of the mutagen N-ethyl-N-

nitrosourea in Drosophila and mouse cells (Gundry et al., 2012), and subsequently to 

evaluate concordant mutation calls in whole genome amplified single human somatic cells 

and bulk cells obtained from the same source (Dong et al., 2017). Furthermore, performing 

single-cell lysis on ice and treating DNA by Uracil-N-Glycosylase and endonucleases to 

eliminate temperature-induced cytosine deamination to uracil that may have occurred during 

DNA preparation and library preparation steps are expected to further decrease artefactual 

calls (Chen et al., 2017; Dong et al., 2017).

Sequencing clonal lineages

Sequencing single cell-derived clonal lineages that have been cultured in vitro up to 

sufficient cell numbers to provide DNA for WGS, can bypass the caveats of bulk and single 

cell genome sequencing mentioned above. Most adult human cell types are terminally 

differentiated are not amenable to growth in culture media. Reprogramming adult skin cells 

into induced-pluripotent stem cells (iPSCs), Abyzov et.al. found that almost 30% of skin 

cells carry large-scale copy number changes (Abyzov et al., 2012). Like the single-neuron 

WGS, skin cell-derived iPSCs harbor ~1000 somatic mutations per cell (Abyzov et al., 

2017). An independent study involving sequencing of protein coding regions from iPSCs 

derived from skin cells showed the presence of 14 and 28 somatic mutations per cell, with 

no SNVs shared between the cells further corroborating the conclusion of very high 

mosaicism in skin. Interestingly, comparisons of iPSCs derived from the same source helped 

determine the mutation rate and spectra during reprogramming. The process of 

reprogramming terminally differentiated cells was found to be inherently mutagenic with a 

prevalence of oxidative damage-induced mutations (Ji et al., 2012; Rouhani et al., 2016).
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Although iPSCs allow for sequencing of otherwise unculturable cell types, the increased 

copy number, structural genome changes, and elevated mutation rates during the process of 

reprogramming preclude accurate measurements of these changes in somatic cells (reviewed 

in (von Joest et al., 2016)). Two methodologies have been developed that involve the least 

manipulations to the cells and therefore provide the most accuracy in downstream mutation 

calling. The first approach involves directly obtaining single cells from a donor’s tissue, and 

culturing them in vitro to obtain single cell-derived clones (Figure 1 and(Bae et al., 2018; 

Saini et al., 2016)). This approach was used to measure mutation loads in fibroblasts 

obtained from the left and right hips and forearms of two healthy donors. After filtering to 

remove somatic genome changes that were present in the germline of the donors, or those 

that may have occurred during culture, each cell analyzed carried at least one structural and 

copy number variant and from 581 to 12,743 single nucleotide substitutions. The majority of 

the structural variants were present in the vicinity of known fragile sites, indicating that 

replication impediments at these loci are the primary cause of gross chromosomal 

rearrangements in somatic cells (Table 2). Validation by PCR and Sanger sequencing of ~10 

exonic mutations from the cells and amplification and Sanger sequencing of the breakpoints 

of the structural variants, showed a high rate of true positive calls. The aging-associate C→T 

changes in CpG motifs (Table 3 and (Alexandrov et al., 2015)) were detected in all cells 

analyzed in the study. Furthermore, overall mutation loads in cells from the forearms exceed 

those in hips, and UV-signature mutations were prevalent in the sun-exposed samples.

The second approach to analyze clonal-lineages involves in vitro organoid culture from 

multipotent adult stem cells (Figure 1). Organoids are three dimensional multicellular 

cultures that mimic in vivo tissue. These can be constructed using either embryonic or 

induced pluripotent stem cells, or tissue specific adult stem cells. Organoids are suspended 

in extracellular matrix and cultured in laminin-rich Matrigel with growth factors that induce 

stem-cell expansion. For example, stem cells obtained from intestinal crypts are grown in the 

presence of Wnt, noggin and epidermal growth factors, required for maintenance and 

expansion of Lgr5+ stem cells (Blokzijl et al., 2016; and reviewed in Rookmaaker et al., 

2015). Since organoids are derived from a single adult stem cell, this methodology has 

allowed researchers to obtain clonal cell populations in vitro for whole genome sequencing 

and tissue-specific mutation analysis while bypassing the need for genome amplification as 

needed for single cell studies (Behjati et al., 2014; Blokzijl et al., 2016). Whole genome 

sequencing of organoid cultures from mice stomach, small bowel, large bowel and prostate 

demonstrated wide variability in mutation loads and spectra in the tissues with mutation 

loads varying from 100 to 600 mutations per culture (Behjati et al., 2014). This approach 

was later applied to human tissues, and WGS from organoids derived from the colon, small 

intestine and liver of individuals ranging from 3 to 87 years demonstrated that each cell 

carried 1000 to 3000 point mutations per genome with an age dependent increase of 

approximately 40 mutations per year. The major mutation signature in the colon and small-

intestine derived cells was C→T at CpG dincucleotides. An additional signature whose 

source is currently unknown was detected in liver-derived organoids (Blokzijl et al., 2016) 

(Table 2).

These studies highlight the impacts of both replication and tissue-specific extrinsic sources 

of DNA damage in generation of the somatic “mosaicome” (Bae et al., 2018) across the 

Saini and Gordenin Page 8

Environ Mol Mutagen. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



human body. The tissue-specific mutation loads and profiles in the above-mentioned studies 

clearly demonstrate that somatic genomes can be a dosimeter of the endogenous and 

exogenous mutagenic processes operative in cells over the lifetime of the donors. 

Sequencing larger populations of individuals, and wider cell types will provide us with the 

ranges of somatic genome variability.

Somatic mutation calling

In addition to the methodology used for sequencing somatic cells, accuracy of somatic 

mutation calls is further dependent on the alignment and mutation calling algorithms used 

and downstream filtering applied. Currently there are a multitude of pipelines for whole 

genome sequence alignments and mutation annotation. Many of these somatic mutation 

callers have been assessed for specificity and sensitivity in comparative studies. It is evident 

that the balance between sensitivity and accuracy of true positive calls varies between the 

algorithms. For example, analysis of melanoma and lung tumor samples with matched 

normal demonstrated that MuTect (Cibulskis et al., 2013) and VarScan2 (Koboldt et al., 

2009; Koboldt et al., 2012) were highly sensitive and accurate mutation callers, however, 

MuTect’s stringent filtering criteria led to the rejection of more somatic SNVs than 

VarScan2, while VarScan2 reported more false-positives than MuTect. On the other hand, 

Strelka (Saunders et al., 2012) and SomaticSniper (Larson et al., 2012) identified fewer true 

positive SNVs however, they also identified fewer false positive SNVs (Wang et al., 2013). 

Furthermore, analysis of breast cancers by nine different somatic mutation callers, 

demonstrated MuTect, EBCaller (Shiraishi et al., 2013), Shimmer (Hansen et al., 2013) and 

Strelka to be the most accurate and reliable algorithms and capable of outperforming 

VarScan2 (Kroigard et al., 2016). As such, it is preferable to utilize multiple somatic 

mutation callers to accurately identify somatic variants while minimizing caller-specific 

false positives.

Our own approach has revolved around using the Genome Analysis Toolkit best practices 

pipeline (Van der Auwera et al., 2013), followed by mutation calling using the consensus 

calls from three independent mutation callers (Saini et al., 2016). Specifically, sequencing 

reads are aligned to the human genome using bwa-mem. The resulting SAM files are 

converted to the BAM format with addition of read groups needed for GATK downstream 

processing, PCR duplicates are marked and removed and the resulting BAM files are 

realigned around indels and the base quality scores are recalibrated. Germline 

polymorphisms are determined in blood DNA or the matched “normal” DNA using the 

GATK Haplotype caller and the SNVs are filtered by training on known SNPs present in 

HapMap, dbSNP and the 1000 genomes project. Somatic mutations are determined in the 

clone or single cell using three callers – the GATK Haplotype caller which reports all 

variants in the sample and subsequently the germline variants are subtracted from the 

mutation list, as well as MuTect and VarScan2 which use data from the matched normal to 

directly output the clone- or cell-specific mutation calls. Only high-confidence variants 

called as “somatic” by all three callers are denoted as true-somatic calls.

To obtain high quality somatic mutation calls, further filters may be applied. 

VariantFiltration from GATK may be used to filter out variants that do not conform to 
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certain criteria such as SNPs with quality (QUAL) scores less than 30 or low depth of 

coverage. Similar filters can be applied to VarScan2 and MuTect such that mutations present 

in regions with low depth, variants only detected in one orientation, SNPs next to indels, 

triallelic events or low-confidence somatic SNPs can be filtered out. Further, variant 

positions that overlap with known dbSNPs or variants within simple repeat tracts and 

blacklisted genomic regions (obtained from https://genome.ucsc.edu/cgi-bin/hgTables), are 

removed from consideration. Finally, for single cell or clonal population sequencing, allele 

frequency filters should be applied such that SNPs with allele frequencies between 45% and 

55% are considered as heterozygous alleles, while those with frequencies >90% are 

considered homozygous alleles. SNPs with allele frequencies that are not within these 

ranges likely arose in vitro during cell culture or whole genome amplification and are 

therefore removed.

Human somatic mutation rates

The assessment of somatic mutation rates in multicellular organisms, especially humans, in 
situ has been a long standing unanswered question. The underlying cause for this gap in 

knowledge so far has been the lack of accurate measurements of somatic mutation loads in 

single human cells. Initially mutations accumulated in single gene reporters or in a small 

fraction of the genome were used as a proxy to determine somatic mutation rates in humans. 

These estimates vary dramatically between 10−9 to 10−7 mutations per base per cell division 

(Araten et al., 2005; Li et al., 2014; Lynch, 2010). Moreover, based on genomic studies in 

human somatic cells and cancers, it is now clear that mutation rates vary across the genome 

in a non-random manner. The majority of the mutagenic processes lead to increased 

mutation loads in late replicating heterochromatic genomic regions in part due to reduced 

DNA repair capacity in these regions (Koren et al., 2012; Lawrence et al., 2013; Polak et al., 

2015; Polak et al., 2014; Sabarinathan et al., 2016; Saini et al., 2016; Schuster-Bockler and 

Lehner, 2012). As such, measuring mutation rates based on mutation accumulation at a 

single locus may lead to biased results.

The innovations in single cell sequencing techniques, or single cell derived clones and 

organoids’ sequencing has provided insights into somatic mutation rates. Single cell 

sequencing from mice and human cells showed a median mutation rate of 2.8 X 10−7 and 

4.4 X 10−7 per bp for human and mouse cells. Accounting for cell divisions based on the 

number of cells in the body and tissue homeostasis after birth enabled correction of the 

mutation rates to 2.66 X 10−9 and 8.1 X 10−9 mutations per bp per mitosis in humans and 

mice (Milholland et al., 2017). On the other hand, estimation of telomere lengths in somatic 

fibroblast clones provided an estimate of approximately 60 cell divisions in adult skin cells 

since birth. Using this metric, the somatic mutation rates in hip and forearm fibroblast clones 

varied from 1.4X10−9 to 3X10−8 mutations per nucleotide per cell division, with higher 

mutation rates in sun-exposed skin cells carrying a prominent UV-mutation signature (Saini 

et al., 2016).

Interestingly, studies have also reported elevated accumulation of structural variations during 

early embryogenesis (Vanneste et al., 2009). Additionally, Ju et.al estimated somatic 

mutation rates during early embryogenesis to be approximately 2.8 mutations per cell 
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doubling. Similar to the age-associated mutation profile 43% of the mutations generated 

during early embryogenesis were C→T changes at CpG dinucleotides (Table 2 and Table 3) 

(Ju et al., 2017). The rate of somatic mutation accumulation in neurons was found to be ~5.1 

mutations per day during neurogenesis, which was lowered to ~1.3 mutations per day in 

early embryos. Moreover, analysis of mutation spectra in these cells demonstrated 

heightened C→T changes at CpG motifs generated during early neurogenesis coupled with 

increased C→A changes likely attributable to oxidative damage (Bae et al., 2018).

Somatic mutation spectra as an indicator of environmental or endogenous DNA damage in 
cancer-free cells

Currently, 30 mutation signatures are defined in the COSMIC database for cancer genomes 

(Alexandrov et al., 2013; Forbes et al., 2017). A variety of mutation signatures are highly 

concordant with known mutagenic activities of a variety of DNA damaging agents, including 

APOBEC3-induced tCw→tTw and tCw→tGw changes (Signatures 2 and 13 in COSMIC), 

UV-induced C→T changes at pyrimidine dimers (Signature 7 and 11 in COSMIC) and 

oxidative damage induced C→A changes due to erroneous bypass of 8-oxoguanine residues 

(Signature 4 in COSMIC); and signatures also vary with defects in DNA repair pathways 

(Drost et al., 2017; Kim et al., 2016 also Table 3). Based on these observations, it can be 

hypothesized that mutation signatures attributable to known environmental or endogenous 

DNA damage in human somatic cells can provide insights into the major mutagenic sources 

acting upon the tissue types tested. In support of this conjecture, the predominant mutation 

signature detected in sun-exposed healthy skin cells was of the UV-induced mutations 

(Abyzov et al., 2017; Martincorena et al., 2015; Saini et al., 2016), while in sun-unexposed 

skin cells this signature was much lower (Saini et al., 2016). Moreover, the aging-associated 

ubiquitous nCg→nTg signature has been shown to be present in almost all cell types tested 

(Blokzijl et al., 2016; Lodato et al., 2015; Saini et al., 2016), demonstrating that deamination 

at methylated cytosines is active in all cell types across the human body. With further 

accumulation of the data for healthy human cells, it is possible that similar to cancers, a 

catalog of mutation signatures may be developed, highlighting the mutational mechanisms 

that exclusively function in either cancerous tissues or healthy cells.

The caveats of such an undertaking are that a large number of signatures have overlapping 

components, while for many signatures, the etiology of the processes is unknown. Thus, it is 

a challenging effort to assign, where possible, the DNA damage and transaction processes to 

the signatures. Examples of such overlapping mutation signatures include the UV mutation 

motif (yCn→yTn), AID mutation motif (wrC→wrT), APOBEC mutation motif 

(tCw→tTw) and the aging-associated mutation motif (nCg→nTg) (Roberts et al., 2013; 

Rogozin et al., 2016; Saini et al., 2016)(Table 3). One way to annotate specific processes 

with their signatures is to split mutation signatures into non-overlapping components. Saini 

et. al. were able to differentiate between UV-induced mutagenesis at yCn motifs from CpG 

mutation signatures by splitting nCg→nTg to rCg and yCg respectively (Saini et al., 2016) 

(Table 3). This approach has also been used in determining which of the APOBEC3 

enzymes are the major mutagens in cancer genomes. Both the APOBEC3A and 3B enzymes 

preferentially deaminate cytosines in the tCw motif. Using yeast systems ectopically 

expressing these enzymes, Chan et.al demonstrated that the preferred moiety for 
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APOBEC3A is ytCa (y is a pyrimidine), while APOBEC3B favored rtCa (r is a purine) 

(Table 3). This choice of the −2 nucleotide by the enzymes was further corroborated by 

analysis of cancer genomes, which led to the conclusion that APOBEC3A is responsible for 

higher mutation loads in cancers than APOBEC3B (Chan et al., 2015). Interestingly, 

Rogozin et.al. demonstrated that C→T changes at methylated cytosines at CpG residues that 

are within the AID-mutable motif wrC are often overrepresented. Thus, AID-induced 

mutagenesis in wrCg motifs was found to be enriched in cancers where based on analysis of 

the classical AID motif (wrC) no AID activity was detected (Rogozin et al., 2016). Such 

analyses for other mutation signature motifs will help delineate the various mechanisms that 

damage DNA and measure their impacts on genome stability in human somatic cells.

Conclusions and the future challenges in somatic mutation analysis

The advances in somatic genome sequencing techniques over the last few years have 

significantly enhanced our knowledge about the somatic mutation loads and spectra in non-

cancerous human tissues. Similar to cancer genomes, the mutation loads and spectra across 

the body and in different cell types were found to be dependent on the proliferative ability of 

the cells, their DNA repair capacity and the endogenous or exogenous DNA damaging 

agents the cells can encounter.

Measuring mutations at the cellular level is essential to understand the impacts of 

environmental or endogenous factors on genome stability since even deep sequencing of 

bulk tissue specimens would reflect primarily a few overrepresented mutations or cell 

lineages. However, studying the majority of the cells across the body is a challenging feat 

since most terminally differentiated cell types cannot be cultured. To overcome this caveat, 

induced pluripotent cell lines may be generated, however this process is inherently 

mutagenic (Ji et al., 2012; Rouhani et al., 2016). On the other hand, techniques involving 

single cell-derived clones (Saini et al., 2016) or organoids (Behjati et al., 2014; Blokzijl et 

al., 2016) are reliant on the minor fraction of cells that retain proliferative ability within the 

tissue. Therefore, single-cell sequencing for measuring mutation loads across most cell types 

makes this the desired future approach for large-scale studies. The current single-cell 

sequencing technologies have already allowed to sequence genomes of otherwise 

inaccessible cell types. However, one of the major caveats of single cell sequencing 

techniques is the high error-rate of the whole genome amplification techniques. 

Benchmarking the current technologies using sequenced clonal lineages alongside better-

quality bioinformatic algorithms to determine the mutation rates and spectra associated with 

the different WGA technologies, can drastically improve the rates of calling true-positive 

mutations in single cells. Overall, we anticipate that advances in single cell sequencing 

technologies will provide the means for high-throughput profiling of somatic genomes in the 

cells across the human body.

The current and future studies on somatic mutation loads and spectra in healthy human cells 

have the potential to build the platform for utilization of these data as a “dosimeter” of 

environmental and endogenous DNA damage accrued over an individual’s lifetime allowing 

mutational information in cells to be used as part of cancer prevention screens. However, in 

order to transition into such screening procedures, a variety of challenges must be addressed. 
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The first and foremost difficulty anticipated is the unavailability of or highly invasive nature 

to obtain a large variety of cell types from healthy living donors, including neuronal cells 

which currently can only be accessed post mortem. Hence, development of techniques and 

bioinformatic tools for sequencing of cell-free DNA from blood and calling somatic 

mutations (reviewed in (Cai et al., 2015; Heitzer et al., 2016)) may bypass the need to 

sequence specific cell types, allowing expansion of these studies to a large population at a 

fraction of the costs. Moreover, we can anticipate that somatic mutation estimations in easily 

accessible cell types like blood cells or buccal swabs of individuals who may have been 

exposed to carcinogens, would become common practice in measuring the impacts of the 

exposure to their health outcomes. Such measurements across populations, including 

individuals carrying known deleterious mutations in DNA repair genes or pathways 

predisposing them to accumulation of mutations, will provide the range of somatic mutation 

loads in healthy people thus informing about the normal and pathological levels of human 

somatic mutations.

In summary, estimation of somatic mutations in healthy human tissues has the potential to 

revolutionize our understanding of the causes underlying and the consequences of somatic 

genome instability on human health. Similar to the burst in cancer genome sequencing 

studies, with improvements in NGS technologies, and reduction in cost for sequencing 

genomes we expect large-scale efforts in somatic mutation detection in healthy individuals 

paving the way to understanding and screening for cancer and other somatic disease 

predisposition.

Acknowledgments

We are thankful to Dr. S Syed, Dr. M Howard and Dr. S. Vijayraghavan for critically reading this manuscript and 
providing their feedback. This work was supported by the US National Institute of Health Intramural Research 
Program Project Z1AES103266 to DAG

References

Aaltonen LA, Peltomaki P, Leach FS, Sistonen P, Pylkkanen L, Mecklin JP, Jarvinen H, Powell SM, 
Jen J, Hamilton SR, et al. Clues to the pathogenesis of familial colorectal cancer. Science. 1993; 
260:812–816. [PubMed: 8484121] 

Abyzov A, Mariani J, Palejev D, Zhang Y, Haney MS, Tomasini L, Ferrandino AF, Rosenberg 
Belmaker LA, Szekely A, Wilson M, et al. Somatic copy number mosaicism in human skin revealed 
by induced pluripotent stem cells. Nature. 2012; 492:438–442. [PubMed: 23160490] 

Abyzov A, Tomasini L, Zhou B, Vasmatzis N, Coppola G, Amenduni M, Pattni R, Wilson M, Gerstein 
M, Weissman S, et al. One thousand somatic SNVs per skin fibroblast cell set baseline of mosaic 
mutational load with patterns that suggest proliferative origin. Genome Res. 2017; 27:512–523. 
[PubMed: 28235832] 

Alexandrov LB, Jones PH, Wedge DC, Sale JE, Campbell PJ, Nik-Zainal S, Stratton MR. Clock-like 
mutational processes in human somatic cells. Nat Genet. 2015; 47:1402–1407. [PubMed: 
26551669] 

Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, Bignell GR, Bolli N, 
Borg A, Borresen-Dale AL, et al. Signatures of mutational processes in human cancer. Nature. 
2013; 500:415–421. [PubMed: 23945592] 

Araten DJ, Golde DW, Zhang RH, Thaler HT, Gargiulo L, Notaro R, Luzzatto L. A quantitative 
measurement of the human somatic mutation rate. Cancer research. 2005; 65:8111–8117. [PubMed: 
16166284] 

Saini and Gordenin Page 13

Environ Mol Mutagen. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Arneson N, Hughes S, Houlston R, Done S. GenomePlex Whole-Genome Amplification. CSH Protoc. 
2008; 2008 pdb prot4920. 

Bae T, Tomasini L, Mariani J, Zhou B, Roychowdhury T, Franjic D, Pletikos M, Pattni R, Chen BJ, 
Venturini E, et al. Different mutational rates and mechanisms in human cells at pregastrulation and 
neurogenesis. Science. 2018; 359:550–555. [PubMed: 29217587] 

Behjati S, Huch M, van Boxtel R, Karthaus W, Wedge DC, Tamuri AU, Martincorena I, Petljak M, 
Alexandrov LB, Gundem G, et al. Genome sequencing of normal cells reveals developmental 
lineages and mutational processes. Nature. 2014; 513:422–425. [PubMed: 25043003] 

Berger MF, Hodis E, Heffernan TP, Deribe YL, Lawrence MS, Protopopov A, Ivanova E, Watson IR, 
Nickerson E, Ghosh P, et al. Melanoma genome sequencing reveals frequent PREX2 mutations. 
Nature. 2012; 485:502–506. [PubMed: 22622578] 

Blainey PC, Quake SR. Digital MDA for enumeration of total nucleic acid contamination. Nucleic 
Acids Res. 2011; 39:e19. [PubMed: 21071419] 

Blokzijl F, de Ligt J, Jager M, Sasselli V, Roerink S, Sasaki N, Huch M, Boymans S, Kuijk E, Prins P, 
et al. Tissue-specific mutation accumulation in human adult stem cells during life. Nature. 2016; 
538:260–264. [PubMed: 27698416] 

Cai X, Evrony GD, Lehmann HS, Elhosary PC, Mehta BK, Poduri A, Walsh CA. Single-cell, genome-
wide sequencing identifies clonal somatic copy-number variation in the human brain. Cell Rep. 
2014; 8:1280–1289. [PubMed: 25159146] 

Cai X, Janku F, Zhan Q, Fan JB. Accessing Genetic Information with Liquid Biopsies. Trends Genet. 
2015; 31:564–575. [PubMed: 26450339] 

Chan K, Roberts SA, Klimczak LJ, Sterling JF, Saini N, Malc EP, Kim J, Kwiatkowski DJ, Fargo DC, 
Mieczkowski PA, et al. An APOBEC3A hypermutation signature is distinguishable from the 
signature of background mutagenesis by APOBEC3B in human cancers. Nat Genet. 2015; 
47:1067–1072. [PubMed: 26258849] 

Chen C, Xing D, Tan L, Li H, Zhou G, Huang L, Xie XS. Single-cell whole-genome analyses by 
Linear Amplification via Transposon Insertion (LIANTI). Science. 2017; 356:189–194. [PubMed: 
28408603] 

Cibulskis K, Lawrence MS, Carter SL, Sivachenko A, Jaffe D, Sougnez C, Gabriel S, Meyerson M, 
Lander ES, Getz G. Sensitive detection of somatic point mutations in impure and heterogeneous 
cancer samples. Nat Biotechnol. 2013; 31:213–219. [PubMed: 23396013] 

Cleaver JE, Crowley E. UV damage, DNA repair and skin carcinogenesis. Front Biosci. 2002; 
7:d1024–1043. [PubMed: 11897551] 

Cunningham JM, Christensen ER, Tester DJ, Kim CY, Roche PC, Burgart LJ, Thibodeau SN. 
Hypermethylation of the hMLH1 promoter in colon cancer with microsatellite instability. Cancer 
research. 1998; 58:3455–3460. [PubMed: 9699680] 

Davies MJ, Lovell DP, Anderson D. Thioguanine-resistant mutant frequency in T-lymphocytes from a 
healthy human population. Mutat Res. 1992; 265:165–171. [PubMed: 1370715] 

Dolle ME, Giese H, Hopkins CL, Martus HJ, Hausdorff JM, Vijg J. Rapid accumulation of genome 
rearrangements in liver but not in brain of old mice. Nat Genet. 1997; 17:431–434. [PubMed: 
9398844] 

Dolle ME, Snyder WK, Gossen JA, Lohman PH, Vijg J. Distinct spectra of somatic mutations 
accumulated with age in mouse heart and small intestine. Proc Natl Acad Sci U S A. 2000; 
97:8403–8408. [PubMed: 10900004] 

Dolle ME, Vijg J. Genome dynamics in aging mice. Genome Res. 2002; 12:1732–1738. [PubMed: 
12421760] 

Dong X, Zhang L, Milholland B, Lee M, Maslov AY, Wang T, Vijg J. Accurate identification of single-
nucleotide variants in whole-genome-amplified single cells. Nat Methods. 2017; 14:491–493. 
[PubMed: 28319112] 

Drost J, van Boxtel R, Blokzijl F, Mizutani T, Sasaki N, Sasselli V, de Ligt J, Behjati S, Grolleman JE, 
van Wezel T, et al. Use of CRISPR-modified human stem cell organoids to study the origin of 
mutational signatures in cancer. Science. 2017; 358:234–238. [PubMed: 28912133] 

Erickson RP. Somatic gene mutation and human disease other than cancer. Mutat Res. 2003; 543:125–
136. [PubMed: 12644182] 

Saini and Gordenin Page 14

Environ Mol Mutagen. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Erickson RP. Somatic gene mutation and human disease other than cancer: an update. Mutat Res. 
2010; 705:96–106. [PubMed: 20399892] 

Erickson RP. Recent advances in the study of somatic mosaicism and diseases other than cancer. Curr 
Opin Genet Dev. 2014; 26:73–78. [PubMed: 25050467] 

Erickson RP. The importance of de novo mutations for pediatric neurological disease--It is not all in 
utero or birth trauma. Mutat Res Rev Mutat Res. 2016; 767:42–58. [PubMed: 27036065] 

Evrony GD, Cai X, Lee E, Hills LB, Elhosary PC, Lehmann HS, Parker JJ, Atabay KD, Gilmore EC, 
Poduri A, et al. Single-neuron sequencing analysis of L1 retrotransposition and somatic mutation 
in the human brain. Cell. 2012; 151:483–496. [PubMed: 23101622] 

Evrony GD, Lee E, Mehta BK, Benjamini Y, Johnson RM, Cai X, Yang L, Haseley P, Lehmann HS, 
Park PJ, et al. Cell lineage analysis in human brain using endogenous retroelements. Neuron. 
2015; 85:49–59. [PubMed: 25569347] 

Falconer E, Hills M, Naumann U, Poon SS, Chavez EA, Sanders AD, Zhao Y, Hirst M, Lansdorp PM. 
DNA template strand sequencing of single-cells maps genomic rearrangements at high resolution. 
Nat Methods. 2012; 9:1107–1112. [PubMed: 23042453] 

Forbes SA, Beare D, Boutselakis H, Bamford S, Bindal N, Tate J, Cole CG, Ward S, Dawson E, 
Ponting L, et al. COSMIC: somatic cancer genetics at high-resolution. Nucleic Acids Res. 2017; 
45:D777–D783. [PubMed: 27899578] 

Gansmo LB, Romundstad P, Hveem K, Vatten L, Nik-Zainal S, Lonning PE, Knappskog S. 
APOBEC3A/B deletion polymorphism and cancer risk. Carcinogenesis. 2017

Garcia AM, Calder RB, Dolle ME, Lundell M, Kapahi P, Vijg J. Age- and temperature-dependent 
somatic mutation accumulation in Drosophila melanogaster. PLoS Genet. 2010; 6:e1000950. 
[PubMed: 20485564] 

Gawad C, Koh W, Quake SR. Single-cell genome sequencing: current state of the science. Nat Rev 
Genet. 2016; 17:175–188. [PubMed: 26806412] 

Gregg SQ, Gutierrez V, Robinson AR, Woodell T, Nakao A, Ross MA, Michalopoulos GK, Rigatti L, 
Rothermel CE, Kamileri I, et al. A mouse model of accelerated liver aging caused by a defect in 
DNA repair. Hepatology. 2012; 55:609–621. [PubMed: 21953681] 

Gregory MT, Bertout JA, Ericson NG, Taylor SD, Mukherjee R, Robins HS, Drescher CW, Bielas JH. 
Targeted single molecule mutation detection with massively parallel sequencing. Nucleic Acids 
Res. 2016; 44:e22. [PubMed: 26384417] 

Gundry M, Li W, Maqbool SB, Vijg J. Direct, genome-wide assessment of DNA mutations in single 
cells. Nucleic Acids Res. 2012; 40:2032–2040. [PubMed: 22086961] 

Hansen NF, Gartner JJ, Mei L, Samuels Y, Mullikin JC. Shimmer: detection of genetic alterations in 
tumors using next-generation sequence data. Bioinformatics. 2013; 29:1498–1503. [PubMed: 
23620360] 

Hart RW, Setlow RB, Woodhead AD. Evidence that pyrimidine dimers in DNA can give rise to tumors. 
Proc Natl Acad Sci U S A. 1977; 74:5574–5578. [PubMed: 271984] 

Hecht SS. Progress and challenges in selected areas of tobacco carcinogenesis. Chem Res Toxicol. 
2008; 21:160–171. [PubMed: 18052103] 

Heitzer E, Ulz P, Geigl JB, Speicher MR. Non-invasive detection of genome-wide somatic copy 
number alterations by liquid biopsies. Mol Oncol. 2016; 10:494–502. [PubMed: 26778171] 

Hoang ML, Chen CH, Sidorenko VS, He J, Dickman KG, Yun BH, Moriya M, Niknafs N, Douville C, 
Karchin R, et al. Mutational signature of aristolochic acid exposure as revealed by whole-exome 
sequencing. Sci Transl Med. 2013; 5:197ra102.

Hoeijmakers JHJ. DNA Damage, Aging, and Cancer. (vol 361, pg 1475, 2009). New Engl J Med. 
2009; 361:1914–1914.

Ji J, Ng SH, Sharma V, Neculai D, Hussein S, Sam M, Trinh Q, Church GM, McPherson JD, Nagy A, 
et al. Elevated coding mutation rate during the reprogramming of human somatic cells into 
induced pluripotent stem cells. Stem Cells. 2012; 30:435–440. [PubMed: 22162363] 

Johnson BE, Mazor T, Hong C, Barnes M, Aihara K, McLean CY, Fouse SD, Yamamoto S, Ueda H, 
Tatsuno K, et al. Mutational analysis reveals the origin and therapy-driven evolution of recurrent 
glioma. Science. 2014; 343:189–193. [PubMed: 24336570] 

Saini and Gordenin Page 15

Environ Mol Mutagen. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Joo J, Yoon KA, Hayashi T, Kong SY, Shin HJ, Park B, Kim YM, Hwang SH, Kim J, Shin A, et al. 
Nucleotide Excision Repair Gene ERCC2 and ERCC5 Variants Increase Risk of Uterine Cervical 
Cancer. Cancer Res Treat. 2016; 48:708–714. [PubMed: 26130668] 

Ju YS, Martincorena I, Gerstung M, Petljak M, Alexandrov LB, Rahbari R, Wedge DC, Davies HR, 
Ramakrishna M, Fullam A, et al. Somatic mutations reveal asymmetric cellular dynamics in the 
early human embryo. Nature. 2017; 543:714–718. [PubMed: 28329761] 

Kennedy SR, Loeb LA, Herr AJ. Somatic mutations in aging, cancer and neurodegeneration. Mech 
Ageing Dev. 2012; 133:118–126. [PubMed: 22079405] 

Kim J, Mouw KW, Polak P, Braunstein LZ, Kamburov A, Kwiatkowski DJ, Rosenberg JE, Van Allen 
EM, D’Andrea A, Getz G. Somatic ERCC2 mutations are associated with a distinct genomic 
signature in urothelial tumors. Nat Genet. 2016; 48:600–606. [PubMed: 27111033] 

Kinde I, Wu J, Papadopoulos N, Kinzler KW, Vogelstein B. Detection and quantification of rare 
mutations with massively parallel sequencing. Proc Natl Acad Sci U S A. 2011; 108:9530–9535. 
[PubMed: 21586637] 

Knouse KA, Wu J, Amon A. Assessment of megabase-scale somatic copy number variation using 
single-cell sequencing. Genome Res. 2016; 26:376–384. [PubMed: 26772196] 

Knouse KA, Wu J, Whittaker CA, Amon A. Single cell sequencing reveals low levels of aneuploidy 
across mammalian tissues. Proc Natl Acad Sci U S A. 2014; 111:13409–13414. [PubMed: 
25197050] 

Koboldt DC, Chen K, Wylie T, Larson DE, McLellan MD, Mardis ER, Weinstock GM, Wilson RK, 
Ding L. VarScan: variant detection in massively parallel sequencing of individual and pooled 
samples. Bioinformatics. 2009; 25:2283–2285. [PubMed: 19542151] 

Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L, Miller CA, Mardis ER, Ding L, 
Wilson RK. VarScan 2: somatic mutation and copy number alteration discovery in cancer by 
exome sequencing. Genome Res. 2012; 22:568–576. [PubMed: 22300766] 

Koren A, Polak P, Nemesh J, Michaelson JJ, Sebat J, Sunyaev SR, McCarroll SA. Differential 
relationship of DNA replication timing to different forms of human mutation and variation. Am J 
Hum Genet. 2012; 91:1033–1040. [PubMed: 23176822] 

Kroigard AB, Thomassen M, Laenkholm AV, Kruse TA, Larsen MJ. Evaluation of Nine Somatic 
Variant Callers for Detection of Somatic Mutations in Exome and Targeted Deep Sequencing Data. 
PLoS One. 2016; 11:e0151664. [PubMed: 27002637] 

Larson DE, Harris CC, Chen K, Koboldt DC, Abbott TE, Dooling DJ, Ley TJ, Mardis ER, Wilson RK, 
Ding L. SomaticSniper: identification of somatic point mutations in whole genome sequencing 
data. Bioinformatics. 2012; 28:311–317. [PubMed: 22155872] 

Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A, Carter SL, Stewart C, 
Mermel CH, Roberts SA, et al. Mutational heterogeneity in cancer and the search for new cancer-
associated genes. Nature. 2013; 499:214–218. [PubMed: 23770567] 

Li R, Montpetit A, Rousseau M, Wu SY, Greenwood CM, Spector TD, Pollak M, Polychronakos C, 
Richards JB. Somatic point mutations occurring early in development: a monozygotic twin study. J 
Med Genet. 2014; 51:28–34. [PubMed: 24123875] 

Lindahl T, Barnes DE. Repair of endogenous DNA damage. Cold Spring Harb Symp Quant Biol. 
2000; 65:127–133. [PubMed: 12760027] 

Lodato MA, Woodworth MB, Lee S, Evrony GD, Mehta BK, Karger A, Lee S, Chittenden TW, 
D’Gama AM, Cai X, et al. Somatic mutation in single human neurons tracks developmental and 
transcriptional history. Science. 2015; 350:94–98. [PubMed: 26430121] 

Loeb LA. A mutator phenotype in cancer. Cancer research. 2001; 61:3230–3239. [PubMed: 11309271] 

Loeb LA, Springgate CF, Battula N. Errors in DNA replication as a basis of malignant changes. Cancer 
research. 1974; 34:2311–2321. [PubMed: 4136142] 

Lynch M. Rate, molecular spectrum, and consequences of human mutation. Proc Natl Acad Sci U S A. 
2010; 107:961–968. [PubMed: 20080596] 

Marcy Y, Ishoey T, Lasken RS, Stockwell TB, Walenz BP, Halpern AL, Beeson KY, Goldberg SM, 
Quake SR. Nanoliter reactors improve multiple displacement amplification of genomes from 
single cells. PLoS Genet. 2007; 3:1702–1708. [PubMed: 17892324] 

Saini and Gordenin Page 16

Environ Mol Mutagen. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Martincorena I, Roshan A, Gerstung M, Ellis P, Van Loo P, McLaren S, Wedge DC, Fullam A, 
Alexandrov LB, Tubio JM, et al. Tumor evolution. High burden and pervasive positive selection of 
somatic mutations in normal human skin. Science. 2015; 348:880–886. [PubMed: 25999502] 

Maul RW, Gearhart PJ. AID and Somatic Hypermutation. Adv Immunol. 2010; 105:159–191. 
[PubMed: 20510733] 

McConnell MJ, Lindberg MR, Brennand KJ, Piper JC, Voet T, Cowing-Zitron C, Shumilina S, Lasken 
RS, Vermeesch JR, Hall IM, et al. Mosaic copy number variation in human neurons. Science. 
2013; 342:632–637. [PubMed: 24179226] 

Milholland B, Auton A, Suh Y, Vijg J. Age-related somatic mutations in the cancer genome. 
Oncotarget. 2015; 6:24627–24635. [PubMed: 26384365] 

Milholland B, Dong X, Zhang L, Hao X, Suh Y, Vijg J. Differences between germline and somatic 
mutation rates in humans and mice. Nat Commun. 2017; 8:15183. [PubMed: 28485371] 

Navin N, Kendall J, Troge J, Andrews P, Rodgers L, McIndoo J, Cook K, Stepansky A, Levy D, 
Esposito D, et al. Tumour evolution inferred by single-cell sequencing. Nature. 2011; 472:90–94. 
[PubMed: 21399628] 

Palles C, Cazier JB, Howarth KM, Domingo E, Jones AM, Broderick P, Kemp Z, Spain SL, Guarino E, 
Salguero I, et al. Germline mutations affecting the proofreading domains of POLE and POLD1 
predispose to colorectal adenomas and carcinomas. Nat Genet. 2013; 45:136–144. [PubMed: 
23263490] 

Parsons R, Li GM, Longley MJ, Fang WH, Papadopoulos N, Jen J, de la Chapelle A, Kinzler KW, 
Vogelstein B, Modrich P. Hypermutability and mismatch repair deficiency in RER+ tumor cells. 
Cell. 1993; 75:1227–1236. [PubMed: 8261516] 

Peled JU, Kuang FL, Iglesias-Ussel MD, Roa S, Kalis SL, Goodman ME, Scharff MD. The 
biochemistry of somatic hypermutation. Annu Rev Immunol. 2008; 26:481–511. [PubMed: 
18304001] 

Podolskiy DI, Lobanov AV, Kryukov GV, Gladyshev VN. Analysis of cancer genomes reveals basic 
features of human aging and its role in cancer development. Nat Commun. 2016; 7:12157. 
[PubMed: 27515585] 

Polak P, Karlic R, Koren A, Thurman R, Sandstrom R, Lawrence MS, Reynolds A, Rynes E, 
Vlahovicek K, Stamatoyannopoulos JA, et al. Cell-of-origin chromatin organization shapes the 
mutational landscape of cancer. Nature. 2015; 518:360–364. [PubMed: 25693567] 

Polak P, Lawrence MS, Haugen E, Stoletzki N, Stojanov P, Thurman RE, Garraway LA, Mirkin S, 
Getz G, Stamatoyannopoulos JA, et al. Reduced local mutation density in regulatory DNA of 
cancer genomes is linked to DNA repair. Nature Biotechnology. 2014; 32:71.

Ramsey MJ, Moore DH, Briner JF, Lee DA, Olsen LA, Senft JR, Tucker JD. The Effects of Age and 
Life-Style Factors on the Accumulation of Cytogenetic Damage as Measured by Chromosome 
Painting. Mutat Res-Dnaging G. 1995; 338:95–106.

Roberts SA, Gordenin DA. Hypermutation in human cancer genomes: footprints and mechanisms. Nat 
Rev Cancer. 2014; 14:786–800. [PubMed: 25568919] 

Roberts SA, Lawrence MS, Klimczak LJ, Grimm SA, Fargo D, Stojanov P, Kiezun A, Kryukov GV, 
Carter SL, Saksena G, et al. An APOBEC cytidine deaminase mutagenesis pattern is widespread 
in human cancers. Nat Genet. 2013; 45:970–976. [PubMed: 23852170] 

Rogozin IB, Goncearenco A, Lada AG, De S, Yurchenko V, Nudelman G, Panchenko AR, Cooper DN, 
Pavlov YI. DNA polymerase eta mutational signatures are found in a variety of different types of 
cancer. Cell cycle. 2018:1–8.

Rogozin IB, Lada AG, Goncearenco A, Green MR, De S, Nudelman G, Panchenko AR, Koonin EV, 
Pavlov YI. Activation induced deaminase mutational signature overlaps with CpG methylation 
sites in follicular lymphoma and other cancers. Sci Rep. 2016; 6:38133. [PubMed: 27924834] 

Rogozin IB, Pavlov YI, Bebenek K, Matsuda T, Kunkel TA. Somatic mutation hotspots correlate with 
DNA polymerase eta error spectrum. Nature immunology. 2001; 2:530–536. [PubMed: 11376340] 

Rookmaaker MB, Schutgens F, Verhaar MC, Clevers H. Development and application of human adult 
stem or progenitor cell organoids. Nature reviews Nephrology. 2015; 11:546–554. [PubMed: 
26215513] 

Saini and Gordenin Page 17

Environ Mol Mutagen. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Rouhani FJ, Nik-Zainal S, Wuster A, Li Y, Conte N, Koike-Yusa H, Kumasaka N, Vallier L, Yusa K, 
Bradley A. Mutational History of a Human Cell Lineage from Somatic to Induced Pluripotent 
Stem Cells. PLoS Genet. 2016; 12:e1005932. [PubMed: 27054363] 

Sabarinathan R, Mularoni L, Deu-Pons J, Gonzalez-Perez A, Lopez-Bigas N. Nucleotide excision 
repair is impaired by binding of transcription factors to DNA. Nature. 2016; 532:264. [PubMed: 
27075101] 

Saini N, Roberts SA, Klimczak LJ, Chan K, Grimm SA, Dai S, Fargo DC, Boyer JC, Kaufmann WK, 
Taylor JA, et al. The Impact of Environmental and Endogenous Damage on Somatic Mutation 
Load in Human Skin Fibroblasts. PLoS Genet. 2016; 12:e1006385. [PubMed: 27788131] 

Sanders AD, Falconer E, Hills M, Spierings DCJ, Lansdorp PM. Single-cell template strand 
sequencing by Strand-seq enables the characterization of individual homologs. Nat Protoc. 2017; 
12:1151–1176. [PubMed: 28492527] 

Sanders AD, Hills M, Porubsky D, Guryev V, Falconer E, Lansdorp PM. Characterizing polymorphic 
inversions in human genomes by single-cell sequencing. Genome Res. 2016; 26:1575–1587. 
[PubMed: 27472961] 

Saunders CT, Wong WS, Swamy S, Becq J, Murray LJ, Cheetham RK. Strelka: accurate somatic 
small-variant calling from sequenced tumor-normal sample pairs. Bioinformatics. 2012; 28:1811–
1817. [PubMed: 22581179] 

Schmitt MW, Kennedy SR, Salk JJ, Fox EJ, Hiatt JB, Loeb LA. Detection of ultra-rare mutations by 
next-generation sequencing. Proc Natl Acad Sci U S A. 2012; 109:14508–14513. [PubMed: 
22853953] 

Schuster-Bockler B, Lehner B. Chromatin organization is a major influence on regional mutation rates 
in human cancer cells. Nature. 2012; 488:504–507. [PubMed: 22820252] 

Shiraishi Y, Sato Y, Chiba K, Okuno Y, Nagata Y, Yoshida K, Shiba N, Hayashi Y, Kume H, Homma 
Y, et al. An empirical Bayesian framework for somatic mutation detection from cancer genome 
sequencing data. Nucleic Acids Res. 2013; 41:e89. [PubMed: 23471004] 

Tomasetti C, Vogelstein B. Cancer etiology. Variation in cancer risk among tissues can be explained by 
the number of stem cell divisions. Science. 2015; 347:78–81. [PubMed: 25554788] 

Tomasetti C, Vogelstein B, Parmigiani G. Half or more of the somatic mutations in cancers of self-
renewing tissues originate prior to tumor initiation. Proc Natl Acad Sci U S A. 2013; 110:1999–
2004. [PubMed: 23345422] 

Tubbs A, Nussenzweig A. Endogenous DNA Damage as a Source of Genomic Instability in Cancer. 
Cell. 2017; 168:644–656. [PubMed: 28187286] 

Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A, Jordan T, 
Shakir K, Roazen D, Thibault J, et al. From FastQ data to high confidence variant calls: the 
Genome Analysis Toolkit best practices pipeline. Current protocols in bioinformatics. 2013; 
43:11.10 11–33. [PubMed: 25431634] 

Vanneste E, Voet T, Le Caignec C, Ampe M, Konings P, Melotte C, Debrock S, Amyere M, Vikkula 
M, Schuit F, et al. Chromosome instability is common in human cleavage-stage embryos. Nat 
Med. 2009; 15:577–583. [PubMed: 19396175] 

Vijg J, Dolle ME. Large genome rearrangements as a primary cause of aging. Mech Ageing Dev. 2002; 
123:907–915. [PubMed: 12044939] 

von Joest M, Bua Aguin S, Li H. Genomic stability during cellular reprogramming: Mission 
impossible? Mutat Res. 2016; 788:12–16. [PubMed: 26851988] 

Wang Q, Jia P, Li F, Chen H, Ji H, Hucks D, Dahlman KB, Pao W, Zhao Z. Detecting somatic point 
mutations in cancer genome sequencing data: a comparison of mutation callers. Genome 
medicine. 2013; 5:91. [PubMed: 24112718] 

White MC, Holman DM, Boehm JE, Peipins LA, Grossman M, Henley SJ. Age and cancer risk: a 
potentially modifiable relationship. Am J Prev Med. 2014; 46:S7–15. [PubMed: 24512933] 

Yu Z, Lu S, Huang Y. Microfluidic whole genome amplification device for single cell sequencing. 
Analytical chemistry. 2014; 86:9386–9390. [PubMed: 25233049] 

Zong C, Lu S, Chapman AR, Xie XS. Genome-wide detection of single-nucleotide and copy-number 
variations of a single human cell. Science. 2012; 338:1622–1626. [PubMed: 23258894] 

Saini and Gordenin Page 18

Environ Mol Mutagen. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Overview of the methods for detecting somatic mutations in healthy human cells
The various approaches to analyze somatic mutations in a heterogenous tissue sample are 

depicted using skin as an example. The colored circles (red, cyan, yellow and green) in the 

tissue denote nuclei within the cells with different somatic mutations respectively. The dark 

blue circles denote nuclei with germline polymorphisms present across all cells in the tissue. 

DNA extraction from the bulk cells followed by deep sequencing provides a measure of the 

diverse somatic mutations present in the sample (left panel). The gray lines denote 

individual reads in NGS, and the colored circles on them imply heterozygous somatic 

mutations or germline polymorphisms present in the tissue. The somatic mutations in bulk 

sequencing samples are often present in very low allele fractions. In addition, sequencing 

errors (crosses) may further confound analysis in deep-sequenced heterogenous samples. To 

determine the somatic mutations in a given cell whole genome amplification from a single 

cell followed by WGS may be used (middle panel). On the other hand, pluripotent stem cells 

may be derived from the tissue and grown clonally to get enough number of cells for WGS. 

The primary cells may also be either cultured directly, or organoid cultures may be 

established from the stem cells within the tissue allowing propagation in vitro to obtain 

DNA for WGS (right panel). In single cell sequencing, and clonal population sequencing 

somatic mutations are present as high frequency alleles, while errors generated during 

library preparation and sequencing are usually present in a smaller fraction of reads. 

Therefore, somatic mutation calling using these approaches is more accurate.
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Table 1

Examples of diseases other than cancer associated with somatic genome changes and mosaicism

Type of Instability Tissue Tested Examples of Diseases

Single base substitutions and small 
insertion deletions

Blood Chronic infantile neurologic cutaneous articular, CHARGE syndrome, 
Paroxysmal nocturnal hemoglobinuria, Congential central 
hypoventilatilation syndrome, Costello syndrome, Hemophilia A and 
B, Hereditary spastic parapelagia, Hunter disease, Hypocalcemia, 
Loeys-Dietz, Marfans, MYH9 disorders, Neonatal diabetes, Ornithine 
transcarbamylase deficiency, Retinoblastoma, Rett syndrome, Skeletal 
dysplasia, von Hippel-Lindau disease

Skin cells and hair 
roots

Androgen insensitivity, McCune-Albright syndrome, EEC 
(ectrodactyly, ectodermal dysplasia, and orofacial clefts), Hutchinson-
Gilford progeria, Lesch-Nyhan, Loeys-Dietz, MYH9 disorders, 
Ornithine transcarbamylase deficiency, X-linked hypophosphatemic 
rickets

Buccal cells Chronic infantile neurologic cutaneous articular (CINCA), 
Epidermolysis bullosa simplex, Loeys-Dietz, MYH9 disorders

Cerebral cortex Alzheimer disease

Skeletal tissue Osteogenesis imperfecta

Deletions Blood Campomelic dysplasia, Hemophilia A and B, Infantile spinal muscular 
atrophy, Rubinstein-Taybi, X-linked dyskeratosis congenita

Skin Incontinentia pigmenti, Neurofibromatosis 1 and 2

Nervous system Autism spectrum disorders, Incontinentia pigmenti, Neurofibromatosis 
1 and 2

Duplications Blood X linked mental retardation

Repetitive element instability Blood Fascioscapular humeral muscular dystrophy

Table adapted from (Erickson, 2003, 2010, 2014, 2016)
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Table 2

Somatic mutation types, loads and spectra detected in healthy human cells.

Somatic Variation Tissue type analyzed
Load and spectra of somatic 
changes Methodology used Reference

Copy number changes Brain Large CNVs > 1Mb can occur in 13–
41% of neurons from healthy 
individuals and hemimegalencephaly 
patients.

Single cell sequencing 
and single cell SNP 
arrays

(Cai et al., 2014; 
McConnell et al., 
2013)

Skin Approximately 30% skin fibroblasts 
have megabase-scale CNVs

iPSCs sequencing (Abyzov et al., 
2012)

Skin and brain 8–9% of the cells have at least 1 
megabase-scale CNV

Single cell sequencing (Knouse et al., 
2016; Knouse et 
al., 2014)

Skin Skin fibroblasts have at least 1 
somatic CNV, and ~30% cells have 
megabase-scale CNVs. Most CNVs 
are near known fragile genomic 
regions.

Single-cell-derived clonal 
lineage sequencing

(Saini et al., 
2016)

Structural Variations Skin All skin fibroblasts have at least 1 
somatic structural variation. 
Deletions are the most abundant SV, 
however duplications, inversions and 
translocations were detected in the 
cells. Most SVs are near known 
fragile genomic regions.

Single-cell-derived clonal 
lineage sequencing

(Saini et al., 
2016)

Retrotransposition Brain <0.6 somatic L1 retrotransposition 
events detected per neuron

Single cell sequencing (Evrony et al., 
2012)

Single base substitutions Skin 3760 mutations found across the 234 
samples from four individuals. 
Prevalence of C→T and CC→TT 
changes characteristic of UV-induced 
mutations

Deep sequencing of 74 
genes from eyelid 
biopsies

(Martincorena et 
al., 2015)

Brain ~1500 somatic mutations per neuron. 
The major mutation signature was 
C→T changes at CpG motifs.

Single cell sequencing (Lodato et al., 
2015)

Skin ~600 to 13000 somatic mutations per 
skin fibroblast obtained from skin 
biopsies from the hips and forearms. 
Mutation load in sun-exposed skin is 
higher, with a prevalence of UV-
mutation signature.

Single-cell-derived clonal 
lineage sequencing

(Saini et al., 
2016)

Skin ~1000 somatic mutations per skin 
fibroblast obtained from donor 
underarm skin biopsy.

iPSCs sequencing (Abyzov et al., 
2017)

Skin and Blood 14 to 28 somatic mutations in protein 
coding genes and 391 somatic 
changes in endothelial progenitor 
cells from one 57 year old individual.

iPSCs and monoclonal 
EPCs sequencing

(Rouhani et al., 
2016)

Brain 200–400 somatic mutations in 
neurons from 12–14 week old fetus. 
C→T changes at CpG motifs and 
C→A changes characteristic of 
oxidative damage were the prevalent 
mutation signatures.

Single-cell-derived clonal 
lineage sequencing

(Bae et al., 2018)

Colon, small intestine 
and liver

1000–3000 mutations per cell. Linear 
increase in mutation loads with age. 
C→T changes at CpG motif detected 
in small intestine and colon cells. 
Mutation signature attributable to an 
unknown source in liver cells.

Adult stem cells-derived 
organoids sequencing

(Blokzijl et al., 
2016)
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